Séminaire Delange-Pisot-Poitou. Théorie des nombres

Franz Halter-Koch

Construction of continuous idele class characters in quadratic number fields, and imbedding problems for dihedral and quaternion fields

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 17, n 1 (1975-1976), exp. n ${ }^{\circ} 14$, p. 1-13
http://www.numdam.org/item?id=SDPP_1975-1976__17_1_A13_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres
(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.
L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CONSTRUCTION OF CONTINOUS IDELE CLASS CHARACTERS
 IN QUADRATIC NUMBER FIELDS, AND IMBEDDING PROBLEMS FOR DIHEDRAL AND QUATERNION FIELDS

by Franz HALTER-KOCH

The imbedding problem for algebraic number fields with abelian kernel has been studied in detail by MEUKIRCH [7] on the basis of the duality theorems of Tate and Poitou. We established a local-global-principle which says, that in almost all cases an imbedding problem with abelian kernel has a (global) solution if, and only if, all associated local imbedaing problemsare soluble. POITOU [8] dealt with the exceptional case which, in case of cyclic kernel, only occurs if it contains an element of order 8 . He proved that in this case there is at most one global condition which guarantees the solubility of the (global) imbedding problem if all the associated local problem have a solution. Furthermore, he presented a cohomological description of the additional global confition.

In the present paper, I deal with the problem of imbedding a dihedral field of 2-power degree in a dihedral or quaternion field of higher degree. These are the simplest examples of imbedding problems with abelian kernel for which the solubility of all associated local problems is not sufficient for the existence of a global solution. I do not use the cohomological formalism established by NEUKIRCH and POITOU (it seems to be very difficult to carry out the necessary calculations in the present case) ; I shall solve the problem by an explicit construction of the defining idele class character in that quadratic number field over which all considered dihedral and quaternion fields are cyclic. This method traces back to HASSE's paper [6] on cubic fields and has also been used in [3], [9] and [11] ; it has the disadvantage of beeing very special but the advantage of beeing constructive modulo Dirichlet's theorem on primes in arithmetic progression.

1. Class field theoretic characterisation of extensions with dihedral or quaternion group of order 2^{n+1}.

For $n \geqslant 0$, let

$$
D_{n}=\left\langle S, T ; S^{2^{n}}=T^{2}=1, \quad S T=T S^{-1}\right\rangle
$$

be the dihedral group of order 2^{n+1} and

$$
H_{n}=\left\langle S, T ; S^{2^{n}}=1, T^{2}=S^{2^{n-1}}, \quad S T=T S^{-1}\right\rangle
$$

the quaternion group of order 2^{n+1}. Both groups have the canonical normal series

$$
\langle S, T\rangle \supset\langle S\rangle \supset\left\langle S^{2}\right\rangle \supset \ldots \supset\left\langle S^{2^{\nu}}\right\rangle \supset \ldots \supset\langle 1\rangle,
$$

and for any $0 \leqslant \nu<n$ the group $\langle S, T\rangle /\left\langle S^{2^{\nu}}\right\rangle$ is a dihedral group of order $2^{\nu+1}$.

Let k be an algebraic number field and Ω_{n} / k an extension with Galois group $\langle S, T\rangle$ (in the sequel I shall call Ω_{n} a dihedral or a quatermion field over k). For $\nu \geqslant 0$, let Ω_{ν} be the fixed field of $S^{2^{\nu}}$; then I have

$$
\mathrm{k} \subset \Omega_{0} \subset \Omega_{1} \subset \ldots \subset \Omega_{v} \subset \ldots \subset \Omega_{\mathrm{n}},
$$

where Ω_{ν} / k is a dihedral field of degree $2^{\nu+1}$ for any $\nu<n$, and $\Omega_{\nu} / \Omega_{0}$ is cyclic for any $\nu \leqslant n$. Let I_{0} be the idele group of $\Omega_{0} ; \Omega_{n}$ is class field to an idele class character of degree 2^{n} of Ω_{0}, that means, to a continuous surjective homomorphism $L: I_{0} \rightarrow \underset{Z}{Z} / 2^{n} \underset{\sim}{Z}$, which is trivial on $\Omega_{0}^{x} \subset I_{0}$. Let $\tau=T \mid \Omega_{0}$ be the generating automorphism for Ω_{0} / k, and L^{\top} be defined by $L^{\top}(a)=L\left(a^{\top}\right)$ for any idele $a \in I_{0}$. Then I derive $L^{\top}=-I$ according to the relation $T^{-1} S T=S^{-1}$ and, by computing the kernel of the transfer $\langle S, T\rangle \rightarrow-\infty\langle S\rangle$, I obtain $L \mid I_{k}=\underline{\sim}$ in the dihedral case and $L \mid I_{k} \neq \underset{\sim}{0}$ in the quaternion case, more precisely, in the quatermion case $L \mid I_{k}$ defines the extension Ω_{0} / k (I_{k} denotes the idele group of k).

Conversely, if Ω_{0} / k is any quadratic extension of algebraic number fields with generating automorphism τ_{0}, and $L: I_{0} \rightarrow Z / 2^{n} Z$ is an idele class character of degree 2^{n} with associated class field Ω_{n}, then Ω_{n} / k is dihedral or quaternion if, and only if, $L^{\top}=-L$; it is dihedral if $L \mid I_{K}=\underline{0}$ and quatermion if $L \mid I_{k}$ defines Ω_{0} / k.

2. Construction of idele class characters.

Let ℓ be a prime, $n \geqslant 1$, k an algebraic number field with idele group I and $\underset{\sim}{p}$ be the set of all places of k. For any $p \in \underset{\sim}{P}$, I denote by $k p$ the local completion of k at p; if $p \in \underset{\sim}{P}$ is finite then U_{p} is the group of units, and U_{p}^{1} the group of einseinheiten of k_{p}; if $p \in \underset{\sim}{p}$ is archimedian, I set $U_{p}=k_{p}^{x} p U_{p}^{1}=R_{+}^{x}$, if p is real, and $U_{p}^{1}={\underset{\sim}{c}}^{\times}$if p is complex. Let $c_{1}, \ldots, c_{h} \in I$ be representatives of a system of generators for the ℓ-classgroup of k, that means, for the l-Sylow subgroup of $I /\left(\prod_{p \in P} U_{p}\right) \cdot k^{x}$. Let $A=\left\langle c_{1}, \ldots, c_{h}\right\rangle \subset I$ be the free abelian group generated $b \bar{p} c_{1}, \ldots, c_{h}$; then multiplication of ideles defines a homomorphism

$$
\Phi: A \times \prod_{p \in \mathbb{P}^{U}} U_{p} \rightarrow I / k^{\times}
$$

and, an idele class character $L: I \rightarrow Z / l^{n} Z$ of degree ℓ^{n} of k is uniquely determined by its "restricted local components"

$$
L_{A}=L \mid A: A \rightarrow Z / i^{n} \underset{Z}{Z} \text { and } L_{p}=L \mid U_{p}: U_{p} \rightarrow Z / l^{n} \underset{Z}{Z}
$$

