SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

JEAN-PIERRE SERRE

Dépendance d'exponentielles p-adiques

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 7, n° 2 (1965-1966), exp. n° 15, p. 1-14

http://www.numdam.org/item?id=SDPP_1965-1966__7_2_A4_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1965-1966, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

28 mars 1966

DÉPENDANCE D'EXPONENTIELLES p-ADIQUES

par Jean-Pierre SERRE

S. LANG ([2], [3]) a récemment démontré que deux exponentielles e , e , qui prennent des valeurs algébriques pour au moins trois valeurs indépendantes de z, sont multiplicativement dépendantes (i. e. le rapport b₁/b₂ est rationnel). Sa démonstration vaut aussi bien dans le cas réel ou complexe que dans le cas p-adique. Ce dernier cas est particulièrement intéressant : il a des applications à la théorie des "représentations p-adiques" des groupes de Galois des corps de nombres ; j'espère revenir ailleurs sur ce point.

Le contenu de cet exposé est le suivant : le paragraphe 1 reproduit la démonstration du théorème de Lang, dans le cas p-adique ; le paragraphe 2 en donne une généralisation à plusieurs variables, sous certaines hypothèses de répartition. Dans les deux cas, on a besoin de variantes p-adiques du lemme de Schwarz ; elles sont démontrées en Appendice.

§ 1. Le théorème de Lang

1.1. Enoncé du théorème.

Soit k un corps complet pour une valuation réelle v ; si c est tel que 0 < c < 1 , on pose

$$|x| = e^{v(x)}$$
.

L'application x -> |x| est une valeur absolue ultramétrique sur k .

On suppose également que k est de caractéristique zéro, et que sa caractéristique résiduelle est p; on a $0 < v(p) < +\infty$.

On note E le "domaine de convergence" de la série exponentielle

$$\exp(\mathbf{z}) = \sum_{n=0}^{\infty} z^n / n! ,$$

autrement dit l'ensemble des $\,z\,\in\,k\,$ tels que $\,v(\,z\,)\,>\,v(\,p\,)/(\,p\,$ - $\,1)\,$.

On se donne:

- (i) Un sous-groupe A de k , libre de rang fini a \geqslant 2 sur \mathbb{Z} .
- (ii) Des éléments b_i (i = 1, ..., b) de k.

On pose:

$$e_{i}(z) = \exp(b_{i}z)$$
 .

On suppose que les e_i convergent sur A , i. e. que b_i A \subset E pour tout i ; les e_i définissent alors des <u>caractères</u> de A , autrement dit des homomorphismes de A dans k^* .

THÉORÈME 1. - Supposons que tous les $e_i(x)$, $x \in A$, $1 \le i \le b$, soient algébriques sur Q. Alors, si b > a/(a-1), les b_i sont linéairement dépendants sur Q.

Remarques.

1° Si a=2, le théorème s'applique pour $b\geqslant 3$; si $a\geqslant 3$, il s'applique pour $b\geqslant 2$. On ignore ce qui se passe pour a=b=2.

2º Dire que les b_i sont linéairement dépendants sur Q équivaut à dire que les e_i sont <u>multiplicativement dépendants</u>, i. e. qu'il existe des entiers n_i non tous nuls tels que

$$\prod e_i^{n_i} = 1 .$$

1.2. Notations.

Soit K un corps de nombres. Si $x \in K$, nous appellerons <u>dénominateur</u> de x le plus petit entier $D \geqslant 1$ tel que Dx soit entier. Nous appellerons <u>taille</u> de x, et nous noterons t(x), le nombre

$$t(x) = \sup(D, |\sigma(x)|)$$
,

où σ parcourt l'ensemble des plongements de x dans \underline{C} . Lorsque x est entier, on a D = 1 , et $t(x) = \sup(\left|\sigma(x)\right|)$.

Nous appliquerons ceci au corps K engendré par les $e_i(a_j)$, où (a_j) $(1 \le j \le a)$ est une base de A; du fait que les e_i sont des homomorphismes, on a $e_i(x) \in K$ pour tout $x \in A$ et tout i.

D'autre part, si m est un entier $\geqslant 1$, nous noterons A(m) l'ensemble des éléments de A de la forme $\sum m_j a_j$, avec $0 \leqslant m_j \leqslant m$. On a $Card(A(m)) = m^a$.

