Séminaire Choquet. InITIATION À L'ANALYSE

Richard Becker
 Some consequences of a kind of Hahn-Banach's theorem

Séminaire Choquet. Initiation à l'analyse, tome 17, n ${ }^{\circ} 1$ (1977-1978), exp. no 2, p. 1-13
http://www.numdam.org/item?id=SC_1977__17_1_A2_0

[^0]by Richard BECKER

Abstract. - The aim of this work is to give some consequences of a theorem of. H. DINGES used by li. F. SAINTE-BEUVE.

Preliminaries

1. THEORZN. - Let X be an ordered vector space, and p an extended sub-linear functional on X, such that $p(x) \in R \cup(+\infty)$ for each $x \in X$, and $p(x) \leqslant 0$ for each $X \leqslant 0$. Let Y a linear subspace of X, and f a linear form on Y majorized by p. There exists a linear form on $Z=\left\{x ; \exists x_{1}, x_{2} \in Y\right.$ with $\left.x_{1} \leqslant x \leqslant x_{2}\right\}$ which extends f and is majorized by p on Z ([5], [11]).

What is needed concerning conicalameasures ca.l be found in $[3](\S 30,38,40)$. Notation not included in [3]. In this paper, \mathcal{C} will be the class of weakly complete convex cones, not necessarily proper.
2. Summary. - Part I is devoted to conical measures. We generalize specially (proposition 12) the theorem of Cartier-Fell-Meyer ([10] p. 112) concerning dilatations of measures on a metrizable convex compact set. Positive measures on a metrizable convex compact set can be considered as conical measures on a proper convex closed cone of R^{N}. Here, we will consider arbitrary conical measures on R^{N}.

Part II (A) extends a result of STRASSEN ([8], p. 300-301), from which the theorem of Cartier-Fell-lieyer can be derived. We weaken, here, a condition of compactness (proposition 21). Part II (B) extends some results about "theory of balayage" ([8], p. 294, 297). This theory studies cones of continuous functions on a compact set containing a strictly positive function. We weaken this condition.

Part I : The case of conical measures.

I (A). Conical measures on an arbitrary weak space.
Recall the following proposition which enlightens the definition of the order < .
3. PROPOSITION. - Let E a complete weak space, and $\Gamma \subset E$ a convex cone of \mathcal{C}. For each $f \in h(E)$, such that ${ }^{f} \mid \Gamma$ is sub-linear, there exist $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \in E^{\top}$, such that we have on $\Gamma, f=\operatorname{lub}\left(l_{1}, k_{2}, \ldots, k_{n}\right)$.

Proof. - We can suppose E of finite dimension.

There exist $u_{1}, \ldots, u_{p} \in E^{\prime}$ such that, for each $x \in E, f(x)$ is equal to one of the $u_{p}(x)$. Hence, for each pair $x, y \in \Gamma$, there exist $p_{x, y}$, an integer $\leqslant p$, such that

$$
f(x)=u_{p_{x, y}}(x), \text { and } f(y) \geqslant u_{p_{x, y}}(y)
$$

For each $x \in \Gamma$, let $v_{x}=g \ell b_{y \in \Gamma}\left(u_{p_{x, y}}\right)$. The family $\left(v_{x}\right)_{x \in \Gamma}$, is finite, and we have on $\Gamma f=\operatorname{lub}_{x \in \Gamma}\left(v_{x}\right)$; as $\left(-v_{x}\right) \in S(E)$, we can conclude with the relp of the elementary form of the theorem of Hahn-Banach because dimension of $E<\infty$.
4. PROPOSITION. - If E is a complete weak space, and $\mu \in \mathbb{M}^{+}(E)$, then, for each $\ell \in E^{\prime}$ with $\& \neq 0$, the two following properties are equivalent.
$1^{0} \forall f \in h^{+}(\mathbb{E})$, we have $\mu(f)=\lim \left(\mu\left(f \wedge n \ell^{+}\right)\right)$when $n \longrightarrow \infty$.
$2^{\circ} \mathrm{B}, \sigma$-additive and positive functional on the tribe on $e=\lambda^{-1}(1)$ generated by $\left.h(E)\right|_{e}$, such that $\mu(f)=m\left(\left.f\right|_{e}\right)$, for each $f \in h(E)$.

If μ satisfies to 1° and 2°, then each $\lambda \in M^{+}(E)$, with $\lambda<\mu$, satisfies also to 1° and 2°.