If on the other hand a homomorphism $L_{A}: A \rightarrow Z / l^{n} \underset{\sim}{Z}$ and a family of contimuous homomorphisms ($\left.L_{p}: U_{p} \rightarrow \underset{Z}{Z} / \varepsilon^{n} \underset{\sim}{Z}\right)_{p \in P}$ (almost all equal 0) are given, they are the restricte local components of $\frac{\sim}{a n}$ idele class character if, and only
if, for all pairs $\left(\prod_{\nu=1}^{h} c_{v}^{u}{ }_{v}^{v},\left(\beta_{p}\right)_{p \in \underset{\sim}{p}}\right) \in \operatorname{ker} \Phi$ the relation

$$
L_{A}\left(\prod_{\nu=1}^{h} c_{\nu}^{u}{ }_{\nu}\right)+\sum_{p \in \mathbb{P}} L_{p}\left(\beta_{p}\right)=0
$$

holds ; of course, this condition must only be satisfied by a system of generators for ker Φ. Let $\Gamma \subset k^{x}$ be the group of all $\alpha \in k^{x}$ whose associated principal ideal $\langle\alpha\rangle$ is an $\ell-$ th power and, let $\left(\gamma_{i}\right)_{i \in I} \subset k^{x}$ be representatives of a system of generators for $\Gamma / k^{\times \ell}$. The principal ideles $\left(\gamma_{i}\right)$ can be written in the form

$$
\left(\gamma_{i}\right)=\prod_{\nu=1}^{h} c_{\nu}^{u}{ }_{\nu i}^{u} \cdot\left(\beta_{p}^{(i)}\right)_{p \in \underset{\sim}{p}} \cdot\left(\alpha_{i}^{\ell}\right)
$$

with $u_{\nu i} \in \underset{Z}{Z}, u_{\nu i} \equiv 0 \bmod \ell, \beta_{p}^{(i)} \in U_{p}, \alpha_{i} \in k^{x}$, and the elements

$$
\left(\prod_{\nu=1}^{h} c_{\nu}^{u}, \quad\left(\beta_{p}^{(i)}\right)_{p \in P}\right)_{i \in I}
$$

generate ker Φ.
Now it is obvious that $\left(I_{A},\left(I_{p}\right)_{p \in P}\right)$ is the system of restricted local components of an idele class character if, and only if, it satisfies the "compatibility conditions"
$\left(C_{i}\right)$

$$
\sum_{\nu=1}^{h} u_{\nu i} \cdot I_{A}\left(c_{\nu}\right)+\sum_{p \in P} I_{p}\left(\beta_{p}^{(i)}\right)=0
$$

for all i \in I.
If an idele class character $L: I \rightarrow \underset{Z}{Z} / \ell^{n} \underset{\sim}{Z}$ is given by its restricted local components ($\left.L_{A},\left(L_{p}\right)_{p \in P}\right)$ the full local components $\bar{L}_{p}: k_{p}^{\times} \rightarrow \underset{Z}{Z} / \ell^{n} \underset{\sim}{Z}$ can be computed as follows : Let $\pi \in k$ be a prime element of k_{p}; then for a suitable integer $r \not \equiv 0 \bmod \&$ there is a representation

$$
\left(\pi^{r}\right)=\prod_{\nu=1}^{h} c_{\nu}^{c_{v}} \cdot\left(\xi_{p}\right)_{p \in \mathbb{P}^{\prime}} \cdot(\omega)
$$

with $u_{\nu} \in \underset{Z}{Z}, \xi_{p} \in U_{p}, w \in k^{x}$, and consequently

$$
\bar{I}_{p}(\pi)=\frac{1}{r} \cdot\left[I_{A}\left(\Pi_{\nu=1}^{h} c_{v}^{u}\right)+\sum_{p \in \underset{\sim}{p}} L_{p}\left(\xi_{p}\right)\right]
$$

The advantage of the description of an idele class character by restricted local components consists in the fact, that the conditions (C_{i}) under which a system of given restricted local components can be put together are rather simple.

3. Description of dihedral and quaternion fields over Q -

In the following considerations I restrict myself to the case $k=Q$, though part of it might be carried out in general. Let $\Omega_{0}=Q(\sqrt{D})$ be a quadratic number field, $D \in \underset{\sim}{Z}$ square-free, $D= \pm d$ or $D= \pm 2 d$, where $d=p_{1} \ldots p_{t}$ with different odd primes $p_{1}, \ldots, p_{t}(t \geqslant 0)$. Let T be the generating automorphism, $\underset{\sim}{P}$ the set of all places, and I_{0} the idele group of Ω_{0}. Let $\hat{p}_{1}, \ldots, \hat{p}_{h}$ be prime ideals of first degree of Ω_{0} such that their ideal classes generate the 2-class group of Ω_{0}, and let $\hat{p}_{1}, \ldots, \hat{p}_{h}$ be the associated primes. I denote by c_{ν} that idele of Ω_{0} whose p_{ν}-component is \hat{p}_{ν} and whose other components
are 1 , and then I set $A=\left\langle c_{1}, \ldots, c_{h}\right\rangle \subset I_{0}$ 。
Now let $L: I_{0} \rightarrow \underset{Z}{Z} 2^{n} \underset{\sim}{Z}$ be an idele class character of degree 2^{n} and $\left.I_{A},\left(L_{p}\right)_{p \in P}\right)$ be its restricted local components. Then L defines a dihedral or quaternion field over \mathcal{Q} if, and only if, the following conditions are satisfied :
(1) For any prime p which splits in $\Omega_{0}, p \cong p^{\prime}$, and any (β, β^{\prime}) $\in_{\mathcal{U}^{\prime}} \times \mathbb{U}_{p^{\prime}} \subset I_{0}$ with $\left(\beta, \beta^{\prime}\right)^{\top}=\left(\widetilde{\beta}, \tilde{\beta}^{\prime}\right) \in U_{p} \times U_{p^{\prime}}$, I have

$$
L_{p}(\beta \tilde{\beta})+L_{p^{\prime}}\left(\beta^{\prime} \tilde{\beta}^{\prime}\right)=0 .
$$

(2) For any prime p which is inert in $\Omega_{0}, p \cong p$, and any $\beta \in U_{p}$, I have

$$
I_{p}\left(\beta^{1+\tau}\right)=0 .
$$

(3) For any p which ramifies in $\Omega_{0}, p \cong p^{2}$, and any $\beta \in U_{p}=U_{p} \cap Q_{p}$, I have

$$
L_{p}(\beta)= \begin{cases}2^{n-1}+2^{n} \underset{Z}{Z} & \text { in the quaternion case, if }\left(\beta, \Omega_{p_{p}} / Q_{p}\right) \neq 1 \\ 0 & \text { in all other cases }\end{cases}
$$

