Séminaire Delange-Pisot-Poitou. Théorie des nombres

Hugh L. Montgomery Polynomials in many variables

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 17, nº 1 (1975-1976), exp. ${ }^{\circ} 7$, p. 1-6
http://www.numdam.org/item?id=SDPP_1975-1976__17_1_A7_0

[^0]POLYNOMIALS IN MANY VARIABLES
by Hugh L. IMONTGOIIERY

We concern ourselves with two completely unrelated topics, although polynomials in several variables are involved in both parts.

PART I. Zeros of Dirichlet polynomials

Let Q be the class of all generalized Dirichlet polynomials

$$
D(s)=1+\sum_{n=1}^{N} a_{n} \exp \left(-\lambda_{n} s\right)
$$

where $a_{n} \in \underset{Z}{Z}$, and $\lambda_{n}>0$ for all n. Such Dirichlet polynomials have been known to arise as factors of Euler products. We ask : For $D \in Q$, how far to the left can all the zeros of $D(s)$ be ? Recently, it was shown that for every $\varepsilon>0$, $D(s)$ has a zero in the half-plane $\operatorname{Re} s>-\varepsilon$. Our object (realized in Thenrem 3) is to sharpen this statement, and to determine the extremal $D(s)$.

In 1857, KRONECKER proved the following theorem.
THEOREM A. - If $F \in Z[x], F$ is monic, and $F(x) \neq 0$ for $|x|>1, x \in \underset{\sim}{C}$, then F is a product of cyclotomic polynomials ; all zeros of F are roots of unity.

The above does not seem to present much prospect of being generalized to several variables, as in several variables it would be difficult to determine what a "monic" polynomial should be. However, we can reformulate Theorem A as the following.

THEOREM A^{\prime}. - If $F \in \underset{Z}{Z}[x], F(C)=1, F(x) \neq 0$ for $|x|<1, x \in \underset{\sim}{C}$, then F is a product of cyclotomic polynomials; its zeros are roots of unity.

This generalizes immediately, as a new theorem.
THEOREM 1. - If $F \in \underset{\sim}{Z}\left[z_{1}, z_{2}, \ldots, z_{n}\right], F(\underline{0})=1, F(\underline{z}) \neq 0$ for $\underset{\sim}{z} \in U^{n}$, where $U^{n}=\left\{z \in \mathbb{C}^{n} ;\left|z_{i}\right|<1\right.$ for $\left.1 \leqslant i \leqslant n\right\}$, then

$$
F(\underline{z})=\prod_{k=1}^{K} P_{k}\left(z_{1}^{a}{ }^{1 k}{ }_{z_{2}}^{a_{2 k}} \ldots z_{n}^{a}\right)
$$

where the P_{k} are cyclatomic polynomials and the $a_{i k}$ are non-negative integers.
In addition to my original proof of Theorem 1, which was very complicated, Bryen BIRCH and Atle SELBERG have found simpler proofs. We do not give a complete proof here, but indicate the spirit of my original proof, as modified by BIRCH.

We proceed by induction on n; the case $n=1$ is Theorem A^{\prime}. Suppose that there is a non-constant term of $F(\underset{\sim}{z})$ which does not involve z_{n}. This is, of course, only a special case ; in general, we must make a multiplicative change of variables to bring about this favorable situation. Then

$$
F(\underline{z})=\sum_{j=0}^{J} F_{j}\left(z_{1}, z_{2}, \ldots, z_{n-1}\right) z_{n}^{j},
$$

and F_{0} is non trivial. If $J=0$, then we are done ; if $J>0$, then we wish to show that F_{0} is a factor of the other F_{j}. By the inductive hypothesis, F_{0} is a product of polynomials $P\left(z_{1}^{a_{1}} z_{2}^{a_{2}} \ldots z_{n-1}^{a_{n}}\right)$, P cyclotomic. Thus each factor of F_{0} vanishes on a large set in \bar{U}^{n-1}, so to show that $F_{0} \mid F_{j}$ it suffices to show that $F_{j}=0$ in \bar{U}^{n-1} whenever $F_{0}=0$. Let $F_{0}(\underline{u})=0,\left|u_{i}\right|=1$, $1 \leqslant i \leqslant n-1$. Put

$$
f_{\lambda}(y)=\sum_{j=0}^{J} F_{j}(\lambda \underline{u}) y^{j}
$$

Suppose that $\mathrm{F}_{j}(\underline{u}) \neq 0$ for at least one $j, 1 \leqslant j \leqslant J$. The coefficients of f_{λ} are continuous functions in λ, so that for λ near 1 there is a continuous function $y(\lambda)$ such that $y(1)=0, f(y(\lambda))=0$. Then, for $\lambda<1, \lambda$ near 1, we have $F(z)=0$ for $\underset{\sim}{z}=\left(u_{1}, \ldots, u_{n-1}, y(\lambda)\right) \in U^{n}$, a contradiction. Hence $F_{j}(\underset{\sim}{u})=0$, and we deduce that $F_{0} \mid F$, as desired.

