SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

FRANÇOIS GRAMAIN

Spectre de certaines fonctions presque périodiques (au sens de Bohr)

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 14, n° 2 (1972-1973), exp. n° 21, p. 1-5

http://www.numdam.org/item?id=SDPP_1972-1973__14_2_A5_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1972-1973, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

9 avril 1973

SPECTRE DE CERTAINES FONCTIONS PRESQUE PÉRIODIQUES (au sens de BOHR)

par François GRAMAIN

1. Introduction et résultats.

Un problème classique est la détermination d'ensembles fermés dénombrables Λ de nombres réels tels que toute fonction continue bornée de variable réelle à valeurs complexes, dont le spectre (support de la transformée de Fourier au sens des distributions) est contenu dans Λ , soit presque périodique. L. H. LOCMIS a montré, en 1950, que les compacts dénombrables ont cette propriété. Les autres exemples connus utilisent en général des propriétés arithmétiques. C'est en particulier le cas du suivant [1].

THÉORÈME. - Soit $\{\alpha_n\}_{n\in\mathbb{N}}$ une suite tendant vers + ∞ de nombres réels linéairement indépendants sur \mathbb{Q} . Toute fonction continue bornée à spectre contenu dans $\mathbb{U}_{n\in\mathbb{N}}$ α_n \mathbb{Z} est presque périodique.

On en déduit le corollaire suivant.

COROLLAIRE. - Soit $n \ge 2$ un entier naturel. Toute fonction continue bornée, à spectre contenu dans l'ensemble des racines n-ièmes des entiers naturels, est presque périodique.

En effet, il suffit pour obtenir ce corollaire de montrer que l'unité et les racines n-ièmes des nombres "n-free" sont linéairement indépendants sur Q . Cela résulte du lemme suivant [3].

LEMME. - Soit $n \ge 2$ un entier naturel. Soit $\{t_i\}$ un ensemble de réels non nuls. On suppose que, pour tout i, $t_i^n \in \mathbb{Q}$ et que les t_i^n ont des images distinctes dans le groupe $\mathbb{Q}^\times/\mathbb{Q}^{\times n}$, où $\mathbb{Q}^{\times n}$ désigne le groupe multiplicatif des puissances n des rationnels non nuls. Alors les t_i sont linéairement indépendants $\underline{sur} \ \mathbb{Q}$.

Pour démontrer ce lemme, on peut, sans perte de généralité, supposer les t_i positifs. Soit $\sum \lambda_i$ t_i = 0 une relation de dépendance linéaire sur Q liant un nombre fini de t_i . Supposons que $\lambda_i \neq 0$. On a $\lambda_i + \sum_{i \neq i_0} \lambda_i$ $(t_i/t_{i_0}) = 0$ avec t_i/t_i irrationnel, puisque $(t_i/t_{i_0})^n \notin Q^{\times n}$. Soient $k_i = Q(t_i/t_{i_0})$ et K une extension finie de Q contenant tous les t_i/t_i intervenant dans la relation de dépendance considérée. Alors

$$\operatorname{Tr} K/\mathbb{Q}(t_{i}/t_{i_{0}}) = \operatorname{Tr}_{k_{i}}/\mathbb{Q}[\operatorname{Tr}_{K/k_{i}}(t_{i}/t_{i_{0}})] = [K:k_{i}] \operatorname{Tr}_{k_{i}}/\mathbb{Q}(t_{i}/t_{i_{0}}).$$

Si on a ${\rm Tr}_{k_i/\mathbb{Q}}(t_i/t_i)=0$, on aura ${\rm Tr}\ \mathbb{K}/\mathbb{Q}(\lambda_{i_0})=0$, ce qui est absurde. Il suffit donc de prouver que, si θ est un réel positif tel que $\theta^n\in\mathbb{Q}^\times$ et $\theta^n\notin\mathbb{Q}^{\times n}$, on a ${\rm Tr}_{\mathbb{Q}(\theta)/\mathbb{Q}}(\theta)=0$.