1.3. Démonstration du théorème 1.

Quitte à multiplier les $\ b_i$ par une puissance de p , on peut supposer que les séries $\ e_i(z)$ convergent sur le disque $|z|\leqslant R$, avec R>1 [par abus de langage, nous dirons qu'une série $\sum a_n z^n$ converge sur le disque $|z|\leqslant R$ si $R^n \mid a_n \mid$ tend vers 0 - convention analogue pour plusieurs variables]. Quitte à remplacer A par p^A , avec n assez grand, on peut aussi supposer que A est contenu dans le disque unité $|z|\leqslant 1$.

On aura à considérer des polynômes en les e; :

$$P(e)(z) = \sum_{n_1 \dots n_b} e_1(z)^{n_1} \dots e_b(z)^{n_b}$$
;

on écrira un tel polynôme $\sum c_n e^n(z)$.

Soit maintenant N un entier $\geqslant 1$ (que l'on fera tendre vers $+\infty$), et considérons un polynôme du type précédent, avec $n_i < 2N^a$ pour tout i . Cherchons à déterminer les coefficients c_n de telle sorte que P(e) s'annule en tous les éléments de $A(N^b)$. Les c_n répondant à la question sont les solutions d'un système linéaire homogène à $2^b N^{ab}$ inconnues et N^{ab} équations. Les coefficients de ce système sont les

$$e^{n}(x) = \prod_{i} e_{i}(a_{j})^{n_{i}m_{j}}$$
, avec $n_{i} < 2N^{a}$, $m_{j} < N^{b}$.

Ces coefficients appartienment à K . De plus, si d est un entier $\geqslant 1$, tel que d.e, (a,) soit entier pour tout i , j , les produits

$$d^{2N^{a+b}} \cdot e^{n}(x)$$

sont des entiers de K , et leur taille est majorée par $C_1^{N^{a+b}}$, où C_1 est une constante (i. e. ne dépend pas de N). D'après un lemme classique de SIEGEL (cf. [5], p. 37), on peut trouver une solution (c_n) non triviale du système en question, les c_n étant en outre des entiers de K de taille $\leqslant C_2^{N^{a+b}}$, où C_2 est une autre constante. Nous désignerons par P_N le polynôme en les e_i correspondant. C'est une série entière ; elle converge sur le disque $|z| \leqslant R$.

Supposons maintenant que les b soient linéairement indépendants sur $\frac{Q}{n}$; les e sont alors multiplicativement indépendants, et les produits e_1 ... e_b sont

deux à deux distincts. Comme ce sont des <u>homomorphismes</u>, un argument classique montre qu'ils sont <u>linéairement indépendants</u>. Il s'ensuit que le polynôme P_N considéré ci-dessus n'est pas nul ; il ne possède donc qu'un nombre fini de racines dans le disque $|x| \leqslant R$. Il existe alors un plus grand entier M tel que P_N s'annule en tous les éléments de $A(M^b)$. On a $N \leqslant M$. Soit x un élément de $A((M+1)^b)$ en lequel P_N ne s'annule pas. Posons $y=P_N(x)$. Nous allons majorer la valeur absolue p-adique |y| de y, ainsi que sa taille t(y); la comparaison des résultats montrera que $b \leqslant a/(a-1)$.

Majoration de t(y) . - On a

$$y = \sum c_n e^n(x)$$
;

les c_n sont entiers, et leur taille est majorée par c_2^{Na+b} . D'autre part, on a :

$$e^{n}(x) = \prod_{i=1}^{n} e_{i}(a_{j})^{n_{i}m_{j}}$$
, avec $n_{i} < 2N^{a}$, $m_{j} < (M+1)^{b}$.

On en conclut que les $e^n(x)$ sont de taille $\leqslant c_3^{\mathbb{M}^{a+b}}$, et ont un dénominateur commun $\leqslant c_4^{\mathbb{M}^{a+b}}$. Comme le nombre de termes de la sommation est négligeable devant de tels facteurs, on en déduit

$$t(y) \leqslant C_5^{Ma+b} .$$

Majoration de |y| . - Soit $\sum p_n \ z^n$ le développement en série entière de la fonction P_M . Posons :

$$|P_N|_R = \sup_R R^n |p_n|$$
 et $|P_N|_1 = \sup_R |p_n|$.