A corresponding condition for the $c_{\nu}^{\prime} s$ is automatically satisfied by my choice of them. Conditions (1), (2) and (3) I call the restricted local dihedral, resp. quaternion conditions. Of course, if L defines a dihedral or quaternion field, the full local components \bar{L}_{p} satisfy analogous conditions.
Now, I give a summary of all possible local components $\bar{L}_{p}: \Omega_{0 p}^{x} \rightarrow Z / 2^{n} \underset{\sim}{Z}$ which satisfy the local dihedral, resp. quaternion conditions. If $z \in \Omega_{O_{p}}$ is a prime element for p, then \bar{L}_{p} is uniquely determinated by L_{p} and the value $\bar{L}_{p}(z) \in Z / Z^{n} \underset{\sim}{Z}$.
$1^{0} p$ infinite. - If p is complex, then $\bar{L}_{p}=0$; therefore, on account of condition (3), Ω_{0} cannot be complex in the quaternion case. If p is real and $p^{\prime}=p^{\top}$, then \bar{L}_{p} is determined by $\bar{L}_{p}(-1)$, and on account of (1),

$$
\bar{L}_{p^{\prime}}(-1)=-\bar{L}_{p}(-1)
$$

holds.
$2^{\circ} p$ finite, $p \nmid 2$. - Let $p \neq 2$ be the associated prime ; then U_{p}^{1} is a pro-p-group, L_{p} is uniquely determinated by its value on a primitive root π for p.
(a) $p \cong p p^{2}$: Let $\pi_{p} \in \underline{Z}$ be a primitive root for p, then $\pi_{p} \in U_{p}$ is one for p, and $\pi_{p} \in U_{p}$, is one for p^{\prime}. If I set $L_{p}\left(\pi_{p}\right)=X_{p} \in \underset{\sim}{Z} / 2^{n} \underset{\sim}{\underline{Z}}$, then $(p-1) X_{p}=0$, and $L_{p}\left(\pi_{p}\right)=-X_{p}$ on account of (1). p is a prime element for p and p^{\prime}, and $\bar{L}_{p}(p)=-\bar{I}_{p}(p) \in \underset{Z}{p} / 2^{n} \underset{\sim}{Z}$.
(b) $p \cong p:$ Let $\pi_{p} \in U_{p}$ be a primitive root for p and $L_{p}\left(\Pi_{p}\right)=Y_{p} \in \underset{Z}{Z} / 2^{n} \underset{Z}{Z}$; then, condition (2) is equivalent to $(p+1) Y_{p}=0 . p$ is a prime element, and
$\bar{L}_{p}(p)=0$, resp. $2^{n-1}\left({ }^{1}\right)$ in the dihedral, resp. quaternion case.
(c) $p \cong p^{2}$: Let $\pi \in \underline{Z}$ be a primitive root for p; then, it is also one for p, and if I set $L_{p}(\pi)=X_{p} \in \underset{Z}{Z} / 2^{n} \underset{Z}{ }$, then (3) is equivalent to
$X_{p}= \begin{cases}0 & \text { in the dihedral case }, \\ 2_{2}^{n-1} & \text { in the quaternion case. }\end{cases}$
\sqrt{D} is a prime element for p, and if $\bar{L}_{p}(\sqrt{D})=W_{p} \in Z / 2^{n} \underset{\sim}{Z}$, then
$2 W_{p}= \begin{cases}2^{n-1} & \text { in the quaternion case if } p \equiv-1 \bmod 4, \\ 0 & \text { in all other cases. }\end{cases}$
It follows that the quaternion case with $n=1$ is only possible if $p \equiv 1$ mod 4 -

$$
30 \quad p={ }_{3} / 2 .
$$

(a) $D \equiv 1 \bmod 8: 2 \cong z^{\prime}, U_{3}=U_{z^{\prime}}=U_{2} \subset \mathbb{Q}_{2},\{-1,5\}$ is a ${\underset{Z}{2}}^{\text {-basis }}$ for U_{z}, and 2 is a prime element for z. If I set $W_{0}=\bar{L}_{z}(2), W_{1}=L_{z}(-1)$ and $W_{2}^{z}=I_{z}(5) \in Z / 2^{n} \underset{Z}{Z}$, then $2 W_{1}=0, \bar{L}_{z^{\prime}}(2)=-W_{0}, L_{z^{\prime}}^{z}(-1)=W_{1} \quad$ and $L_{z}(5)=-\stackrel{z}{W}_{2}$.
(b) $D \equiv 5 \bmod 8: 2 \cong z, 2$ is a prime element for z, and $\{-1, \sqrt{D},-1+2 \sqrt{D}\}$ is a Z_{2}-basis for the 2 -component of $U{ }_{z}$. I set $\bar{L}_{z}(2)=W_{0}, L_{z}(-1)=W_{1}$, $L_{f}(\sqrt{D})=W_{2}$, and $L_{z}(-1+2 \sqrt{D})=W_{3} \in \underset{\sim}{z} / 2^{n} \underset{\sim}{Z}$; then , condition (2) is equivalent to $W_{1}=2 W_{2}=0, W_{0}^{8}=2^{n-1}$ in the quaternion case, and $W_{0}=0$ in the dihedral case.
(c) $D \equiv 2 \bmod 4: 2 \cong z^{2}$, \sqrt{D} is a prime element for z, and $\{-1,5,1+\sqrt{D}\}$ is a Z_{2}-basis for U_{z}. If I set $W_{0}=\bar{L}_{z}(\sqrt{D}), W_{1}=L_{z}(-1), W_{2}=L_{z}(5)$ and $W_{3}=L_{z}(1+\sqrt{D}) \in Z / 2^{\text {n }} \underset{\sim}{Z}$; then, condition (3) is equivalent to the following ones:
$2 W_{0}=W_{1}=W_{2}=0$ in the dihedral case ;
$2 W_{0}=W_{1}=0, W_{2}=2^{n-1}$ in the quaternion case, if $D \equiv 2 \bmod 8$;
$2 W_{0}=W_{1}=W_{2}=2^{n-1}$ in the quatemion case, if $D \equiv-2 \bmod 8 \cdot$
(d) $D \equiv-1 \bmod 8: 2 \cong z_{z}^{2}, \sqrt{-1}$ is an element of $\Omega_{0_{z}}, 1+\sqrt{-1}$ is a prime element for z, and $\{\sqrt{-1}, 5,-1+2 \sqrt{D}\}$ is a ${\underset{\sim}{2}}_{2}^{-b a s i s}$ for U_{z}. If I set $W_{0}=\bar{L}_{z}(1+\sqrt{-1}), W_{1}=L_{z}(\sqrt{-1}), W_{2}=L_{z}(5)$ and

$$
W_{3}=L_{z}(-1+2 \sqrt{D}) \in \underset{Z}{Z} / 2^{n} \underset{Z}{Z} ;
$$

then, condition (3) is equivalent to the following ones :

$$
\begin{aligned}
& 2 W_{0}=W_{1}, 2 W_{1}=W_{2}=0 \quad \text { in the dihedral case } ; \\
& 2 W_{0}=W_{1}, 2 W_{1}=2^{n-1}, W_{2}=0 \text { in the quaternion case. }
\end{aligned}
$$

From this, one easily sees, that in the quatermion case I must have $n \geqslant 3$.