In his doctoral thesis, Harald BOHR demonstrated that the set of values of a generalized Dirichlet polynomial is connected to the set of values of an associated polynomial in several variables. Precisely, if $P \in \underset{\sim}{C}\left[z_{1}, \ldots, z_{n}\right]$, and $\lambda_{1}, \ldots, \lambda_{n}$ are positive linearly independent numbers, put

$$
D(s)=P\left(\exp \left(-\lambda_{1} s\right), \ldots, \exp \left(-\lambda_{n} s\right)\right)
$$

Then

$$
\begin{equation*}
\left\{P(\underset{\sim}{z}) ;\left|z_{i}\right|=1\right\}=\cap_{\delta>0}\{D(s) ;|\operatorname{Re} s|<\delta\} . \tag{1}
\end{equation*}
$$

To this, we add a new result.
THEOREM 2. - In the above notation,

$$
\left\{P(\underset{\sim}{z}) ; \underset{\sim}{z} \in U^{n}\right\}=\{D(s) ; 0<\operatorname{Re} s \leqslant+\infty\} .
$$

Proof. - Call the above sets X and Y, respectively. By appealing to (1) for each $\sigma>0$, we see that $Y=Y$, where

$$
Y^{\prime}=U_{\sigma>0}\left\{P(\underline{z}) ;\left|z_{i}\right|=\exp \left(-\lambda_{i} \sigma\right)\right\}
$$

That $X=Y$ now follows from a standard analytic completion argument : Suppose $P(\underset{\sim}{z})=a, \underset{z}{z} \in U^{n}$, and let σ_{0} be the supremum of those σ with the property that $a \in\{P(\underset{\sim}{z}) ; \underset{\sim}{z} \in U(\sigma)\}$, where $U(\sigma)=\left\{\underline{z} ;\left|z_{i}\right| \leqslant \exp \left(-\lambda_{i} \sigma\right)\right\}$. For $\sigma>\sigma_{0}$ let $f(\sigma)=\min _{\underset{z}{ } \in \mathrm{~J}(\sigma)}|\mathrm{P}(\underset{\sim}{z})-a|$. Then $f\left(\sigma_{0}\right)=0$, and f is continuous and increasing for $\sigma_{0}>\sigma_{0}$. For $\sigma_{0}>\sigma_{0}$, let $\underset{Z}{z}(\sigma) \in U(\sigma)$ have the property that $|\mathrm{P}(\mathrm{z}(\sigma))|-\mathrm{a} \mid$ has the minimal value $\mathrm{f}(\sigma)$. By the minimum modulus theorem, $\left|z_{i}(\sigma)\right|=\exp \left(-\lambda_{i} \sigma\right)$. Let $\underset{Z}{z}\left(\sigma_{0}\right)$ be a cluster point of the points $\underset{\sim}{z}(\sigma)$ as
as $\sigma \longrightarrow \sigma_{0}^{+}$. Then $\left|\mathbf{z}_{i}\left(\sigma_{0}\right)\right|=\exp \left(-\lambda_{i} \sigma_{0}\right)$, and $\mathrm{P}\left(\underset{\sim}{z}\left(\sigma_{0}\right)\right)=a$, so that $X=Y^{\prime}$.
Our objective is now within reach.
THEOREM 3. - Let $D(s)=1+\sum_{n=1}^{N} a_{n} \exp \left(-\lambda_{n} s\right)$, where $a_{n} \in \underset{\sim}{Z}$, not all a_{n} vanish, and the λ_{n} are positive real numbers. Then $D(s)$ has zeros in the halfplane Re $s \geqslant 0$. If $D(s) \neq 0$ for $R e s>0$, then

$$
D(s)=\prod_{k=1}^{K} P_{k}\left(\exp \left(-\mu_{k} s\right)\right)
$$

where the P_{k} are cyclotomic and the μ_{k} are positive real ; the zeros of $D(s)$ form a finite union of arithmetic progressions on Re $s=0$.

Proof. - After BOHR, there is a polynomial $F \in \mathbb{Z}\left[z_{1}, \ldots, z_{n}\right]$ and linearly independent positive real numbers ν_{1}, \ldots, ν_{n} such that

$$
D(s)=P\left(\exp \left(-\lambda_{1} s\right), \ldots, \exp \left(-\lambda_{n} s\right)\right)
$$

By Theorem 2, we are concerned with zeros of $P(\underset{\sim}{z})$ for $\underset{\sim}{z} \in U^{n}$. But $P(\underset{\sim}{0})=1$, so the result follows from Theorem 1.