Proof. 1° and 2° are equivalent on account of ([3], 38.13).
Proof that λ satisfies to 1°. Note that $h(\mathbb{E})=S^{+}(E)-S^{+}(E)$. Let $f \in S^{+}(E)$, we have

$$
0 \leqslant \lambda\left(f-f \wedge n \ell^{+}\right) \leqslant \lambda\left((f-n \ell)^{+}\right) \leqslant \mu\left((f-n \ell)^{+}\right) \longrightarrow 0 \text { when } n \longrightarrow \infty,
$$

hence

$$
\lambda(f)=\lim \left(\lambda\left(f \wedge \ell^{+}\right)\right) \text {when } n \longrightarrow \infty .
$$

5. PROPOSITION. - Suppose E is a weak space, and $\lambda, \mu \in \mathbb{M}^{+}(E)$.If $\lambda<\mu$, then, for each sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $M^{+}(E)$ such that $\lambda=\Sigma_{1}^{n} \lambda_{i}$, there exists a sequence $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of $H^{+}(E)$ such that $\mu=\sum_{1}^{n} \mu_{i}$, and $\lambda_{i}<\mu_{i}$ for $i=1,2, \ldots, n$.
Proof. - For each $f \in h(E)$, let \hat{f} such that :
$1^{0} \hat{f}=g \ell b\left(\ell ; \ell \in E^{\prime}\right.$ and $\left.\ell \geqslant f\right)$ if f is majorized by an element of E^{\prime}. (In fact, on account of [1] (chap. II, §7, exercice 24), we have $-\hat{\mathrm{f}} \in \mathrm{S}(\mathrm{E})$.) 2° Otherwise, $\hat{\mathrm{f}} \equiv+\infty$ on E .
For each $\nu \in \mathbb{M}^{+}(E)$, let p_{ν} such that :
10 If $\hat{f} \neq \infty, p_{\nu}(f)=g \ell b(\nu(g) ;-g \in S(E), g \geqslant f)$. We have $p_{\nu}(f) \in R$.
2^{0} If $\hat{\mathrm{S}} \equiv+\infty, \mathrm{p}_{\nu}(\hat{\mathrm{f}})=+\infty$.
For $i=1,2, \ldots, n$, let $p_{i}=p_{\nu_{i}}$.
On the space $(h(E))^{n}$, let us consider the functional p, such that

$$
\left(f_{i}\right)_{1 \leqslant i \leqslant n} \longmapsto p\left(\left(f_{i}\right)\right)=\sum_{1}^{n} p_{i}\left(f_{i}\right) .
$$

p is sub-linear with values in $R \cup(+\infty)$, and

$$
\left(f_{i} \leqslant 0, \text { for } i=1,2, \ldots, n\right) \Longrightarrow\left(p\left(\left(f_{i}\right)\right) \leqslant 0\right)
$$

Let $\bar{\mu}$ the linear form on the diagonal of $(h(E))^{n}$, such that

$$
\bar{\mu}((f, f, \ldots, f))=\mu(f) .
$$

$\bar{\mu}$ is majorized by p. As each element of $(h(E))^{n}$ is majorized by an element of the diagonal, we can apply the version of the theorem of Hahn-Banach recalled in 1. $\bar{\mu}$ has an extension $\tilde{\mu} \in\left(h(E)^{n}\right)_{+}^{*}$ with $\tilde{\mu} \leqslant p$. We can write $\tilde{\mu}=\left(\mu_{i}\right)_{1 \leqslant i \leqslant n}$ with $\mu_{i} \in h(E)_{+}^{*}$, for $i=1,2, \ldots, n$.
The μ_{i} are convenient.
6. PROPOSIIION. - Suppose E is a complete weak space, and $\lambda, \mu \mathbb{M}^{+}(E)$. The two following properties are equivalent.
$1^{\circ} \quad \lambda<\mu$.
2° There exists a conical measure $\pi \in M^{+}\left(M^{+}(E) \times M^{+}(E)\right)$ carried by the cone $B=\left\{\left(\varepsilon_{x}, \nu\right) ; x \in E\right.$ and $\left.\varepsilon_{x}<\nu\right\}$, such that $r(\pi)=(\lambda, \mu)$.

