Séminaire Delange-Pisot-Poitou. Théorie des nombres

HUGH L. MONTGOMERY

Polynomials in many variables

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 17, nº 1 (1975-1976), exp. nº 7, p. 1-6

<http://www.numdam.org/item?id=SDPP_1975-1976__17_1_A7_0>

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire DELANGE-PISOT-POITOU (Théorie des nombres) 17e année, 1975/76, nº 7, 6 p.

POLYNOMIALS IN MANY VARIABLES

INTRESSIVE DE CORENOBLE ; Francés 7-01

2 1 1 - M. K.

by Hugh L. MONTGOMERY

We concern ourselves with two completely unrelated topics, although polynomials in several variables are involved in both parts.

PART I. Zeros of Dirichlet polynomials

Let Q be the class of all generalized Dirichlet polynomials

 $D(s) = 1 + \sum_{n=1}^{N} a_n \exp(-\lambda_n s)$,

where $a_n \in \mathbb{Z}$, and $\lambda_n > 0$ for all n. Such Dirichlet polynomials have been known to arise as factors of Euler products. We ask : For $D \in \mathbb{Q}$, how far to the left can all the zeros of D(s) be ? Recently, it was shown that for every $\varepsilon > 0$, D(s) has a zero in the half-plane Re $s > -\varepsilon$. Our object (realized in Theorem 3) is to sharpen this statement, and to determine the extremal D(s).

In 1857, KRONECKER proved the following theorem.

THEOREM A. - If $F \in Z[x]$, F is monic, and $F(x) \neq 0$ for |x| > 1, $x \in C$, then F is a product of cyclotomic polynomials; all zeros of F are roots of unity.

The above does not seem to present much prospect of being generalized to several variables, as in several variables it would be difficult to determine what a "monic" polynomial should be. However, we can reformulate Theorem A as the following.

THEOREM A'. - If $F \in Z[x]$, F(C) = 1, $F(x) \neq 0$ for |x| < 1, $x \in C$, then F is a product of cyclotomic polynomials; its zeros are roots of unity.

This generalizes immediately, as a new theorem.

THEOREM 1. - If $F \in \underline{Z}[z_1, z_2, ..., z_n]$, $F(\underline{0}) = 1$, $F(\underline{z}) \neq 0$ for $\underline{z} \in \underline{U}^n$, where $\underline{U}^n = \{\underline{z} \in \underline{C}^n ; |z_1| < 1 \text{ for } 1 \leq i \leq n\}$, then $F(\underline{z}) = \prod_{k=1}^{K} P_k(z_1^{a_{1k}} z_2^{a_{2k}} \dots z_n^{a_{nk}})$, where the P_k are cyclotomic polynomials and the a_{ik} are non-negative integers.

In addition to my original proof of Theorem 1, which was very complicated, Bryan BIRCH and Atle SELBERG have found simpler proofs. We do not give a complete proof here, but indicate the spirit of my original proof, as modified by BIRCH. We proceed by induction on n; the case n = 1 is Theorem A'. Suppose that there is a non-constant term of F(z) which does not involve z_n . This is, of course, only a special case; in general, we must make a multiplicative change of variables to bring about this favorable situation. Then

$$F(\underline{z}) = \sum_{j=0}^{J} F_j(z_1, z_2, \dots, z_{n-1}) z_n^j,$$

and F_0 is non trivial. If J = 0, then we are done; if J > 0, then we wish to show that F_0 is a factor of the other F_j . By the inductive hypothesis, F_0 is a product of polynomials $P(z_1^{a_1} \ z_2^{a_2} \ \dots \ z_{n-1}^{a_{n-1}})$, P cyclotomic. Thus each factor of F_0 vanishes on a large set in \overline{U}^{n-1} , so to show that $F_0|F_j$ it suffices to show that $F_j = 0$ in \overline{U}^{n-1} whenever $F_0 = 0$. Let $F_0(\underline{u}) = 0$, $|u_1| = 1$, $1 \le i \le n-1$. Put

$$f_{\lambda}(y) = \sum_{j=0}^{J} F_{j}(\lambda u) y^{j}$$
.