[^0](e) $D \equiv 3 \bmod 8: 2 \cong z^{2}, 1+\sqrt{D}$ is a prime element for z, and
$$
\left\{-1, \sqrt{D},(1+\sqrt{D})^{2} / 2\right\}
$$
is a $\underset{\sim}{Z}{ }_{2}$-basis for U_{j}. I set $W_{0}=\bar{L}_{z}(1+\sqrt{D}), W_{1}=L_{z}(-1), W_{2}=L_{z}(\sqrt{D})$ and $W_{3}=L_{z}^{2}\left((1+\sqrt{D})^{2} / 2\right) \approx Z / 2^{n} Z$; then, condition (3) is equivalent to

$W_{1}=2 W_{2}= \begin{cases}0 & \text { in the dihedral case } \\ 2^{n-1} & \text { in the quaternion case }\end{cases}$
Now assume, that a system $\left(L_{A},\left(I_{p}\right)_{p \in P}\right)$ satisfies the restricted local dinearal, resp. quaternion conditions ; I shall give a detailed description of the come patibility conditions $\left(C_{i}\right)$; to make life easy I assume $L_{\hat{p}_{1}}=\ldots=L_{\hat{p}_{h}}=0$. Let Γ be the group of all $\alpha \in \Omega_{0}^{x}$ for which the associated principal ideal ${ }^{p_{1}}\langle\alpha\rangle$ is a square and $\Gamma_{+}=\left\{\gamma \in \Gamma ; N_{\Omega_{C} / Q_{2}}(\gamma)>0\right\}$; then

$$
\left(\Gamma: \Gamma_{+}\right)= \begin{cases}2, & \text { if }-1 \in N_{\Omega_{0}} / Q \Omega_{0}^{x} \\ 1, & \text { if }-1 \notin N_{\Omega_{0}} / Q \Omega_{0}\end{cases}
$$

and a set of representatives of a basic for the ${\underset{\sim}{2}}_{2}$-vector space $\Gamma_{+} / \Omega_{0}^{\times 2}$ is given by

$$
\begin{aligned}
& \{\sqrt{-1}\} \text {, if } \Omega_{0}=Q(\sqrt{-1}) \\
& \{-1\}, \text { if } \Omega_{0}=Q(\sqrt{ \pm 2}) \\
& \left\{-1, p_{1}, \ldots, p_{t-1}\right\} \text {, if } D \equiv 1 \bmod 4 \\
& \left\{-1,2, p_{1}, \ldots, p_{t-1}\right\}, \text { if } D \neq 1 \bmod 4 \text { and } \Omega_{0} \neq Q(\sqrt{-1}), Q(\sqrt{ \pm}) .
\end{aligned}
$$

If $D \not \equiv 1$ mod 4 (that is, if 2 ramifies in Ω_{0}), I set $p_{0}=2$. In the following, I omit the case $\Omega_{0}=Q(\sqrt{-1})$, which needs separate (but simple) considertions. The compatibility condition for (-1) is a consequence of the restricted local dihedral and quaternion conditions.

If $-1 \in N_{\Omega / Q} \Omega_{0}^{x}$ I take $\gamma^{*} \in \Gamma \backslash \Gamma_{+} ;$then I have $N_{\Omega / Q}\left(\gamma^{*}\right)=-c^{* 2}$ with $c^{*} \in \underset{\sim}{Z}$ and

$$
\left.\left(\gamma^{*}\right)=\prod_{\nu=1}^{n} c_{\nu}^{u_{\nu}^{*}} \cdot\left(\beta_{p}^{*}\right){\underset{p}{ }{\underset{\sim}{e}}^{\bullet}}^{\left(\alpha^{*} 2\right.}\right)
$$

with $u_{v}^{*} \in \underset{Z}{Z}, u_{v}^{*} \equiv 0 \bmod 2, \beta_{p}^{*} \in U_{p}$ and $\alpha^{*} \in \Omega_{0}^{x}$. Now the compatibility condition reads
$\left(C^{*}\right)$

$$
\Lambda^{*}=0
$$

where

$$
\Lambda^{*}=\sum_{v=1}^{h} u_{v}^{*} \cdot L_{A}\left(c_{v}\right)+\sum_{p \in \underset{\sim}{p}} L_{p}\left(\beta_{p}^{*}\right)
$$

For $i \geqslant 0, I$ obtain

$$
\left(p_{i}\right)=\prod_{\nu=1}^{n} c_{\nu v i}^{u} \cdot\left(\beta_{p}^{(i)}\right)_{p \in{\underset{\sim}{P}}} \cdot\left(\alpha_{i}^{2}\right)
$$

with $u_{v i} \in \underset{Z}{Z}, u_{v i} \equiv 0 \bmod 2, \beta_{p}^{(i)} \in U_{p}, \alpha_{i} \in \Omega_{0}^{x} ; \beta_{p}^{(i)}=p_{i} / \alpha_{i}^{2}$ for all
$p \notin\left\{\hat{p}_{1}, \ldots, \hat{p}_{h}\right\}, N_{\Omega_{0} / Q}\left(\beta_{p}^{(i)}\right)=c_{i}^{2}$ and $N_{\Omega_{0} / Q}\left(\alpha_{i}\right)= \pm\left(p_{i} / c_{i}\right)$, where

$$
c_{i}=\prod_{\nu=1}^{h} \hat{p}_{\nu}^{u}{ }_{v i} / 2
$$

The compatibility conditions have the form

$$
\sum_{\nu=1}^{\ell} u_{\nu i} \cdot L_{A}\left(c_{\nu}\right)+\sum_{p \in P} L_{p}\left(p_{i} / \alpha_{i}^{2}\right)=0 .
$$