Proof. - For simplification, we will write sometimes M instead of $M(E)$ and M^{+}instead of $\mathrm{M}^{+}(\mathrm{E})$.
$1^{\circ} \Longrightarrow 2^{\circ}$: For each sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ satisfying the hypothesis of proposition 5 , let us choose a sequence $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ satisfying the conclusion of 5 .
We say that a sequence $s^{\prime}=\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{m}^{\prime}$ is finer than a sequence $s=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ if, and only if, there exists a partition of $\{1,2, \ldots, m\}$ into n subsets $p_{1}, p_{2}, \ldots, p_{n}$, such that $\lambda_{i}=\sum_{j \in p_{i}} \lambda_{j}^{\prime}$ for $i=1,2, \ldots, n$. Let U_{s} the set consisting of all the (finite) sequences finer than s. The family of sets U_{S} is a filter basis over $U_{(} \lambda$) where (λ) means the sequence λ. Let φ be the application

$$
s \longmapsto \varphi(s)=\pi_{s}=\Sigma_{1}^{n} \varepsilon\left(\varepsilon_{r\left(\lambda_{i}\right)}, \mu_{i}\right),
$$

we have $\pi_{S} \in \mathbb{M}^{+}\left(\mathbb{M}^{+} \times M^{+}\right)$. The family of sets $\varphi\left(U_{s}\right)$ is a filter basis over $M^{+}\left(\mathbb{M}^{+} \times \mathbb{M}^{+}\right)$. We have $r\left(\pi_{s}\right)=\sum_{1}^{n}\left(\varepsilon_{r}\left(\lambda_{i}\right), \mu_{i}\right)$.
Each element of $h(E)^{+}$is majorized by an element of $S(E)^{+}$, and for each $f \in S(E)^{+}$, we have

$$
\sum_{1}^{n}\left(\varepsilon_{r}\left(\lambda_{i}\right)\right)(f)=\sum_{1}^{n} f\left(r\left(\lambda_{i}\right)\right) \leqslant \sum_{1}^{n} \lambda_{i}(f)=\lambda(f) .
$$

Hence the filter basis $\varphi\left(U_{S}\right)$ has at least a cluster point, let π. The element π answers the question, since each π_{s} is carried by B, and we have

$$
r(\pi)=\lim \left(r\left(\pi_{s}\right)\right)=(\lambda, \mu)
$$

$2^{\circ} \Longrightarrow 1^{\circ}$: If $\pi \in M^{+}\left(M^{+} \times M^{+}\right)$with $r(\pi)=(\lambda, \mu)$, and if π is carried by B, then for each $f \in S(E)$, we have $\pi((-f, f)) \geqslant 0$, since the element $(-f, f)$
of $h(E) \times h(E *$ is $\geqslant 0$ on B. Hence we have $\lambda<\mu$.
7. Remark. - We can prove 6 with the method of [10] (p. 108) (and without the theorem of § 1) by looking at the convex closure of the set

$$
\left\{\left(\varepsilon_{x}, \nu\right) ; \quad x \in E \text { and } r(\nu)=x\right\}
$$

in M^{+}. M^{+}. Then $\S 5$ can be obtained for R^{n} as in [10] (p. 112) and in the general case by a projective limit argument.
8. Definition (of a pure pair and a pure measure). - Suppose $\lambda, \mu \in M^{+}(E)$. We say the pair (λ, μ) is pure if, ans only if,

$$
\left(\mu^{\prime} \in \mathbb{M}^{+}(E) \text { and } \mu^{\prime} \leqslant \mu, \quad \lambda<\mu^{\prime}\right) \text { involves }\left(\mu^{\prime}=\mu\right)
$$

Suppose $\lambda \in \mathbb{M}^{+}(E)$. We say that λ is pure, when the two following equivalent condition are fulfilled.
$1^{\circ}\left(\varepsilon_{r}(\lambda), \lambda\right)$ is a pure pair.
$2^{\circ} \mathrm{K}_{\lambda}$ admits 0 as an extremal point.
Proof.
$1^{\circ} \Longrightarrow 2^{\circ}$ Suppose 2^{0} is false. Let $\lambda_{1} \leqslant \lambda$, and $\lambda_{2} \leqslant \lambda$ with $r\left(\lambda_{1}\right)=-r\left(\lambda_{2}\right) \neq 0$. If $\lambda_{0}=\lambda-\left(\lambda_{1}+\lambda_{2}\right) / 2$, we have $0 \leqslant \lambda_{0} \leqslant \lambda, \lambda_{0} \neq \lambda$, and $r\left(\lambda_{0}\right)=r(\lambda)$, then $\left(\varepsilon_{r}(\lambda), \lambda\right)$ is not a pure pair.
$2^{\circ} \Longrightarrow 1^{\circ}$: Suppose $\mu \leqslant \lambda$ with $\mu \geqslant 0$ and $r(\mu)=0$. Let $\mu=\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ be any decomposition of μ where $\mu_{i} \geqslant 0$. We have $\mu_{i} \in K_{\lambda}$, and $\sum_{1 \leqslant i \leqslant n} r\left(\mu_{i}\right)=0$, hence $r\left(\mu_{i}\right)=0$ for $i=1,2, \ldots, n$. Then $\mu=0$.
9. Example. - In the cartesian product R^{2}, let a, b, c, d be the consecutive vertices of a square of center 0 . If