Comme P_N converge sur le disque $|z|\leqslant R$, le produit $R^n|p_n|$ tend vers 0, et les nombres ci-dessus sont finis. Comme $|x|\leqslant 1$, on a $|y|=|P_N(x)|\leqslant |P_N|_1$. D'autre part, puisque P_N s'annule sur $A(K^b)$, il a au moins M^{ab} racines distinctes dans le disque unité, et le lemme de Schwarz (cf. Appendice, proposition 1) montre que

$$|P_N|_1 \leqslant R^{-M^{ab}} |P_N|_R$$
 .

Enfin, $|P_N|_R$ est majoré par sup $|e^n|_R$, et ceux-ci eux-mêmes sont majorés par c_6^{Ma+b} , comme on le voit par un calcul analogue à celui fait pour t(y). On en déduit :

$$|y| \leqslant |P_N|_1 \leqslant R^{-M^{ab}} C_{\delta}^{M^{a+b}}$$
.

Supposons que ab > a + b , i. e. b > a/(a-1) . Le terme en Mab l'emporte alors sur celui en Ma+b , et l'on obtient une majoration :

$$|y| \leqslant C_7^{-Mab}$$
, avec $C_7 > 1$.

Mais il y a une relation entre |y| et t(y):

LEMME. - Soit d = [K:Q], et supposons la valeur absolue de = k normalisée de = k telle sorte que |p| = 1/p. On a alors

$$|y| \ge t(y)^{-2d}$$
 pour tout $y \in K^{x}$.

Soit D le dénominateur de y , et soit z = Dy ; l'élément z est entier. On a $|D|\leqslant 1$, d'où $|y|\geqslant |z|$. Soit Nz la norme de z dans Q ; c'est un entier, évidemment divisible par z ; d'où $|z|\geqslant |{\rm Nz}|$. Si p est la plus grande puissance de p qui divise Nz , on a $|{\rm Nz}|=p^{-a}$, d'où $|{\rm Nz}|\geqslant 1/|{\rm Nz}|_{\infty}$, où $|{\rm Nz}|_{\infty}$ désigne la valeur absolue usuelle de l'entier Nz . Comme Nz est le produit des conjugués de z , et que la norme usuelle de ceux-ci est \leqslant D.t(y) , on a

$$|Nz| \ge D^{-d} t(y)^{-d} \ge t(y)^{-2d}$$

d'où le lemme.

Appliquons ce lemme à l'élément y considéré plus haut ; on a vu que $t(y)\leqslant C_5^{M^{a+b}} \ ; \ \text{on en tire} \ |y|\geqslant C_5^{-2dN^{a+b}} \ , \ \text{ce qui est en contradiction avec}$ $|y|\leqslant C_7^{-Mab} \ \text{puisque ab} > a+b \ . \ \text{On ne peut donc pas avoir à la fois l'indépendance des } b_i \ \text{et l'inégalité } b>a/(a-1) \ , \ \text{ce qui démontre le théorème} \ .$

§ 2. Le cas de plusieurs variables

2.1. La notion de parfaite densité.

Soit G un groupe topologique, isomorphe à $\left(\frac{Z}{Zp}\right)^r$, où $\frac{Z}{Zp}$ désigne le groupe des entiers p-adiques. Soit A un sous-groupe libre de type fini de G , et soit (a_j) , $1 \le j \le a$, une base de A . Comme précédemment, si m est un nombre réel > 0 , nous désignerons par A(m) le sous-ensemble de A formé des $\sum m_j a_j$, avec $0 \le m_j < m$.

Supposons que A soit dense dans G; cela équivaut à dire que, pour tout entier

 $n \geqslant 0$, l'application canonique A \longrightarrow G/p^nG est surjective.

DÉFINITION. - Soit λ un nombre réel positif $\leqslant 1$. On dit que A est λ -dense dans G s'il existe une constante C telle que, pour tout entier $n \geqslant 0$, l'application

$$A(Cp^{\lambda n}) \longrightarrow G/p^n G$$

soit surjective.