Now I set ${\underset{\sim}{p}}_{0}=\{p \in \underline{P} ; p$ unramified over $Q\}$,

$$
Z= \begin{cases}\sqrt{D} & , \text { if } D \equiv 2 \bmod 4 \\ 1+\sqrt{-1} & , \text { if } D \equiv-1 \bmod 8 \\ 1+\sqrt{D} & , \text { if } D \equiv 3 \bmod 8\end{cases}
$$

and, for $i \geqslant 1$,

$$
\wedge^{(i)}=\sum_{\nu=1}^{h}\left(u_{v i} / 2\right) \cdot L_{A}\left(c_{\nu}\right)-\sum_{p \in \mathbb{P}_{0}} L_{p}\left(\alpha_{i}\right)-\left\{L_{z}\left(\alpha_{i}\right)\right\},
$$

where the term $\{\ldots\}$ only occurs if 2 ramifies in Ω_{0},

$$
\Lambda^{(0)}=\sum_{\nu=1}^{h}\left(u_{v 0} / 2\right) \cdot L_{A}\left(c_{\nu}\right)-\sum_{p \in \mathbb{F}_{0}} L_{p}\left(\alpha_{0}\right)+L_{z}\left(z / \alpha_{0}\right) ;
$$

then a simple (but lengthy) computation shows that the compatibility conditions are equivalent to

$$
\left(c_{i}\right) \quad{ }_{2} \wedge^{(i)}= \begin{cases}2^{n-1} & \text { in the quaternion case if } p_{i} \equiv-1 \bmod 4, \\ 0 & \text { otherwise }\end{cases}
$$

for $i \geqslant 1$, and

$$
\left(\begin{array}{l}
\text { If } D \equiv 2 \bmod 4, \text { then } \\
C_{0} A^{(0)}= \begin{cases}2^{n-1} & \text { in the quaternion case if } d \equiv-1 \bmod 4, \\
0 & \text { otherwise. }\end{cases} \\
\text { If } D \equiv-1 \bmod 8, \text { then } 2^{(0)}-W_{1}=0 . \\
{ }_{2} N^{(0)}-W_{3}= \begin{cases}2^{n-1} & \text { in the quaternion case, } \\
0 & \text { otherwise. }\end{cases}
\end{array}\right.
$$

Now, I assume that the restricted local dihedral, resp. quaternion conditions, are fulfilled by the system ($\left.L_{A}:\left(L_{p}\right)_{p \in P}\right)$; let L be the associated dele class ${ }^{-}$ character. Then, in the dihedral case, I obtain

$$
\Lambda^{(i)}= \begin{cases}\bar{L}_{p_{i}}(\sqrt{D}) & , \text { if } i \geqslant 1 \\ \bar{L}_{z}(z) & , \text { if } i=0\end{cases}
$$

while in the quaternion case this is at least valid $\bmod 2^{n-1}$. In any case, I find $\left(c_{i}\right)$ to be equivalent with that part of the local conditions which concern the prime element.

Let me return to the equation $N_{\Omega} / Q_{Q}\left(\alpha_{i}\right)= \pm\left(p_{i} / c_{i}\right)$ for $i \geqslant 0$, and notice that genus theory in quadratic number fields yields the equivalence of the following conditions :
(a) c_{i} is a square in $Q, c_{i}=\tilde{c}_{i}^{2}$;
(b) $u_{\nu i} \equiv 0 \bmod 4$ for all ν;
(c) p_{i} lies in the principal genus of Ω_{0};
(d) $\pm p_{i} \in N_{\Omega_{0} / Q} \Omega_{0}^{X}$.

In the case $i=0$, there is $2 \in N_{\Omega_{0} / Q} \Omega_{0}^{x}$ if, and only if, $p_{i} \equiv \pm 1$ mod ε for all $i \geqslant 1$.

4. The imbedding problem.

Let Ω_{n} / Q be a dihedral field of degree $2^{n+1}, \Omega_{n} / \Omega_{0}$ cyclic of degree 2^{n}, S a generating automorphism for Ω_{n} / Ω_{0}, and Ω_{ν} the fixed field of $S^{2 \nu}$. I shall obtain necessary and sufficient conditions on Ω_{n} to have an imbedding in a dihedral or quaternion field Ω_{n+k} of degree 2^{n+k+1} over $Q(k \geqslant 1)$, and I shall establish a method which allows me to construct the idele class character of Ω_{0} which defines Ω_{n+k} from that which defines Ω_{n}. First let me summarize the conditions on Ω_{n}, which guarantee the solubility of all associated local imbedding problems. These conditions follow immediately from the explicit description given in the previous chapter, but now I state them in terms of the global extension $Q \subset \Omega_{0} \subset \Omega_{n}:$

Local conditions :
1° If, for any prime $p>2$ which splits in $\Omega_{0}, \mu \in\{1,2, \ldots, n+k\}$ is maximal with $p \equiv 1 \bmod 2^{\mathfrak{h}}$, then
p is unramified in $\begin{cases}\Omega_{n} & , \text { if } x \leqslant k \text {. } \\ \Omega_{n+k-\chi} & \text {, if } x \geqslant k .\end{cases}$
2° If, for any prime $p>2$ which is inert in $\Omega_{0}, x \quad\{1,2, \ldots, n+k\}$ is nazimal with $p \equiv-1 \bmod 2^{x}$, then
p is unramified in $\begin{cases}\Omega_{n} & , \text { if } x \leqslant k, \\ \Omega_{n+k-\mu} & , \text { if } x \geqslant k .\end{cases}$
30 If a prime $p>2$ is ramified in $\Omega_{0}, p \cong p^{2}$, then
(a) p splits in Ω_{n} into prime ideals of relative degree 2 , if I am in the quatermion case with $k=1$ and $p \equiv-1 \bmod 4$;
(b) p splits completely in a_{n} in all other cases.
4^{0} If Ω_{0} is real, Ω_{n} is real, too. In the quatermion case, Ω_{0} is real.
5° If z is a prime divisor of 2 in 3 , and 3 is a prime divisor of z in
Ω_{n}, then the following conditions are fulfilled :
(a) If $D \equiv 1 \bmod 8$, then $\left(-1, \Omega_{n j} / \Omega_{\Omega_{z}}\right)=1\left(W_{1}=0\right)$.
(b) If $D \equiv 5 \bmod 8$, then $\left(\sqrt{D}, \Omega_{n}{ }_{j} / \Omega_{O_{z}}\right)=1 \quad\left(W_{2}=0\right)$.
(c) If $D \equiv 2 \bmod 4$, then
$\left(\sqrt{D}, \Omega_{n, j} / \Omega_{O_{z}}\right)= \begin{cases}-1 & \text { in the quatermion case if } k=1 \quad\left(W_{0}=2^{n-1}\right) \\ 1 & \text { in all other cases }\left(W_{0}=0\right) .\end{cases}$
(d) If $D \equiv-1 \bmod 8$, then
$\left(\sqrt{-1}, \Omega_{n} \|_{0} / \Omega_{O_{Z}}\right)= \begin{cases}-1 & \text { in the quaternion case if } k=1 \quad\left(W_{1}=2^{n-1}\right), \\ 1 & \text { otherwise }\left(W_{1}=0\right),\end{cases}$
and
$\left(1+\sqrt{-1}, \Omega_{n j}\left(\Omega_{O_{z}}\right)= \begin{cases}-1 & \text { in the quatermion case if } k=2\left(W_{0}=2^{n-1}\right) \\ & \text { in }, ~\end{cases}\right.$ in all other cases if $k \geqslant 2 \quad\left(W_{0}=0\right)$.
(e) If $D \equiv 3 \bmod 8$, then
$\left(\sqrt{D}, \Omega_{n \eta} / \Omega_{n_{z}}\right)= \begin{cases}-1 & \text { in the quatermion case if } k=1 \quad\left(W_{2}=2^{n-1}\right) \\ 1 & \text { otherwise }\left(W_{2}=0\right) .\end{cases}$
Now I can prove the following theorem.
THEOREM. - Let Ω_{n} / Q be a dihedral field of degree $2^{n+1}, \Omega_{n} / \Omega_{0}$ cyclic of degree 2^{n}, and $k \geqslant 1$; then the following assertions hold :
(1) If $k=1$, the local conditions 5°, for $p=2$, are a consequence of 1° to 4° (consequently, all local conditions at $p=2$: with exception of the second condition in the case $D \equiv-1 \bmod 8, k \geqslant 2$, can be omitted).
(2) The local conditions are sufficient for the existence of an imbedding of Ω_{n} in a dihedral or quaternion field of degree 2^{n+k+1} unless we deal with one of the following cases :
(a) $D \equiv-1 \bmod 8, D \neq-1,2 \in N_{\Omega_{0}} / \underline{Q} \Omega_{0}^{x}, k \geqslant 3$.
(b) $D \equiv-2 \bmod 8: D \neq-2,2 \in N_{\Omega} / Q \Omega_{0}^{x}, k \geqslant 3$.
(3) If $D \equiv-1 \bmod 8$ or $D \equiv-2 \bmod 8, D \neq-1, D \neq-2,2 \in N_{S_{0} / Q, ~}^{S_{0}^{x}}$, $k \geqslant 3$, and if all local conditions are fulfilled, then Ω_{n} has an imbedding in a dihedral or quaternion field of degree 2^{n+k+1} if, and only if,
$\left(m, \Omega_{n} / \Omega_{0}\right)= \begin{cases}-1 & \text { in the quatermion case if } \\ 1 & \text { otherwise },\end{cases}$
for an idele m of Ω_{0} with the property