Soit m le plus petit entier positif tel que $\theta^m \in \mathbb{Q}$. On a $m \geqslant 2$, puisque $\theta \notin \mathbb{Q}$. Soit $b = \theta^m > 0$. Montrons que le polynôme X^m - b est irréductible sur \mathbb{Q} , ce qui prouvera que $\mathrm{Tr}_{\mathbb{Q}(\theta)/\mathbb{Q}}(\theta) = 0$.

D'après le critère de Capelli ([2], p. 221), le polynôme X^m - b est irréductible sur Q si, pour tout nombre premier p divisant m , le nombre b n'est pas dans $Q^{\times p}$ et si, lorsque 4 divise m , le nombre b n'est pas dans - $4Q^{\times 4}$.

Soit p un nombre premier divisant m . Si on avait $b=c^p$ avec $c\in \underline{\mathbb{Q}}^\times$, on aurait $\theta^{m/p}=|c|$, ce qui contredirait la minimalité de m . De plus, on ne peut avoir $b=-4c^4$ avec $c\in \underline{\mathbb{Q}}^\times$ car b est positif. Le lemme est donc démontré.

2. Démonstration du théorème.

Dans ce qui suit, $\{\alpha_n\}_{n\in\mathbb{N}}$ et $\{\beta_n\}_{n\in\mathbb{N}}$ sont des suites de réels linéairement indépendants sur \mathbb{Q} , et toutes les fonctions utilisées sont de variable réelle. Le théorème est une conséquence de la proposition suivante.

PROPOSITION. - Soit φ une fonction continue à valeurs complexes telle que $\varphi = \sum_{n \in \mathbb{N}} f_n \text{ avec } \sum_{n \in \mathbb{N}} \|f_n\|_{\infty} < +\infty \text{ et Spec } f_n \subset \alpha_n \not \subset \underline{\text{Alors, pour tout }} n \text{ , } f_n \text{ est égale presque partout à une fonction continue (et, par suite, } \varphi \text{ est presque périodique}).$

Pour démontrer cette proposition, on utilise les lemmes suivants :

LEMME 1. - Soit $\{s_n\}_{n\in\mathbb{N}}$ une suite de fonctions continues, périodiques de période 1, à valeurs réelles, telles que $\sum_{n\in\mathbb{N}} \|s_n\|_{\infty} < +\infty$. Alors $\sup_{t\in\mathbb{R}} \left[\sum_{n\in\mathbb{N}} s_n(\beta_n \ t)\right] = \sum_{n\in\mathbb{N}} \sup_{t\in\mathbb{R}} s_n(t) \ .$

C'est une conséquence directe du théorème de Kronecker.

LEMME 2. - Soit $\{f_n\}_{n\in\mathbb{N}}$ une suite de fonctions réelles de $L^{\infty}(\mathbb{R})$ telle que $\sum_{n\in\mathbb{N}}\|f_n\|_{\infty}<+\infty$ et Spec $f_n\subset\alpha_n$ Z. Si on a $\sum_{n\in\mathbb{N}}|f_n(t)|\geqslant 0$ presque partout, alors on a $\sum_{n\in\mathbb{N}}|f_n(t)|\geqslant 0$ inf ess $f_n\geqslant 0$.

Ce résultat est obtenu à partir du lemme 1 après régularisation des fonctions f_n par un noyau de sommation.

Pour prouver la proposition, on se ramène au cas où les f_n et ϕ sont réelles en séparant leurs parties réelles et imaginaires (ce qui ne change pas le spectre puisqu'il est symétrique par rapport à l'origine). On montre qu'alors, l'oscillation essentielle de chacune des fonctions f_n

$$\Omega(f_n, x) = \lim_{\epsilon \to 0} \left[\sup_{\epsilon \to \infty} f_n - \inf_{\epsilon \to \infty} f_n \right]$$

est partout nulle (ce qui montre que f_n est presque partout égale à une fonction continue). Pour cela, on verra qu'il suffit qu'elle soit nulle en point, et nous allons montrer qu'elle l'est presque partout.