Noter que, puisque A est dense, l'application $A/p^nA \longrightarrow G/p^nG$ est surjective; comme $A(p^n)$ est un système de représentants de A/p^nA , on en conclut que $A(p^n) \longrightarrow G/p^nG$ est surjectif. Il s'ensuit que A est toujours 1-dense; le seul cas intéressant est donc celui où $\lambda < 1$.

D'autre part, le nombre d'éléments de $G/p^n G$ est p^{nr} , et celui de $A(Cp^{\lambda n})$ est équivalent à $C^a p^{\lambda an}$; le groupe A ne peut donc être λ -dense que si $\lambda a \geqslant r$, c'est-à-dire si $\lambda \geqslant r/a$.

DÉFINITION. - On dit que A est parfaitement dense dans G s'il est λ -dense pour $\lambda = r/a$.

Remarque. - On montre facilement que les définitions ci-dessus ne dépendent pas du choix de la base (a_i) .

Exemple. - Si $\alpha \in \mathbb{Z}_p$ est quadratique sur \mathbb{Q} , le sous-groupe $\mathbb{A} = \mathbb{Z} + \alpha \mathbb{Z}$ de \mathbb{Z}_p est parfaitement dense.

Question. - Prenons pour G le groupe multiplicatif des unités p-adiques congrues à 1 mod p (resp. congrues à 1 mod 4 si p=2), et soit A le sousgroupe engendré par des nombres rationnels a multiplicativement indépendants. Supposons A dense dans G . Est-il vrai que A est parfaitement dense ? J'ignore ce qu'il en est, même pour p=3 et A engendré par 4 et 7 .

2.2. Enoncé du théorème.

Conservons les notations précédentes, et donnons-nous une famille finie d'homo-morphismes continus e_i : $G \longrightarrow k^{*}$, le corps k vérifiant les conditions de 1.1. Soit b le nombre des e_i .

THÉORÈME 2. - Supposons que tous les $e_i(x)$, $x \in A$, $1 \le i \le b$, soient algébriques sur Q, et que A soit λ -dense dans G. Alors, si $b > r/(1-\lambda)$, les e_i sont multiplicativement dépendants.

Dans le cas où A est parfaitement dense, on a $\lambda=r/a$, et l'inégalité devient b>ar/(a-r); pour r=1, c'est l'inégalité b>a/(a-1) du théorème 1 [mais ce dernier valait sans aucune hypothèse de λ -densité - le théorème 2 ne contient donc pas le théorème 1].

2.3. Démonstration du théorème 2. Préparatifs.

Soit C une constante telle que $A(Cp^{\lambda n}) \longrightarrow G/p^n G$ soit surjectif pour tout n. Nous choisirons dans $A(Cp^{\lambda n})$ un système de représentants B(n) de $G/p^n G$; de plus, nous supposerons les B(n) choisis de telle sorte que B(n) soit contenu dans B(n+1); on voit tout de suite que c'est possible. On a

$$Card(B(n)) = p^{nr}$$
, avec $r = dim G$.

On note K le sous-corps de k engendré par les $e_i(x)$, $x \in A$; c'est un corps de nombres.

Enfin, on identifie G à $(\underline{z}_p)^r$ au moyen d'un isomorphisme. Les e_i sont alors transformées en des fonctions $e_i(z_1,\ldots,z_r)$ à r variables $z_i\in \underline{z}_p$. Mais tout homomorphisme continu de \underline{z}_p dans k^n est donné localement par une exponentielle $z\longmapsto \exp(bz)$, avec $b\in k$. Les e_i sont donc des produits d'exponentielles, et en particulier sont analytiques en z_1 , ..., z_r . Sur un voisinage convenable p^n G de O dans G, on a

$$e_{i}(z) = \sum \alpha_{i,n} z^{n}$$
 (où n désigne un multi-indice),

la série étant convergente sur pⁿG. Quitte à remplacer e par sa puissance pⁿ⁺¹-ième, on peut donc supposer que e est donné, sur tout le polydisque unité $\left(\frac{Z}{Z}\right)^r$, par une série $\sum \alpha_{i,n} z^n$ qui converge sur le polydisque $|z_i| \leqslant R$, avec R > 1. [Ici encore, ces précautions sont destinées à permettre l'application du lemme de Schwarz.]