$$
r^{2}=e_{z} \cdot \mathfrak{S} \cdot(\gamma)
$$

where e_{z} is that idele whose z-component is z and whose other components are 1 , \mathcal{I} is a unit idele with $\left(s, \Omega_{n} / \Omega_{0}\right)=1$ and $\gamma \in \Omega_{0}^{x}$ (the ideal associated with \mathfrak{w} lies in the class whose square is the class of z).

If $n=0$ in the above theorem, I obtain as a corollary the results of DAMEY and MARTINET [1].

Proof. - Let Ω_{n} be given by its defining idele class character L of Ω_{0} with restricted local components ($\left.L_{A},\left(L_{p}\right)_{p \in P}\right)$, and let me use the notation of the previous chapter. Then assertion (1) follows from the fact that $\sum_{i=0}^{t} N(i)$ is the Imalue of the idele (.,0, $1, \sqrt{D}, \ldots, \sqrt{D}, z, 1, \ldots$) (if 2 is unramified in Ω_{0}, I set $\Lambda^{(0)}=0, \quad z=1$). To handle the condition stated in (3) observe that, in the case $D \equiv-1,-2 \bmod 8, D \neq-1,-2,2 \in N_{\Omega_{0} / Q} \Omega_{0}^{x}$, $k \geqslant 3$, I obtain

$$
\Lambda^{(0)}=2 L(10)
$$

for any $w \in I_{0}$ as in assertion (3) wherefore the condition stated there is equivalent to
$\frac{1}{2} \Lambda(0)= \begin{cases}2^{n-1} & \text { in the quatermion case if } k=3 \text { and } D \equiv 1 \bmod 8, \\ 0 & \text { otherwise. }\end{cases}$
The local conditions $1^{\circ}, 2^{\circ}, 4^{\circ}$ and 5° guarantee the existence of liftings $\tilde{I}_{p}: U_{p} \rightarrow Z / 2^{n+k} \underset{\sim}{Z}$ of $I_{p}: U_{p} \rightarrow \underset{Z}{Z} / 2^{n} \underset{\sim}{Z}$ which satisfy the restricted local dihedral or quaternion conditions. Constructing a dihedral of quatermion field $\Omega_{n+k} \supset \Omega_{n}$ is equivalent to construct liftings ($\left.\tilde{I}_{A},\left(\tilde{L}_{p}\right)_{p \in P}\right)$ of ($\left.L_{A},\left(I_{p}\right) p_{p \in P}\right)$ such that they satisfy the restricted local conditions and the compatibility conditions. To carry out this construction I first assume that I have found any liftings which satisfy the restricted local conditions and then I shall modify them little by little to obtain finally a system which satisfies all requirements.

Let $\left(\tilde{L}_{A},\left(\tilde{I}_{p}\right)_{p \in P}\right)$ be liftings of $\left(L_{A},\left(L_{p}\right)_{p \in P}\right)$ which satisfy the restricted local dihedral, resp. quaternion, conditions and let $\tilde{\Lambda}^{*}$, $\tilde{N}^{(i)}$ be quantities formed from ($\tilde{L}_{A},\left(\tilde{L}_{p}\right)_{p \in P}$) in the same manner as $\Lambda^{*}, \hat{\Lambda}^{(i)}$ are formed from $\left(L_{A},\left(L_{p}\right)_{p \in \underset{\sim}{p}}\right)$; then ${\underset{\sim}{N}}^{*+}+2^{n} \underset{\sim}{Z}=\wedge^{*}, \tilde{\Lambda}^{(i)}+2^{n} \underset{\sim}{Z}=\Lambda^{(i)}$.

Assume that for a $\chi \in\{0,1, \ldots, k\}$ the following conditions are fulfilled:
(A) For any $i \in\{1, \ldots, t-1\}$,
$\tilde{n}^{(i)} \equiv \begin{cases}2^{n+k-2} \bmod 2^{n+x-1} & \text { in the quaternion case if } p_{i} \equiv-1 \bmod 4, \\ 0 \bmod 2^{n+x-1} & \text { otherwise. }\end{cases}$
(B) If $D \equiv 2 \bmod 4$, then
$\tilde{\Lambda}^{(0)} \equiv \begin{cases}2^{n+k-2} \bmod 2^{n+x-1} & \text { in the quaternion case if } D \equiv-2 \bmod 8, \\ 0 \bmod 2^{n+x-1} & \text { otherwise. }\end{cases}$
(c) If $D \equiv-1 \bmod 8$, then

$$
2^{n^{(0)}}-\tilde{\mathbb{W}}_{1} \equiv 0 \quad \bmod 2^{\mathrm{n}+\pi}
$$

(D) If $D \equiv 3 \bmod 8$, then
$2 \tilde{\Lambda}^{(0)}-\tilde{W}_{3} \equiv \begin{cases}2^{n+k-1} \bmod 2^{n+\mu} & \text { in the quaternion case, } \\ 0 \quad \bmod 2^{n+\mu} & \text { otherwise. }\end{cases}$
(E) If $-1 \in N_{\Omega_{0}} / Q \Omega_{0}^{x}$, then