Suppose that $F_j(\underline{u}) \neq 0$ for at least one j, $1 \leq j \leq J$. The coefficients of f_{λ} are continuous functions in λ , so that for λ near 1 there is a continuous function $y(\lambda)$ such that y(1) = 0, $f(y(\lambda)) = 0$. Then, for $\lambda < 1$, λ near 1, we have F(z) = 0 for $\underline{z} = (u_1, \ldots, u_{n-1}, y(\lambda)) \in U^n$, a contradiction. Hence $F_j(\underline{u}) = 0$, and we deduce that $F_0 | F$, as desired.

In his doctoral thesis, Harald BOHR demonstrated that the set of values of a generalized Dirichlet polynomial is connected to the set of values of an associated polynomial in several variables. Precisely, if $P \in C[z_1, \dots, z_n]$, and $\lambda_1, \dots, \lambda_n$ are positive linearly independent numbers, put

$$D(s) = P(exp(-\lambda_1 s) , \dots , exp(-\lambda_n s))$$
.

Then

(1)
$$\{P(\underline{z}); |z_{i}| = 1\} = \bigcap_{\delta > 0} \{D(s); |Re s| < \delta\}.$$

To this, we add a new result.

WHEOREM 2. - In the above notation,

$$\{P(z) ; z \in U^n\} = \{D(s) ; 0 < \text{Re } s \leq +\infty\}.$$

<u>Proof.</u> - Call the above sets X and Y, respectively. By appealing to (1) for each $\sigma > 0$, we see that Y = Y', where

$$Y' = \bigcup_{\sigma > 0} \{P(\underline{z}) ; |z_i| = \exp(-\lambda_i \sigma)\}.$$

That X = Y' now follows from a standard analytic completion argument : Suppose $P(\underline{z}) = a$, $\underline{z} \in U^n$, and let σ_0 be the supremum of those σ with the property that $a \in \{P(\underline{z}) ; \underline{z} \in U(\sigma)\}$, where $U(\sigma) = \{\underline{z} ; |\underline{z}_i| \leq \exp(-\lambda_i \sigma)\}$. For $\sigma > \sigma_0$ let $f(\sigma) = \min_{\underline{z} \in U(\sigma)} |P(\underline{z}) - a|$. Then $f(\sigma_0) = 0$, and f is continuous and increasing for $\sigma_0 > \sigma_0$. For $\sigma_0 > \sigma_0$, let $\underline{z}(\sigma) \in U(\sigma)$ have the property that $|P(\underline{z}(\sigma))| - a|$ has the minimal value $f(\sigma)$. By the minimum modulus theorem, $|\underline{z}_i(\sigma)| = \exp(-\lambda_i \sigma)$. Let $\underline{z}(\sigma_0)$ be a cluster point of the points $\underline{z}(\sigma)$ as

as $\sigma \longrightarrow \sigma_0^+$. Then $|z_i(\sigma_0)| = \exp(-\lambda_i \sigma_0)$, and $P(\underline{z}(\sigma_0)) = a$, so that X = Y'. Our objective is now within reach.

THEOREM 3. - Let $D(s) = 1 + \sum_{n=1}^{N} a_n \exp(-\lambda_n s)$, where $a_n \in \mathbb{Z}$, not all a_n vanish, and the λ_n are positive real numbers. Then D(s) has zeros in the halfplane Re $s \ge 0$. If $D(s) \ne 0$ for Re s > 0, then $D(s) = \prod_{k=1}^{K} P_k(\exp(-\mu_k s))$,

where the P_k are cyclotomic and the μ_k are positive real; the zeros of D(s) form a finite union of arithmetic progressions on Re s = 0.

<u>Proof.</u> - After BOHR, there is a polynomial $F \in Z[z_1, \dots, z_n]$ and linearly independent positive real numbers v_1, \dots, v_n such that

$$D(s) = P(exp(-\lambda_1 s), \dots, exp(-\lambda_n s))$$
.

By Theorem 2, we are concerned with zeros of $P(\underline{z})$ for $\underline{z} \in U^n$. But $P(\underline{0}) = 1$, so the result follows from Theorem 1.