2.4. Démonstration du théorème 2.

Elle est tout à fait analogue à celle du théorème 1. On commence par considérer des polynômes en les e_i de la forme

$$P(e)(z) = \sum_{n_1...n_b} e_1(z)^{n_1} ... e_b(z)^{n_b}$$
,

où tous les n_i sont $< 2p^{nr}$ (n étant un entier $\geqslant 0$ que l'on fait tendre vers $+ \infty$). On cherche à déterminer les coefficients c de telle sorte que P(e) s'an-

nule en tout point de l'ensemble B(bn) défini au n° 2.3. Cela donne un système linéaire homogène à 2^bp^{bnr} inconnues et p^{bnr} équations. Ses coefficients sont des produits

$$\text{Tle}_{i}(a_{j})^{n_{i}m_{j}}$$
 , avec $n_{i} < 2p^{nr}$, $m_{j} < Cp^{\lambda bn}$;

on en déduit, comme précédemment, que l'on peut prendre pour coefficients c des n(r+ λ b) entiers de K , non tous nuls, de taille $\leqslant c_8^p$. Soit P le polynôme correspondant.

Supposons que les e_i soient <u>multiplicativement indépendants</u>. Le même argument que dans le cas r=1 montre que P_n est alors non nul. Comme la réunion des B(m) est dense dans G, il s'ensuit qu'il existe un plus grand entier m tel que P_n s'annule sur B(m); on a $m \geqslant bn$. Soit x un élément de B(m+1) tel que $y=P_n(x)$ soit non nul. On va obtenir une contradiction en comparant des majorations de |y| et de t(y).

Majoration de t(y) . - On a

$$y = \sum c_{n_1 \dots n_h} \prod_{i \in [a_j]} n_i^{n_i^m j}$$
,

avec $n_i < 2p^{nr} \leqslant 2p^{mr/b}$, $m_j < Cp^{\lambda(m+1)}$, $t(c) \leqslant C_8^{p^{n(r+\lambda b)}}$. On en déduit :

$$t(y) \leqslant C_9^{pm(\lambda + r/b)} .$$

$$|y| \leqslant |P_n|_1$$
.

D'autre part, P_n s'annule en tous les points de B(m), et l'application $B(m) \longrightarrow G/p^m G$ est surjective. D'après une variante à r variables du lemme de Schwarz (cf. Appendice, proposition 2), on a donc :

$$|P_n|_1 \leqslant R^{-p^m} |P_n|_R .$$

Enfin, un calcul direct montre que $\left|P_{n}\right|_{R} \leqslant C_{10}^{pm(\lambda+r/b)}$

Supposons alors que $1>\lambda+r/b$, i. e. que $b>r/(1-\lambda)$. L'exposant p^m l'emporte sur l'exposant $p^{m(\lambda+r/b)}$, et l'on obtient la majoration :

$$|y| \leqslant C_{11}^{-p^m}$$
, avec $C_{11} > 1$.

Mais les majorations obtenues pour |y| et t(y) sont incompatibles avec le lemme du n° 1.3. Le théorème 2 est donc démontré.

Appendice

Analogues p-adiques du lemme de Schwarz

A.1. Notations.

Soit k un corps complet pour une valeur absolue ultramétrique non triviale. Soit

$$f = \sum a_{n_1 \dots n_r} z_1^{n_1} \dots z_r^{n_r} = \sum a_n z^n$$
,

une série formelle à coefficients dans k . Si R est un nombre réel >0 , on pose :

$$|f|_{R} = \sup_{n \in \mathbb{R}^{|n|}} |a_{n}|$$
, où $|n| = \sum_{i=1}^{n} a_{i}$.

On a $|f + g|_{R} \le \sup(|f|_{R}, |g|_{R})$, $|\lambda f|_{R} = |\lambda|.|f|_{R}$, et

$$|fg|_{R} = |f|_{R} \cdot |g|_{R}$$
 si $|f|_{R}$ et $|g|_{R}$ sont finis.

Lorsque $|f|_R$ est <u>fini</u>, la série f(z) converge dans le polydisque $|z_i| < R$; elle converge même dans le polydisque $|z_i| \le R$ si $R^{|n|} |a_n|$ tend vers 0 . On a:

$$|f(z)| \leqslant |f|_{R}$$
.