$$
\tilde{\Lambda}^{*} \equiv 0 \quad \bmod 2^{n+x-1}
$$

Obviously, if $x=0$, then (A) to (E) are true. I now have to modify a finite number of the \tilde{L}_{p}, s by terms $\equiv 0 \bmod 2^{n}$ such that in the case $x=k$ the congruence (E) is valid $\bmod 2^{\mathrm{n}+\mathrm{k}}$, and that in the case $x<k$ the congruences (A), (B) and (\mathbb{E}) are valid $\bmod 2^{\mathrm{n}+\boldsymbol{x}}$, while (C) and (D) are valid $\bmod 2^{\mathrm{n}+\pi+1}$. If $-1 \in \mathbb{N}_{\Omega_{0} / Q} \Omega_{0}^{x}$, I first modify (\mathbb{E}) ; assume $\tilde{\pi}^{*} \equiv 0 \bmod 2^{n+n+1}, \not \equiv 0$ $\bmod 2^{n+n} \quad(n \geqslant 1)$. Take a prime $p \equiv-1 \bmod 2^{k-n+1}(p \equiv-1 \bmod 4$ if $k=x)$ which is inert in $\Omega_{0} ; \beta_{p}^{*}$ is a quadratic nonmesidue $\bmod p$, whence there exists $\tilde{L}_{p} \equiv 0 \bmod 2^{n+n-1}$ with $\tilde{L}_{p}\left(\beta_{p}^{*}\right) \equiv 2^{n+n-1} \bmod 2^{n+n} ;$ this does the job。 Next, in the case $D \not \equiv 1 \bmod 4, \pm 2 \in \mathbb{N}_{\Omega_{0}} / Q \Omega_{0}^{x}$, I first deal with (B), (C) or (D) while in all other cases I first deal with (A). To obtain the congruences (A) $\bmod 2^{n+n}$, I consider the field $M=\Omega_{0}^{\left(2^{k-x+1}\right)}\left(\sqrt{c_{1}}, \ldots=\sqrt{c_{t-1}}\right) \quad\left(^{2}\right)$ and observe that p_{1}, \ldots, p_{t-1} are quadratic independent in M; so there exist infinitely many systems $\left(\tilde{q}_{1}, \ldots, \tilde{q}_{t-1}\right)$ of prime ideals of first degree in M such that $\left(p_{i} / \tilde{q}_{j}\right)=(-1)^{\delta \frac{1}{1 j}}$. If $\left(q_{1}: \ldots: q_{t-1}\right)$ is the restriction of such a system to Ω_{0}, there exist $\tilde{L}_{q_{1}}, \ldots, \tilde{L}_{q_{t-1}}$ such that

$$
\sum_{j=1}^{t-1} \tilde{L}_{q_{j}}\left(\alpha_{i}\right)+\tilde{L}_{q_{j}^{\prime}}\left(\alpha_{i}\right)
$$

has prescribed value $2^{n+n-1} \cdot e_{i} \bmod 2^{n+n}\left(e_{i}=0\right.$ or $\left.e_{i}=1\right)$. If furthermore 2 ramifies in Ω_{0} and $\pm 2 \in \mathbb{N}_{\Omega_{0}} / \mathcal{Q}_{0} \Omega_{0}^{x}$, I must only choose \tilde{q}_{j} in such a way that the associated primes satisfy $q_{j} \equiv-1 \bmod 8$ to get $\tilde{L}_{q_{j}}\left(\alpha_{0}\right)+\tilde{L}_{q_{j}^{\prime}}\left(\alpha_{0}\right) \equiv 0$
$\bmod 2^{n+\pi}$.

As to the congruences (B), (C) and (D) I only consider (B) which is the most difficult one ; the others can be done in a similar manner. So I assume $D \equiv 2 \bmod 4$, $x \geqslant 1$ and
$\tilde{\Lambda}^{(0)} \equiv \begin{cases}2^{n+k-2} \bmod 2^{n+x-1} & \text { in the quaternion case if } D \equiv-2 \bmod 8, \\ 0 \bmod 2^{n+x-1} & \text { otherwise. }\end{cases}$
I have to distinguish several cases :
(a) $\pm 2 \notin N_{\Omega_{0} / Q} \Omega_{0}^{x}$: This case can simultaneously be done with congruence (A) by
(2) $\Omega_{0}^{(m)}$ denotes the field of m-th roots of unity over ε_{0}.
considering the field

$$
N=\Omega_{2}^{\left(2^{k-\kappa+1}\right)}\left(\sqrt{2}, \sqrt{c_{1}}, \cdots, \sqrt{c_{t-1}}\right)
$$

instead of

$$
\cdots=\Omega_{0}^{\left(2^{k}-n+1\right)}\left(\sqrt{c_{1}}, \ldots, \sqrt{c_{t-1}}\right)
$$

and observing that $c_{0}, p_{1}, \ldots, p_{t-1}$ are quadratic independent in M_{0}
(b) $\pm 2 \in N_{\Omega_{0} / Q} \Omega_{0}^{x}, k=2:$ Take a prime $p \equiv 5 \bmod 8$ which spite in Ω_{0}, $p \cong p p^{\prime}$; then α_{0} has opposite quadratic characters mod i and mod p^{\prime}, and therefore exists $\tilde{I}_{p} \equiv 0$ mod 2^{n} such that $\tilde{L}_{i j}\left(\alpha_{0}\right)+L_{p}\left(\alpha_{0}\right) \equiv 2^{n} \bmod 2^{n+1}$; the congruences (A) remain unchanged mod $2^{n+n-1},(E)$ remains unchanged mod 2^{n+n}.
(c) $-2 \in \mathbb{N}_{\Omega} / Q \Omega_{0}^{x}, k \geqslant 3, ~ D \equiv-2 \bmod 8: T h e n ~ N \Omega_{0 / Q}\left(\alpha_{0}\right)=-\left(2 / c_{0}\right)$; take a prime $p \equiv-1$ mod 2^{k-u+1} (at least $p \equiv-1 \bmod 8$) which is inert in Ω_{0}, $p \equiv p$. On account of $\left(\alpha_{0} / p\right)=-1$ there exists $\tilde{L}_{p} \equiv 0 \bmod 2^{n+\lambda-1}$ such that $\tilde{L}_{p}\left(\alpha_{0}\right) \equiv 2^{n+x-1} \bmod 2^{n+x}$, and this does the job.
(d) $+2 \in N_{S} / Q \delta_{0}^{x}, k \geqslant 3, D \equiv-2 \bmod 8:$ On account of (3), I have $x \geqslant 2$. I consider the field

$$
M=\Omega_{0}^{\left(2^{k-x+2}\right)}\left(\sqrt{2}, \sqrt[4]{c_{0}}, \sqrt{c_{1}}, \cdots, \sqrt{c_{t-1}}\right)
$$