On peut supposer que \mathbf{f}_n est une fonction borélienne bornée $(\frac{2\pi}{\alpha})$ -périodique et que $\mathbf{\phi} = \sum_{\mathbf{n} \in \mathbb{N}} \mathbf{f}_{\mathbf{n}}$ presque partout. Soit

$$w_{d}^{!}(f_{n}, x) = \lim_{\epsilon \to 0^{+}} [\sup_{x, x+\epsilon} f_{n}(t) - f_{n}(x)] \ge 0$$
 presque partout,

$$w_d^n(f_n, x) = \lim_{\epsilon \to 0^+} [f(x) - \inf_{x,x+\epsilon} ess f_n(t)] \ge 0$$
 presque partout.

On définit de manière analogue w_g^i et w_g^{ii} en changeant ϵ en $-\epsilon$, et l'on a $\Omega(f_n^i,x)\leqslant w_d^i(f_n^i,x)+w_d^{ii}(f_n^i,x)+w_g^i(f_n^i,x)+w_g^{ii}(f_n^i,x)+w_g^{ii}(f_n^i,x)$ presque partout. De $\phi=\sum_{n\in\mathbb{N}}f_n^i$, on déduit

inf ess f_i +
$$\sum_{j\neq i}$$
 sup ess f_j \geqslant inf ess φ . [x- ϵ ,x]

Comme ϕ est continue, son oscillation partielle $\omega_g^{"}(\phi$, x) est nulle. On a donc

(1)
$$- \mathbf{w}_{\mathbf{g}}^{"}(\mathbf{f}_{\mathbf{i}}, \mathbf{x}) + \sum_{\mathbf{j} \neq \mathbf{i}} \mathbf{w}_{\mathbf{g}}^{"}(\mathbf{f}_{\mathbf{j}}, \mathbf{x}) \geq 0$$
 presque partout.

Si on avait $\mathbf{w}_g^i(\mathbf{f}_i,\mathbf{x})\geqslant a>0$ presque partout, la fonction \mathbf{f}_j ne serait pas bornée. On a donc inf ess $\mathbf{w}_g^i(\mathbf{f}_i,\mathbf{x})=0$. De plus, comme les fonctions \mathbf{f}_n sont $(\frac{2\pi}{\alpha})$ -périodiques, il en est de même de $\mathbf{w}_g^{ii}(\mathbf{f}_n,\mathbf{x})$ et de $\mathbf{w}_g^i(\mathbf{f}_n,\mathbf{x})$. Le lemme 2, appliqué à l'expression (1), fournit donc

inf ess[-
$$\omega_g''(f_i, x)$$
] $\geqslant 0$

et, par suite,

$$w_g^{"}(f_i, x) = 0$$
 presque partout.

On montre de la même manière que

$$\omega_{d}^{i}(f_{i}, x) = \omega_{d}^{ii}(f_{i}, x) = \omega_{g}^{i}(f_{i}, x) = 0$$
 presque partout,

donc que $\Omega(f_i, x) = 0$ presque partout.

Il reste à montrer que $\Omega(\mathbf{f_i}$, $\mathbf{x}) = 0$ pour tout \mathbf{x} . Soit, par exemple $\mathbf{i} = 0$. Pour $\mathbf{j} \neq 0$, il existe $\mathbf{x_j}$ tel que $\Omega(\mathbf{f_j}$, $\mathbf{x_j}) = 0$. Si $\Omega(\mathbf{f_0}$, $\mathbf{x})$ n'est pas identiquement nulle, il existe $\mathbf{x_0}$ tel que $\Omega(\mathbf{f_0}$, $\mathbf{x_0}) = 4a > 0$. Alors, il existe un entier \mathbf{N} tel que $\sum_{\mathbf{n} \geqslant \mathbf{N}+1} \|\mathbf{f_n}\|_{\infty} < a$, donc $\sum_{\mathbf{n} \geqslant \mathbf{N}+1} \Omega(\mathbf{f_n}$, $\mathbf{x}) < 2a$ pour tout \mathbf{x} .