PART II. Norms of products of polynomials

For $F \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$, say

$$
\begin{equation*}
F(\underline{z})=\sum_{\underline{m}} a(\underline{m}) z_{1}^{m_{1}} z_{2}^{m_{2}} \ldots z_{n}^{m_{n}}, \tag{1}
\end{equation*}
$$

let
(2)

$$
f=\operatorname{deg} F=\max _{\underset{\sim}{m}, a(\underline{m}) \neq 0}\left(m_{1}+m_{2}+\ldots+m_{n}\right),
$$

and put
(3)

$$
\|F\|=\sum_{\underline{m}}|a(m)|
$$

By the triangle inequality, we have
(4)

$$
\begin{gathered}
\|F G\| \leqslant\|F\| \cdot\|G\| \\
\|F+G\| \leqslant\|F\|+\|G\|
\end{gathered}
$$

(5)

If $f=\operatorname{deg} F, g=\operatorname{deg} G$, and n are all held fixed, then by compactness there is a constant $c=c(f, g ; n)>0$ such that

$$
\|F G\| \geqslant c(f, g ; n)\|F\| \cdot\|G\|
$$

Arguing more precisely, A. O. GEL'FOND showed that one can take $c(f, g ; 1)=C^{-f-g}$; later Kurt MAHLER demonstrated this with $A=2$, which is sharp. However, for $\mathrm{n}>1$, their methods give bounds depending not on deg F as we have defined it in (2), but on

$$
\sum_{i=1}^{n} \max _{\underline{m}, a(\underline{m}) \neq 0} m_{i} ;
$$

this gives some dependence on n, in addition to that on f and g. Of course,
if n is allowed to be arbitrarily large then we no longer have compactness, so it is of interest that Per ENFLO has recently proved the following theorem.

THEOREM. - There is a positive constant $c(f, g)$, independent of n, such that for al polynomials F, G in n variebles, with degrees not exceeding f and g, respectively,

$$
\|F G\| \geqslant c(f, g)\|F\| \cdot\|G\|
$$

This forms one of the steps in Enflo's recent disproof of the invariant subspace conjecture. His proof of the above theorem is very complicated ; we give here a proof which seems to be easier to understand, and which generalizes easily in a number of ways.

If $F^{*}=z_{0}^{f} F\left(z_{1} / z_{0}, \ldots, z_{n} / z_{0}\right)$ then F^{*} is homogeneous of degree f, $\left\|F^{*}\right\|=\|F\|$, and $(F G)^{*}=F^{*} G^{*}$. Thus in proving the Theorem, we may assume without loss of generality that F and G are homogeneous. This allows us to employ the following simple lemma.

LEMMA 1 [EUIER]. - Let $F_{i}=\partial F / \partial z_{i}$. If F is homogeneous of degree f, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|F_{i}\right\|=f\|F\| \tag{6}
\end{equation*}
$$

Let $c_{r}(f, g)$ be the largest real number such that

$$
\begin{equation*}
\left\|F^{r} G\right\| \geqslant c_{r}(f, g)\|F\|^{r}\|G\| \tag{7}
\end{equation*}
$$

for all polynomials F, G of degrees f, g, respectively.

Our proof proceeds by a complicated induction on \mathbf{r}, f, and g. The two main inductive steps are provided by the following lemmas.

LEMMA 2. - For $r \geqslant 1$,
(8)

$$
c_{r+1}(f, 0) \geqslant c_{1}(f-1, f r) c_{r}(f, 0)
$$

Proof. - Using (7) twice, we see that

$$
\begin{aligned}
\left\|(r+1) F^{r} F_{i}\right\| & \geqslant(r+1) c_{1}(f-1, f r)\left\|F_{i}\right\| \cdot\left\|F^{r}\right\| \\
& \geqslant(r+1) c_{1}(f-1, f r) c_{r}(f, 0)\left\|F_{i}\right\| \cdot\|F\|^{r}
\end{aligned}
$$

The left hand side is $=\left\|\left(F^{r+1}\right)_{i}\right\|$, so we sum the above over i and apply lemma 1 to find that

$$
f(r+1)\left\|F^{r+1}\right\| \geqslant(r+1) c_{1}(f-1, f r) c_{r}(f, 0) f\|F\|^{r+1}
$$

This gives (8)

LEMMA 3. - For $r \geqslant 1, g \geqslant 1$,

$$
\begin{equation*}
c_{r}(f, g) \geqslant c_{r+1}(f, g-1) \frac{g}{2 f r+g} \tag{9}
\end{equation*}
$$