PART II. Norms of products of polynomials

For
$$F \in \underline{C}[z_1, z_2, \dots, z_n]$$
, say
(1) $F(\underline{z}) = \sum_{\underline{m}} a(\underline{m}) z_1^{\underline{m}_1} z_2^{\underline{m}_2} \dots z_n^{\underline{m}_n}$,

let

(2)
$$f = \deg F = \max_{\underline{m}, a(\underline{m}) \neq 0} (m_1 + m_2 + \cdots + m_n),$$

and put

$$||\mathbf{F}|| = \sum_{\underline{m}} |\mathbf{a}(\underline{m})| \quad .$$

By the triangle inequality, we have

 $||FG|| \leq ||F|| \cdot ||G| ,$

(5)
$$||F + G|| \leq ||F|| + ||G||$$

If $f = \deg F$, $g = \deg G$, and n are all held fixed, then by compactness there is a constant c = c(f, g; n) > 0 such that

$$||FG|| \ge c(f , g ; n)||F|| \cdot ||G|| \cdot$$

Arguing more precisely, A. O. GEL'FOND showed that one can take $c(f,g;1)=c^{-f-g}$; later Kurt MAHLER demonstrated this with A = 2, which is sharp. However, for n > 1, their methods give bounds depending not on deg F as we have defined it in (2), but on

$$\sum_{i=1}^{n} \max_{max_{m,a}(\underline{m}) \neq 0} \pi_{i};$$

this gives some dependence on n, in addition to that on f and g. Of course,

if n is allowed to be arbitrarily large then we no longer have compactness, so it is of interest that Per ENFLO has recently proved the following theorem.

THEOREM. - There is a positive constant c(f, g), independent of n, such that for all polynomials F, G in n variables, with degrees not exceeding f and g, respectively,

$$||FG|| \ge c(f, g)||F|| \cdot ||G||$$

This forms one of the steps in Enflo's recent disproof of the invariant subspace conjecture. His proof of the above theorem is very complicated ; we give here a proof which seems to be easier to understand, and which generalizes easily in a number of ways.

If $F^* = z_0^f F(z_1/z_0, \dots, z_n/z_0)$ then F^* is homogeneous of degree f, $||F^*|| = ||F||$, and $(FG)^* = F^* G^*$. Thus in proving the Theorem, we may assume without loss of generality that F and G are homogeneous. This allows us to employ the following simple lemma.

LEMMA 1 [EULER]. - Let
$$F_i = \partial F/\partial z_i$$
. If F is homogeneous of degree f, then
(6) $\sum_{i=1}^n ||F_i|| = f||F||$.

Let $c_r(f, g)$ be the largest real number such that

(7)
$$||\mathbf{F}^{\mathbf{r}} \mathbf{G}|| \ge c_{\mathbf{r}}(\mathbf{f}, \mathbf{g})||\mathbf{F}||^{\mathbf{r}} ||\mathbf{G}||$$

for all polynomials F, G of degrees f, g, respectively.

Our proof proceeds by a complicated induction on r, f, and g. The two main inductive steps are provided by the following lemmas.

LEMMA 2. - For
$$r \ge 1$$
,
(8) $c_{r+1}(f, 0) \ge c_1(f-1, fr) c_r(f, 0)$.

Proof. - Using (7) twice, we see that

$$\|(\mathbf{r}+1)\mathbf{F}^{\mathbf{r}}\mathbf{F}_{\mathbf{i}}\| \ge (\mathbf{r}+1)\mathbf{c}_{1}(\mathbf{f}-1,\mathbf{f}\mathbf{r})\|\mathbf{F}_{\mathbf{i}}\|\cdot\|\mathbf{F}^{\mathbf{r}}\| \\ \ge (\mathbf{r}+1)\mathbf{c}_{1}(\mathbf{f}-1,\mathbf{f}\mathbf{r})\mathbf{c}_{\mathbf{r}}(\mathbf{f},0)\|\mathbf{F}_{\mathbf{i}}\|\cdot\|\mathbf{F}\|^{\mathbf{r}}.$$

The left hand side is = $\|(\mathbf{F}^{r+1})_{\mathbf{i}}\|$, so we sum the above over i and apply lemma 1 to find that

$$f(r + 1) \| F^{r+1} \| \ge (r + 1) c_1 (f - 1, fr) c_r (f, 0) f \| F \|^{r+1}$$

This gives (8)

LEMMA 3. - For
$$r \ge 1$$
, $g \ge 1$,
(9) $c_r(f, g) \ge c_{r+1}(f, g-1) \frac{g}{2fr+g}$.