$$
\begin{aligned}
& \lambda=\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}+\varepsilon_{-}(c+d), \\
& \lambda_{1}=\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+\varepsilon_{d}, \\
& \lambda_{2}=\varepsilon_{c}+\varepsilon_{d}+\varepsilon_{-}(c+d), \\
& \text { we have } r\left(\lambda_{1}\right)=r\left(\lambda_{2}\right)=0, \text { and }\left(\lambda-\lambda_{1}\right),\left(\lambda-\lambda_{2}\right) \text { are pure. }
\end{aligned}
$$

10. PROPOSITION. - Suppose E is a complete weak space, and $\lambda, \mu \in M^{+}(E)$ with $\lambda<\mu$. Then, the three following properties are equivalent.

10 The pair (λ, μ) is pure.
2° For each $\pi \in \mathbb{M}^{+}\left(M^{+} \times M^{+}\right)$, representing (λ, μ) according to $\S 6$ and carried by the cone B, then the restriction π_{0} of π to the cone $A=\left\{(0, \nu) ; \nu \in \mathbb{M}^{+}(E)\right.$ and $\left.r(\nu)=0\right\}$ is equal to zero.
3° Each $\pi \in M^{+}\left(M^{+} \times M^{+}\right)$representing (λ, μ), and carried by the cone B, is carried by the cone $B_{p}=\left\{\left(\varepsilon_{x}, \nu\right) ; x \in E, r(\nu)=x, \nu\right.$ is pure $\}$.

Proof.
$1^{\circ} \Longrightarrow 2^{\circ}$: Suppose 2° is false. If π represents $\left(\lambda, \mu\right.$) with $\pi_{0} \neq 0$ (for the definition of π_{0}, see $\left.[3], 30.8\right)$, we have $r\left(\pi_{0}\right)=(0, v)$ with $\nu \neq 0$ and $r(v)=0$.
For each $f \in S(E)$, we have $(-f, f) \geqslant 0$ on B. Hence

$$
v(f)=\pi_{0}((-f, f)) \leqslant \pi((-f, f))=-\lambda(f)+\mu(f)
$$

Therefore $\lambda<\mu-\nu$, and (λ, μ) is not pure. $2^{\circ} \Longrightarrow 3^{\circ}$: We can write $\pi=\lim _{u} \sum \varepsilon\left(\varepsilon_{x}, \nu\right)$ with $\left(\varepsilon_{x}, \nu\right) \in B$ where u is an ultrafilter.
For each $\nu \in M^{+}(E)$, let us choose $p_{\nu} \in \mathbb{M}^{+}(\mathbb{E})$ such that :
(a) p_{ν} is pure,
(b) $p_{\nu} \leqslant \nu$,
(c) $k \cdot p_{\nu}=p_{k \cdot \nu}$ for any $k \geqslant 0$.

We will prove that $\pi=\lim _{u}\left(\sum \varepsilon_{(} \varepsilon_{x}, p_{\nu}\right)$.
We have

$$
(\lambda, \mu)=\left(\lambda, \lim _{u}\left(\sum_{p_{\nu}}\right)\right)+\left(0, \lim \left(\left(\nu-p_{\nu}\right)\right)\right.
$$

On account of the hypothesis, we have $\lim _{u} Z\left(\nu-p_{\nu}\right)=0$, hence $\lim _{u}\left(\sum_{\left(0, \nu-p_{\nu}\right)}\right)=0$. For each $f \in S(M \times M)$, we have

$$
f\left(\varepsilon_{x}, p_{\nu}\right)-f\left(0, p_{\nu}-\nu\right) \leqslant f\left(\varepsilon_{x}, \nu\right) \leqslant f\left(0, \nu-p_{\nu}\right)+f\left(\varepsilon_{x}, p_{\nu}\right)
$$