Par hypothèse, les α_j/α_0 et 1 sont linéairement indépendants sur Q. Le théorème de Kronecker montre que, pour tout $\epsilon>0$, il existe des entiers

$$p_0$$
, ..., p_N tels que
$$|p_0 \frac{\alpha_j}{\alpha_0} - (x_j - x_0) \frac{\alpha_j}{2\pi} - p_j| \leq \epsilon \text{ pour } j = 1, \dots, N.$$

Soit $\xi = x_0 + p_0 (2\pi/\alpha_0) = x_j + p_j (2\pi/\alpha_j) + t_j$. On a $|t_j| \le \epsilon (2\pi/(|\alpha_j|))$. La périodicité de f_0 entraîne que $\Omega(f_0, \xi) = 4a$.

D'autre part, l'oscillation essentielle d'une fonction bornée est semi-continue supérieurement, donc il existe $\epsilon > 0$ tel que

$$\Omega(f_j, t_j + x_j) < \frac{a}{N}$$
 pour $1 \le j \le N$ et $|t_j| \le \epsilon \frac{2\pi}{|\alpha_j|}$.

Alors, la périodicité des f_i entraîne que $\Omega(f_i, \xi) < a/N$. Or

$$f_0 = \varphi - \sum_{j=1}^{N} f_j - \sum_{n \ge N+1} f_n$$
,

donc

$$\Omega(f_0, \xi) \leq N \cdot \frac{a}{N} + 2a < 4a$$

ce qui contredit le fait que $\Omega(f_0, \xi) = 4a$. On a bien $\Omega(f_i, x) = 0$ pour tout i et pour tout x, et la proposition est démontrée.

La démonstration du théorème nécessite un dernier lemme :

LEMME 3. - Soit $\varphi = a + \sum_{n \in \mathbb{N}} f_n$, où $\{f_n\}_{n \in \mathbb{N}}$ est une suite de fonctions complexes continues telles que $\sum_{n \in \mathbb{N}} \|f_n\|_{\infty} < +\infty$ et $a \in \mathbb{C}$. Si Spec $f_n \subset \alpha_n \mathbb{Z}^*$, alors

$$\|\varphi\|_{\infty} \geqslant 1/5(|\mathbf{a}| + \sum_{\mathbf{n} \in \mathbb{N}} \|\mathbf{f}_{\mathbf{n}}\|_{\infty}).$$

En effet, soient $a=\alpha+i\beta$ avec α et β réels, et $f_n(t)=s_n(\beta_n\,t)$ avec $\beta_n=\alpha_n/2\pi$. Soit $s_n(t)=\sigma_n(t)+i\tau_n(t)$, les fonctions σ_n et τ_n étant à valeurs réelles. Comme 0 n'est pas dans le spectre de f_n , on a

$$\int_{0}^{1} \sigma_{n} = \int_{0}^{1} \tau_{n} = 0$$

donc

(2)
$$\sup \sigma_{n} > 0 > \inf \sigma_{n} \quad \text{et} \quad \sup \tau_{n} > 0 > \inf \tau_{n}.$$