and observe that the numbers $\alpha_{0} \sqrt{2}, p_{1}, \ldots, p_{t-1}$ are quadratic independent in M whence there exist infinitely many prime ideals \tilde{q}_{0} of first degree in Ω_{0} for which $\left(\alpha_{0} \sqrt{2} / \tilde{q}_{0}\right)=-1$ and $\left(p_{i} / \tilde{q}_{0}\right)=+1$ if $i \geqslant 1$. Let q_{0} be the restrictron of such a \tilde{q}_{0} to Ω_{0} and $q_{0} \equiv 1$ mod 2^{k-x+2} be the associated prime. Let $\pi \in Z$ be a primitive root for q_{0} and set $\tilde{L}_{q_{0}}(\pi)=2^{n+\mu-2}$. Then

$$
\tilde{I}_{q_{0}}\left(\alpha_{0}\right)+\tilde{L}_{q_{0}^{\prime}}\left(\alpha_{0}\right)=2^{n+x-2}\left(x_{0}-x_{0}^{1}\right)
$$

where $\alpha_{0} \equiv \pi^{x_{0}} \bmod q_{0}, \alpha_{0} \equiv \pi^{x_{0}^{\prime}} \bmod q_{0}^{\prime}$.
Now I use the equations

$$
N_{\Omega_{0} / Q}\left(\alpha_{0}\right)=\frac{2}{c_{0}}, \quad\left(\frac{\alpha_{0} \sqrt{2}}{q_{0}}\right)=-1,
$$

and the fact that c_{0} is a square in Q to conclude $x_{0}-x_{0}^{\prime} \equiv 2 \bmod 4$.
(e) $\pm 2 \in \mathbb{N}_{\Omega / Q} \Omega_{0}^{x}, k \geqslant 3, D \equiv 2 \bmod 8, x \geqslant 2: I$ proceed as in (d) with the following modification : If $-1 \in N_{\Omega / Q} \Omega_{0}^{x}$, I consider the field

$$
\left.M^{*}=M\left(\sqrt[4]{\left(\gamma^{*} / \alpha^{*}\right.}\right)^{1-\tau}\right)
$$

instead of N to guarantee that \tilde{A}^{*} reinains unchanged mod $2^{n+\mu}$.
(f) $\pm 2 \in N_{S / Q} Q_{0}^{x}, k \geqslant 3, D \equiv 2 \bmod 8, \quad x=1:$ If

$$
\sqrt{D} / \alpha_{0}=(-1)^{W_{1}} \cdot 5^{W_{2}} \cdot(1+\sqrt{D})^{W_{3}}
$$

then
$w_{3} \equiv\left\{\begin{array}{lll}1 & \bmod 2 & \text { if } N_{\Omega_{0}} / Q\left(\alpha_{0}\right)>0 \\ 0 & \bmod 2 & \text { if } N_{\Omega_{0}} / Q\left(\alpha_{0}\right)<0 .\end{array}\right.$
If $-1 \in N_{\Omega_{0}} / 3 \Omega_{0}^{x}$ and $\beta_{z}^{*}=\gamma^{*} / \alpha^{* 2}=(-1)^{W_{1}^{*}} \cdot 5^{W_{2}^{*}} \cdot(1+\sqrt{D})^{W_{3}^{*}}$, then $w_{3}^{*} \equiv 1$
$\bmod 2$.
Let $p \equiv-1 \bmod 2^{k}$ be a prime which is inert in $\Omega_{0}, p \cong p$, then α_{0} is a quadratic residue $\bmod p$ if, and only if, $N_{\Omega_{0}} / Q_{Q}\left(\alpha_{0}\right)>0$. If π is a primitive root for p, and if I set $\tilde{L}_{p}(\pi)=2^{n}$, then

$$
\tilde{\mathrm{L}}_{p}\left(\alpha_{0}\right) \equiv\left\{\begin{array}{lll}
2^{n} & \bmod 2^{n+1} & \text { if } \\
N_{\Omega_{0}} / Q \\
0 & \bmod 2^{n+1} & \text { if } \left.N_{0}\right)<0 \\
\Omega_{0} / Q\left(\alpha_{0}\right)>0
\end{array}\right.
$$

while $\tilde{\mathrm{L}}_{\mathrm{p}}\left(\gamma^{*} / \alpha^{* 2}\right) \equiv 2^{\mathrm{n}} \bmod 2^{\mathrm{n}+1}$. Replacing $\tilde{\mathrm{W}}_{3}$ by $\tilde{W}_{3}+2^{n}$ and setting $\tilde{\mathrm{I}}_{\mathrm{p}}$ as above yields the desired result.

REFERENCES

[1] DAMEY (P.) et MARTINET (J.). - Plongement d'une extension quadratique dans une extension quaternionienne, J. fur reine und angew. Math., t. 262/263, 1973, p. 323-338.
[2] FROHLICH (A.). - A rational characterisation of certain sets of relatively abelian extensions, Phil. Trans. royal Soc. London, Series A, t. 251, 1959, p. 385-425.
[3] HALTER-KOCH (F.). - Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. of Number Theory, t. 3, 1971, p. 412-443.
[4] HALTER-KOCH (F.). - Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörpern, J. of Number Theory, t. 4, 1972, p. 70-77.
[5] HASSE (H.). - Zahlentheorie. 3te Aufl. - Berlin, Akademie Verlag, 1970.
[6] HASSE (H.). - Arithmetische Theorie der kubischen Zahlkorper auf klassenkörpem theoretischer Grundlage, Math. Z., t. 31, 1930, p. 565-582.
[7] NEUKIRCH (J.). - Uber das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math., t. 21, 1973, p. 59-116.
[8] POITOU (G.). - Einbettungsprobleme mit abelschem Kern, Oberwolfach, 1975.
[9] PORUSCH (I.). - Arithmetik in Zahlkörpern, deren zugehörige Galoissche Korper spezielle metabelsche Gruppen besitzen, auf klassenkరrpertheoretischer Grundlage, Math. Z., t. 37, 1933, p. 134-160.
[10] RICHTER (H.). - Über die Lösbarkeit einiger nicht-abelscher Einbettungsprobleme, Math. Annalen, t. 112, 1936, p. 700-726.
[11] ROSENBLÜTH (E.). - Die arithmetische Theorie und Konstruktion der Quaternionenkठ̈rper auf klassenkörpertheoretischer Grundlage, iHonatsh. Math. Phys., t. 41, 1934, p. 85-125.
[12] TATE (J.). - Global class field theory, "Algebraic number theory", p. 162-203. - New York, Academic Press, 1967.

Franz HALTER-KOCH
Universität Essen
Gesamthochschule
2 Unionstrasse
Fachbereich 6
D -43 ESSEN (Allemagne fédérale)

[^0]: $\left(^{1}\right)$ Here and in the following, 2^{n-1} stands for $2^{n-1}+2^{n} \underset{Z}{Z}$.