Proof. - By (7),
(10)

$$
c_{r+1}(f, g-1)\|F\|^{r+1} \cdot\left\|G_{i}\right\| \leqslant\left\|F^{r+1} G_{i}\right\| \cdot
$$

But

$$
\begin{aligned}
F^{r+1} G_{i} & =F\left(F^{r} G_{i}+r F^{r-1} F_{i} G\right)-r F^{r} F_{i} G \\
& =F\left(F^{r} G_{i}-r F^{r} F_{i}^{G},\right.
\end{aligned}
$$

so the right hand side of (10) is

$$
\begin{aligned}
& \leqslant \| F\left(F^{r}{ }_{G}{ }_{i}\|+r\| F^{r} F_{i} G \|\right. \\
& \leqslant\|F\| \cdot\left\|\left(F^{r}{ }_{G}\right)_{i}\right\|+r\left\|F^{r}{ }_{G}\right\| \cdot\left\|F_{i}\right\|,
\end{aligned}
$$

by (4) and (5). Summing over 1, we find, from Lemma 1, that

$$
c_{r+1}(f, g-1)\|F\|^{r+1} \cdot g \cdot\|G\| \leqslant(f r+g)\|F\| \cdot\left\|F^{r} G\right\|+f r\left\|F^{r} G\right\| \cdot\|F\|
$$

This gives (9).
We now prove the Theorem, using Lemmas 2 and 3. Our first inductive hypothesis is that

$$
\begin{equation*}
H(f): c_{1}(f, g)>0 \text { for all } g \geqslant 0 \tag{11}
\end{equation*}
$$

We note that $c_{1}(0, g)=1$, which provides a basis for induction. We prove $H(f)$, assuming $H(f-1)$. Noting that $c_{1}(f, 0)=1$; we induct on r in Lemma 2 to find that $c_{r}(f, 0)>0$ for all $r \geqslant 1$. This provides the basis for an induction on g; by Lerma 3, we see that $c_{r}(f, g)>0$ for all g, r. This gives $H(f)$, which completes the induction on f.

The constants provided by our proof are very small. For example, we find that $c(3,4)>2 \times 10^{-194}$. It would be interesting to know whether we could take $c(f, g)=C^{-f-g}$.

Our proof extends in a number of directions. If K is a field of characteristic 0 having a valuation $\left\|\|_{V}\right.$, then for $F K\left[z_{1}, z_{2}, \ldots, z_{n}\right]$, we may put

$$
\|F\|=\sum_{\underline{m}}\|a(\underline{m})\|_{V}
$$

Then we still have the Theorem, although in general the constants may depend on v. If $\|m\|_{v}=m$ for all positive integers m, then the above proof applies without change. If we put

$$
\|F\|_{\mathrm{p}}=\left(\Sigma|\mathrm{a}(\underline{\mathrm{~m}})|^{\mathrm{p}}\right)^{1 / \mathrm{p}}
$$

then

$$
\begin{equation*}
\|F G\|_{p} \geqslant c_{p}(f, g)\|F\|_{p}\|G\|_{p} ; \tag{12}
\end{equation*}
$$

the constant is uniform in p for $0<\delta \leqslant p \leqslant+\infty$. Alternatively, if we put

$$
\|F\|_{q}=\left(\int_{0}^{1} \ldots \int_{0}^{1}\left|F\left(e\left(\theta_{1}\right), \ldots, e\left(\theta_{n}\right)\right)\right|^{q} d \theta_{1} \ldots d \theta_{n}\right)^{1 / q},
$$

where $e(\theta)=\exp 2 \pi i \theta$, we find that
(13)

$$
\|F G\|_{q} \geqslant c_{q}(f, g)\|F\|_{q}\|G\|_{q}
$$

for $0<q \leqslant+\infty$. In conclusion, we note an interesting difference between (12) and (13). If (13) holds for one $q<\infty$ then it follows for all other finite q, since there are constants a_{i} such that

$$
a_{1}\left(q, q^{1}\right)\|F\|_{q} \leqslant\|F\|_{q^{1}} \leqslant a_{2}\left(q, q^{p}\right)\|F\|_{q}
$$

for $0<q, q^{\prime}<\infty$. This is not the case in (12) ; the inequalities are genuinely distinct for distinct p.
(Texte reçu le ler décembre 1975)

Hugh L, MONTGOIERY
Department of Mathematics
University of Michigan
ANN ARBOR, Mich. 48104
(Etats.-Unis)

[^0]: © Séminaire Delange-Pisot-Poitou. Théorie des nombres
 (Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.
 L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