Lorsque en outre la corps résiduel de k est infini, et que le groupe des valeurs de $k^{\dot{\pi}}$ est dense, on a :

$$|f|_{R} = \sup |f(z)| \quad \text{pour} \quad |z_{i}| < R$$
.

Si R' \leqslant R , on a $|f|_{R'} \leqslant |f|_{R}$; le but du lemme de Schwarz est d'améliorer cette inégalité, sous l'hypothèse que f a "beaucoup" de racines dans le polydisque $|z_{\mathbf{i}}| \leqslant$ R' .

A.2. Le cas des fonctions d'une variable.

Supposons que r=1. Soient R' < R deux nombres réels > 0, et soit $f(z)=\sum a_n \ z^n$ une série telle que $\left|f\right|_R$ soit fini. Il en résulte que f con-

verge sur le disque $|z| \leqslant R!$; on peut donc parler de ses racines sur ce disque.

PROPOSITION 1 (cf. MAHLER [4]). - Si f a h racines dans le disque $|z| \leqslant R'$, on a :

$$|f|_{R'} \leqslant (\frac{R'}{R})^h |f|_{R}$$
.

Remarquons d'abord que, si f a une racine a telle que $|a|\leqslant R'$, on peut écrire f sous la forme $f=(z-a)f_1$, avec $|f_1|_R<+\infty$; en effet, c'est clair si a=0, et le cas général se ramène à celui-là par translation. En appliquant ce résultat aux racines a_i $(1\leqslant i\leqslant h)$ de f dans le disque $|z|\leqslant R'$, on voit que l'on peut écrire f sous la forme

$$f = P \cdot g$$
, avec $P(z) = \prod (z - a_i)$ et $|g|_{R} < +\infty$.

On a $|P|_{R} = R^{h}$ et $|P|_{R'} = R'^{h}$. On en déduit :

$$|f|_{R'} = R'^h \cdot |g|_{R'} \le R'^h \cdot |g|_{R} = (\frac{R'}{R})^h \cdot R^h \cdot |g|_{R} = (\frac{R'}{R})^h \cdot |f|_{R}$$
.

C. Q. F. D.

Remarque. - On aurait pu aussi appliquer la théorie du polygone de Newton à f .

A.3. Le cas général. Énoncé du résultat.

Lorsque r>1, les racines de f dans le polydisque $|z_{\bf i}|\leqslant R'$ peuvent former des sous-espaces analytiques de dimension r-1, et sont en général en nombre infini. Le fait que f ait beaucoup de racines n'entraîne alors rien de plus que l'inégalité triviale :

$$|f|_{R'} \leqslant \frac{R'}{R} \cdot |f|_{R}$$
.

Il est donc nécessaire de faire des hypothèses restrictives sur la <u>position</u> de ces racines. Je vais me borner à un cas très particulier, où l'on suppose que ces racines sont <u>très bien réparties</u>; il serait intéressant d'avoir des énoncés plus généraux.

Plus précisément, nous supposerons que k vérifie les hypothèses du n^o 1.1, donc contient le corps p-adique Q_p . On se donne un nombre entier $n\geqslant 0$, et un sousensemble B de $\left(\underline{Z}_p\right)^r$ tel que l'application $B\longrightarrow \left(\underline{Z}_p/p^n\ \underline{Z}_p\right)^r$ soit bijective. On se donne d'autre part une série $f(z_1,\ldots,z_r)$ telle que $\left|f\right|_R<+\infty$, R étant un nombre réel >1. Cette série converge sur le polydisque unité, lequel contient B.

PROPOSITION 2. - $\underline{\text{Si}}$ f $\underline{\text{s'annule sur}}$ B , $\underline{\text{on a}}$:

$$|f|_1 \leqslant R^{-p^n} |f|_R$$
 .

Noter que l'exposant de R^{-1} est bien p^n et non $Card(B) = p^{nr}$. L'exemple de la fonction $f = z_1(z_1 - 1) \dots (z_1 - p^n + 1)$ montre d'ailleurs que cet exposant ne peut pas être amélioré.