Soit $\mu = \sup_{t \in \mathbb{R}} |\alpha + \sum_{n \in \mathbb{N}} \sigma_n(t)|$ et $\nu = \sup_{t \in \mathbb{R}} |\beta + \sum_{n \in \mathbb{N}} \tau_n(t)|$. D'après le lemme 1, on a

$$\mu \geqslant \alpha + \sum_{n \in \mathbb{N}} \sup \sigma_n \text{ et } \mu \geqslant -\alpha + \sum_{n \in \mathbb{N}} \sup (-\sigma_n)$$

soit $\mu \geqslant -\alpha - \sum_{n \in \mathbb{N}} \inf \sigma_n$, d'où

$$\mu \geqslant \frac{1}{2} \sum_{n \in \mathbb{N}} (\sup \sigma_n - \inf \sigma_n) \geqslant \frac{1}{2} \sum_{n \in \mathbb{N}} \|\sigma_n\|_{\infty}$$

d'après l'inégalité 2. On a un résultat analogue pour v, donc

$$\|\phi\|_{\infty} \geqslant \frac{1}{2}(\mu + \nu) \geqslant \frac{1}{4} \sum_{\mathbf{n} \in \mathbb{N}} (\|\sigma_{\mathbf{n}}\|_{\infty} + \|\tau_{\mathbf{n}}\|_{\infty}) \geqslant \frac{1}{4} \sum_{\mathbf{n} \in \mathbb{N}} \|\mathbf{s}_{\mathbf{n}}\|_{\infty} = \frac{1}{4} \sum_{\mathbf{n} \in \mathbb{N}} \|\mathbf{f}_{\mathbf{n}}\|_{\infty}.$$

D'autre part, comme ϕ est presque périodique de moyenne a , on a $\|\phi\|_{\infty} \geqslant |a|$, donc

$$\|\phi\|_{\infty} \geqslant \frac{1}{5}|\mathbf{a}| + \frac{4}{5}\frac{1}{4}\sum_{\mathbf{n}\in\widetilde{\mathbb{N}}}\|\mathbf{f}_{\mathbf{n}}\|_{\infty} = \frac{1}{5}(|\mathbf{a}| + \sum_{\mathbf{n}\in\widetilde{\mathbb{N}}}\|\mathbf{f}_{\mathbf{n}}\|_{\infty}).$$

Le théorème s'obtient alors facilement : Soit K, le noyau de Fejer d'ordre j.

On a φ * K_j = φ_j = a_j + $\sum_{n\in\mathbb{N}}$ P_{j,n} avec a_j \in \mathbb{C} et P_{j,n} est un polynôme trigonométrique à spectre dans α_n $\widetilde{\mathbb{Z}}^*$, la somme étant en fait finie puisque α_n tend vers l'infini. Comme l'intégrale de K_j est l'unité, on a $\|a_j + \sum_{n\in\mathbb{N}}$ P_{j,n} $\|_{\infty} \leq \|\varphi\|_{\infty}$, et le lemme 3 fournit

$$|\mathbf{a}_{\mathbf{j}}| + \sum_{\mathbf{n} \in \mathbb{N}} \|\mathbf{P}_{\mathbf{j}, \mathbf{n}}\|_{\infty} \leq 5 \|\mathbf{\phi}\|_{\infty}$$
.

Par compacité, en prenant au bes^in une sous-suite, on peut supposer que a tend vers a , et que P_j , tend faiblement vers un élément f_n de L^∞ (R) dont le spectre est contenu dans $\alpha_n \not Z$. On a alors $|a| + \sum_{n \in \mathbb{N}} \|f_n\|_\infty \leqslant 5 \|\phi\|_\infty$. Comme les séries considérées convergent normalement, ϕ_j converge faiblement vers $a + \sum_{n \in \mathbb{N}} f_n$. Or ϕ_j converge vers ϕ uniformément sur tout compact, donc $\phi = a + \sum_{n \in \mathbb{N}} f_n$ presque partout, et la proposition donne le théorème.

BIBLIOGRAPHIE

- [1] GRAMAIN (F.) et MEYER (Y.). Ensembles de fréquences et fonctions presque périodiques, Colloquium Mathematicum (à paraître).
- [2] LANG (S.). Algebra, 2nd edition. Reading, Addison-Wesley, 1967.
- [3] POURCHET (Y.). Communication orale.

(Texte reçu le 7 mai 1973)

François GRAMAIN 28 avenue du Panorama 92340 BOURG-LA-REINE