Proof. - By (7),
(10)
$$c_{r+1}(f, g-1) \|F\|^{r+1} \cdot \|G_{i}\| \leq \|F^{r+1} G_{i}\|$$
.

But

$$F^{r+1} G_{i} = F(F^{r} G_{i} + rF^{r-1} F_{i} G) - rF^{r} F_{i} G$$
$$= F(F^{r} G)_{i} - rF^{r} F_{i} G,$$

so the right hand side of (10) is

$$\leq \|\mathbf{F}(\mathbf{F}^{r} \mathbf{G})_{\mathbf{i}}\| + \mathbf{r}\|\mathbf{F}^{r} \mathbf{F}_{\mathbf{i}} \mathbf{G}\|$$

$$\leq \|\mathbf{F}\| \cdot \|(\mathbf{F}^{r} \mathbf{G})_{\mathbf{i}}\| + \mathbf{r}\|\mathbf{F}^{r} \mathbf{G}\| \cdot \|\mathbf{F}_{\mathbf{i}}\| ,$$

by (4) and (5). Summing over i, we find, from Lemma 1, that

$$c_{r+1}(f, g-1) \|F\|^{r+1} \cdot g \cdot \|G\| \leq (fr + g) \|F\| \cdot \|F^r G\| + fr\|F^r G\| \cdot \|F\|$$

This gives (9).

We now prove the Theorem, using Lemmas 2 and 3. Our first inductive hypothesis is that

(11)
$$H(f): c_1(f,g) > 0 \text{ for all } g \ge 0$$
.

We note that $c_1(0, g) = 1$, which provides a basis for induction. We prove H(f), assuming H(f-1). Noting that $c_1(f, 0) = 1$; we induct on r in Lemma 2 to find that $c_r(f, 0) > 0$ for all $r \ge 1$. This provides the basis for an induction on g; by Lemma 3, we see that $c_r(f, g) > 0$ for all g, r. This gives H(f), which completes the induction on f.

The constants provided by our proof are very small. For example, we find that $c(3, 4) > 2 \times 10^{-194}$. It would be interesting to know whether we could take $c(f, g) = C^{-f-g}$.

Our proof extends in a number of directions. If K is a field of characteristic 0 having a valuation $\|\|_{\nabla}$, then for F K[z_1 , z_2 , ..., z_n], we may put $\|F\| = \sum_m \|a(\underline{m})\|_{\nabla}$.

Then we still have the Theorem, although in general the constants may depend on v. If $||m||_v = m$ for all positive integers m, then the above proof applies without change. If we put

$$\left\| \mathbf{F} \right\|_{\mathbf{p}} = \left(\sum \left| \mathbf{a}(\underline{\mathbf{m}}) \right|^{\mathbf{p}} \right)^{1/\mathbf{p}}$$

then

(12)
$$||FG||_{p} \ge c_{p}(f,g)||F||_{p} ||G||_{p};$$

the constant is uniform in $\,p\,$ for $\,0<\delta\leqslant\,p\leqslant\,+\,\infty$. Alternatively, if we put

$$\left\| \mathbf{F} \right\|_{q} = \left(\int_{0}^{1} \dots \int_{0}^{1} \left| \mathbf{F}(\mathbf{e}(\theta_{1}) , \dots , \mathbf{e}(\theta_{n})) \right|^{q} d\theta_{1} \dots d\theta_{n} \right)^{1/q},$$

where $e(\theta) = \exp 2\pi i\theta$, we find that

(13)
$$||FG||_q \ge c_q(f, g)||F||_q ||G||_q$$

for $0 < q \leq +\infty$. In conclusion, we note an interesting difference between (12) and (13). If (13) holds for one $q < \infty$ then it follows for all other finite q, since there are constants a_i such that

$$a_1(q, q') \|F\|_q \le \|F\|_q, \le a_2(q, q') \|F\|_q$$

for 0 < q , $q^{*} < \infty$. This is not the case in (12) ; the inequalities are genuine-ly distinct for distinct $\,p$.

(Texte reçu le 1er décembre 1975)

Hugh L. MONTGOMERY Department of Mathematics University of Michigan ANN ARBOR, Mich. 48104 (Etats--Unis)