Question. - Existe-t-il un résultat analogue dans le cas archimédien, autrement dit pour les fonctions de plusieurs variables complexes ? Même question pour le théorème 2.

A.4. Démonstration de la proposition 2.

La méthode consiste à écrire f comme série de <u>polynômes d'interpolation</u> relatifs à la suite des entiers positifs (cf. Y. AMICE [1]). De façon précise, pour tout entier positif α , posons :

$$P_{\alpha}(X) = X(X-1) \dots (X-\alpha+1)$$

et si $\alpha = (\alpha_1, \ldots, \alpha_r)$ est un multi-indice, posons :

$$P_{\alpha}(z) = P_{\alpha_1}(z_1) \dots P_{\alpha_r}(z_r)$$
, où $z = (z_1, \dots, z_r)$.

On a

$$P_{\alpha}(z) = z^{\alpha} + \sum_{\beta < |\alpha|} b_{\beta}^{\alpha} z^{\beta}$$
, où les b_{β}^{α} sont des entiers.

D'où:

$$z^{\alpha} = P_{\alpha} + \sum_{|\beta| < |\alpha|} c_{\alpha}^{\beta} P_{\beta}$$
, où les c_{α}^{β} sont des entiers.

Si $f = \sum a_{\alpha} z^{\alpha}$ est la série donnée, on a $a_{\alpha} \to 0$ (puisque $|f|_R$ est fini). Remplaçant les z^{α} par leur expression en fonction des P_{α} , on obtient un développement en série pour f:

$$f = \sum b_{\alpha} P_{\alpha}$$
.

[En fait, les z^{α} et les P_{α} constituent deux bases normales de l'espace de Banach des séries convergentes sur le polydisque unité, la norme étant $f \mapsto f|_1$. Cf. [1], Chap. III.]

On vérifie tout de suite que l'on a :

$$|f|_1 = \sup |b_{\alpha}|$$
 et $|f|_R = \sup R^{|\alpha|} \cdot |b_{\alpha}|$.

Tout revient donc à majorer les $b_{C'}$.

Supposons que la valuation v soit normée de telle sorte que v(p)=1 , et posons :

$$b(\alpha) = v(b_{\alpha})$$

$$q(\alpha) = v(\alpha!) , où \alpha! = \alpha_1! \dots \alpha_r! ...$$

LEMME. - Soit X l'ensemble des $\alpha = (\alpha_1, \dots, \alpha_r)$ tels que $\alpha_i \leq p^n - 1$ pour tout i . Soit m le minimum de $q(\alpha) + b(\alpha)$ pour $\alpha \in X$. Il existe un $\gamma \not\in X$ tel que $q(\gamma) + b(\gamma) \leq m$.

Soit X l'ensemble des $\alpha \in X$ tels que $q(\alpha) + b(\alpha) = m$, et soit α un élément de X tel que $|\alpha|$ soit minimum. Soit x l'élément de B tel que $\alpha \in X$ mod $\alpha \in X$ nod $\alpha \in$

$$\sum_{x} b_{y} P_{y}(x) = 0$$

La valuation de b P (x) est égale à b(\gamma) + v(P (x)) . Or, on sait (cf. par exemple [1]) que le polynôme Q = P / \gamma! applique $(Z_p)^r$ dans Z_p ; on a donc $v(P_y(x)) \geqslant q(\gamma)$, d'où

$$v(b_{\gamma} P_{\gamma}(x)) \geqslant q(\gamma) + b(\gamma)$$
,

l'égalité étant réalisée si et seulement si $Q_{\sqrt{x}} \neq 0 \mod p$.

Supposons d'abord que l'on ait $\gamma \in X$. La classe de $\mathbb{Q}_{\gamma}(x)$ mod p ne dépend alors que de <u>la classe de</u> x mod pⁿ (c'est là une propriété générale des polynômes d'interpolation d'une suite très bien répartie, cf. [1], p. 135, lemme 4). On a donc

$$Q_{\mathbf{v}}(\mathbf{x}) \equiv Q_{\mathbf{v}}(\alpha) \mod p$$
.

Si $\gamma_i > \alpha_i$ pour un indice i , on a $Q_{\mathbf{v}}(\alpha) = 0$, d'où

$$Q_{v}(x) \equiv 0 \mod p$$
.

