SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

XAVIER STEFANI

Algébricité des fonctions méromorphes prenant certaines valeurs algébriques

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 10, nº 2 (1968-1969), exp. nº 18, p. 1-3

http://www.numdam.org/item?id=SDPP 1968-1969 10 2 A5 0>

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1968-1969, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ALGÉBRICITÉ DES FONCTIONS MÉROMORPHES PRENANT CERTAINES VALEURS ALGÉBRIQUES

par Xavier STEFANI

L'exposé consiste dans la présentation d'un article de G. RAUZY [5]. Nous donnons ici un bref résumé de cet article.

A est un anneau intègre muni d'une valeur absolue notée $|\ |$; on note K le corps des quotients de A, \hat{K} le complété de K pour $|\ |$, et $\overline{\hat{K}}$ la clôture algébrique de \hat{K} .

Si k est un corps, on note $k\{X^{-1}\}$ l'ensemble des séries formelles à coefficients dans k du type :

$$f(X) = \sum_{n=-h}^{+\infty} \frac{a_n}{X^n} ,$$

et l'on définit la valuation à l'infini de f:

$$v(f) = \inf\{n \in Z : a_n \neq 0\}$$
.

Dans les notations précédentes, un élément de $K\{X^{-1}\}$ est dit méromorphe à l'infini si $\lim_{n \to \infty} |a_n|^{1/n} < +\infty$, autrement dit, si la série $\sum_{n \to \infty} \frac{a_n}{n}$ converge au voisinage de l'infini.

On note $\mathbb M$ le sous-corps de $\hat{K}\{X^{-1}\}$, constitué par l'ensemble des éléments méromorphes à l'infini. On montre ([1], p. 44) que $\mathbb M$ est algébriquement clos dans $\hat{K}\{X^{-1}\}$.

Le but de l'article est d'étudier certaines relations entre l'algébricité d'un élément f de M et l'algébricité des valeurs prises par f sur les éléments de A. On est pour cela amené à donner une généralisation des nombres de Pisot dans certaines familles d'anneaux.

1. Définition des ensembles $S(A, \gamma)$.

Notons (\Re) le système d'hypothèses suivant :

- 1º | est non triviale,
- 2° $(\alpha \in A \text{ et } \alpha \neq 0) \Longrightarrow (|\alpha| \geqslant 1)$,
- 3º A est de Fatou (pour l'étude de ces anneaux, voir [3]).

Soit A satisfaisant à (\Re) ; γ étant un nombre réel strictement positif, on peut alors donner la définition suivante.

DÉFINITION. - $\theta \in S(A, \gamma)$, si, et seulement si :

- 1° $\theta \in \hat{K}$;
- $2^{\circ} |\theta| > 1$;
- 3º Les conjugués de θ par rapport à K ont, dans \hat{K} , une valeur absolue inférieure ou égale à $|\theta|^{-\gamma}$.

On pose $S(A) = \bigcup S(A, \gamma)$. Les cas particuliers bien connus sont obtenus pour $\gamma>0$ $A = Z \ [Z \text{ étant muni de la valeur absolue usuelle}], et pour <math>A = K[X] \ [K \text{ étant un corps, et } A \text{ étant muni de la valuation à l'infini}] ([2] et [4]).$

Propriété caractéristique. - Pour $\theta \in \hat{K}$, $|\theta| > 1$, il y a équivalence entre les propriétés suivantes :

- (a) $\theta \in S(A, \gamma)$;
- (b) $\exists c > 0$, $\forall n \in \mathbb{N}$, $\inf_{\alpha \in A} |\theta^n \alpha| < c|\theta|^{-n\gamma}$.

On montre ensuite le résultat important suivant.

THÉORÈME. - $\forall \gamma > 0$, les ensembles $S(A, \gamma)$ sont discrets pour la topologie sur \hat{K} associée à $|\cdot|$.

2. Etude d'anneaux satisfaisant aux hypothèses (R).

On peut montrer (CAHEN, article à paraître) que lorsque A est de Fatou, A[X] est lui-même un anneau de Fatou. L'anneau A[X], muni de la valuation à l'infini (ou plus exactement d'une valeur absolue associée), satisfait alors aux hypothèses (x).

Dans [5], on considère l'ensemble suivant :

$$B(A) = \{P \in K[X] ; \forall \alpha \in A, P(\alpha) \in A\}$$
.

On montre alors que B(A) est un sous-anneau de K[X], et que, muni de la valuation à l'infini, il satisfait aux hypothèses (\mathcal{R}) . En particulier, B est de Fatou.

3. Dernier résultat.

G. RAUZY donne finalement le résultat suivant.

THEOREME. - Si γ est irrationnel, il y a équivalence entre les conditions suivantes :

1° $f \in \mathbb{N}$, f non constante, et pour $\alpha \in A$ assez grand, $f(\alpha) \in S(A, \gamma)$; 2° $f \in S(B(A), \gamma)$.

En particulier, si f est une fraction rationnelle non constante, et telle que $f(\alpha) \in S(A, \gamma)$ pour $\alpha \in A$ et α assez grand, alors f est un polynôme, et $f \in B(A)$.

La solution de valuation négative de X^2 - xX + 1 = 0 , dont on obtient facilement le développement en résolvant l'équation du second degré, est un élément de S(B(Z) , 1) , ses valeurs sur les entiers sont de toute évidence des éléments de S(Z , 1) .

BIBLIOGRAPHIE

- [1] ARTIN (Emil). Algebraic numbers and algebraic functions, I. Princeton, Princeton University Press; New York, New York University Press, 1950/51 (multigr.).
- [2] BATEMAN (P. T.) and DUQUETTE (A. L.). The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. of Math., t. 6, 1962, p. 594-606.
- [3] BENZAGHOU (Benali). Anneaux de Fatou, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 10e année, 1968/69, nº 9, 8 p.
- [4] GRANDET-HUGOT (Marthe). Nombres de Pisot dans un corps de séries formelles, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 8e année, 1966/67, n° 4, 12 p.
- [5] RAUZY (Gérard). Algébricité des fonctions méromorphes prenant certaines valeurs algébriques, Bull. Soc. math. France, t. 96, 1968, p. 197-208.

(Texte reçu le 20 septembre 1969)

Xavier STEFANI
35 avenue des Peupliers
75 - PARIS 16