Pour $\gamma = \alpha$, on a $Q_{\alpha}(\alpha) = 1$, d'où $Q_{\alpha}(x) \equiv 1 \mod p$, et

$$v(b_{\alpha} P_{\alpha}(x)) = q(\alpha) + b(\alpha) = m$$
.

Si $\gamma \in X$ est distinct de α , on a:

$$v(b_{V} P_{V}(x)) \geqslant m + 1$$
.

En effet, c'est clair si $\gamma \not\in \textbf{X}_m$, car alors $\textbf{q}(\gamma)$ + $\textbf{b}(\gamma)$ \geqslant m + 1 . Et si $\gamma \in \textbf{X}_m$,

on a $|\gamma|>|\alpha|$, et l'une des composantes $\gamma_{\rm i}$ de γ est $>\alpha_{\rm i}$, d'où

$$v(P_{\gamma}(x)) \geqslant q(\gamma) + 1$$
.

D'autre part, puisque la somme des b P(x) est nulle, il existe un $\gamma \neq \alpha$ tel que

$$v(b_{\gamma} P_{\gamma}(x)) \leqslant v(b_{\alpha} P_{\alpha}(x)) = m$$
.

Vu ce qui précède, on a γ ∉ X . D'autre part,

$$\label{eq:continuous_problem} q(\gamma) \; + \; b(\gamma) \; \leqslant \; v(b_{\gamma} \; P_{\gamma}(x)) \; \leqslant \; m \quad \text{,}$$

ce qui achève la démonstration du lemme.

Fin de la démonstration de la proposition 2. - Soit c le nombre réel < 1 tel que $x = c^{v(x)}$ pour tout $x \in k$. Ecrivons R et $|f|_R$ comme puissances de c:

$$R = c^{-k}$$
 (avec $k > 0$) et $|f|_{R} = c^{h}$.

On a alors

$$b(\alpha) \geqslant k|\alpha| + h \quad ,$$

et il nous faut prouver que $\left\|f\right\|_{\uparrow}\leqslant c^{h+kp^n}$, i. e. que

$$b(\alpha) \geqslant k \cdot p^n + h$$
.

C'est clair si $|\alpha|\geqslant p^n$. Dans le cas contraire, on a $\alpha\in X$, et le lemme cidessus montre qu'il existe $\gamma\not\in X$ tel que

$$q(\gamma) + b(\gamma) \leq q(\alpha) + b(\alpha)$$
.

On a alors:

$$b(\alpha) \geqslant b(\gamma) + q(\gamma) - q(\alpha)$$
.

Puisque $\gamma \notin X$, on a $|\gamma| \geqslant p^n$, d'où $b(\gamma) \geqslant k \centerdot p^n + h$.

D'autre part, $q(\gamma) = \sum v(\gamma_i!)$; par hypothèse, l'un des γ_i est $\geqslant p^n$, d'où

$$q(\gamma) \ge v(\gamma_1!) \ge v(p^n!) = (p^n - 1)/(p - 1)$$
.

Enfin, on a

$$q(\alpha) = \sum v(\alpha_{\underline{i}}!) \leq \sum \alpha_{\underline{i}}/(p-1) = |\alpha|/(p-1) \leq (p^n-1)/(p-1)$$

puisquion a supposé $|\alpha| < p^n$.

En combinant ces inégalités, on trouve

$$b(\alpha) \geqslant k \cdot p^n + h \quad ,$$

ce qui achève la démonstration.

BIBLIOGRAPHIE

- [1] AMICE (Yvette). Interpolation p-adique, Bull. Soc. math. France, t. 92, 1964, p. 117-180.
- [2] LANG (Serge). Nombres transcendants, Séminaire Bourbaki, 18e année, 1965/66, nº 305.
- [3] LANG (Serge). Algebraic values of meromorphic functions II, Topology (à paraître).
- [4] MAHLER (Kurt). Über transzendente p-adischen Zahlen, Compositio Mathematica, t. 2, 1935, p. 259-275.
- [5] SIEGEL (Carl Ludwig). Transcendental numbers. Princeton, Princeton University Press, 1949 (Annals of Mathematics Studies, 16).