As we have $\left.\lim _{\mathrm{u}}\left(\sum_{i} \varepsilon_{\left(0, \nu-p_{\nu}\right.}\right)\right)=0$, then $\pi(f)=\lim _{q}\left(\sum_{f}\left(\varepsilon_{x}, p_{\nu}\right)\right)$. Therefore π is carried by B_{p}.
$3^{\circ} \Longrightarrow 1^{\circ}$: Suppose 1° is false. We have $\left.(\lambda, \pi)=r(\varepsilon, \alpha)+\varepsilon_{(0, \beta)}\right)$ with (λ, α) pure, and $(0, \beta) \in A$ with $\beta \neq 0$. Therefore $\varepsilon_{(0, \beta)}$ is not carried by B_{p}.
11. Example (G. CHOQUET). - In R^{2} suppose C_{1} and C_{p} are the circles (for the classical distance) of center 0 with radius 1 and $\rho>1$. For each $x \in C_{1}$, let $x_{1}, x_{2} \in C_{p}$ so that $\left(x_{1}, x_{2}\right)$ is tangent to C_{1} at x. Let $d x$ be the Haar measure on C_{1}. We have

$$
\int_{C_{1}}\left(\varepsilon_{x_{1}}+\varepsilon_{x_{2}}\right) d x=\rho^{\prime} \int_{C_{1}} \varepsilon_{x} d x \quad\left(\text { with } p^{\prime}>1\right)
$$

as conical measures.
The pair $\left(\varepsilon_{x}, \varepsilon_{x_{1}}+\varepsilon_{x_{2}}\right)$ is pure for each $x \in C_{1}$, but the resultant of $\int_{C_{1}} \varepsilon_{\left(\varepsilon_{x}, \varepsilon_{x_{1}}+\varepsilon_{x_{2}}\right)} d x$ is the pair $\left(\int_{C_{1}} \varepsilon_{x} d x, \rho^{\prime} \int_{C_{1}} \varepsilon_{x} d x\right)$ which is not pure since $\rho^{\prime}>1$.

$$
I(B) \text {. Conical measures on } R^{N} \text { or } R^{n} \text {. }
$$

12. PROPOSITION. - Suppose $\lambda, \mu \in M^{+}\left(R^{N}\right)$ with $\lambda<\mu$, and the pair (λ, μ) is pure. Then, there exist :
1° a K_{σ} of $\left(R^{N} \backslash 0\right)$, let X such that each half-line issued from 0 intersects X into at most one point,
2° a Radon measure Λ on X,
3° a Borel application $x \longmapsto \mu_{x} \xrightarrow{\text { defined on }} X$ where μ_{x} is a Radon measure on X such that $r\left(\mu_{x}\right)=x$.
And we have :
(a) Λ is a localization of λ (Note that Λ is unique when X is given).
(b) $\mu=\int_{X} \mu_{x} d \Lambda(x)$.

Proof (with the notations of the proof of $\S 6$). - We had

$$
\pi_{s}=\sum_{1}^{n} \varepsilon^{\varepsilon}\left(\varepsilon_{r\left(\lambda_{i}\right), \mu_{i}}\right)
$$

For each $n \in N$, let x_{n} be the function n-th coordinate on R^{N}. We have

$$
\pi_{s}\left(\left(\left|x_{p}\right|,\left|x_{p}\right|\right)\right) \leqslant \lambda\left(\left|x_{p}\right|\right)+\mu\left(\left|x_{p}\right|\right) \leqslant 2 \mu\left(\left|x_{p}\right|\right)
$$

Let ℓ be the affine $1 . \operatorname{s.c}$. function defined on $M^{+} \times M^{+}$by

$$
\ell(\alpha, \beta)=\sum_{p}\left((\alpha+\beta)\left|x_{p}\right|\right) / 2^{p+1} \mu\left(\left|x_{p}\right|\right)
$$

We have

$$
\ell\left(r\left(\pi_{s}\right)\right)=\sum_{p} \pi_{s}\left(\left|x_{p}\right|,\left|x_{p}\right|\right) / 2^{p+1} \mu\left(\left|x_{p}\right|\right) \leqslant \sum 1 / 2^{p} \leqslant 1
$$

π has a localization by a Radon measure m on a cap K of $M^{+} \times M^{+}$, with $K=\left\{(\alpha, \beta) ; \alpha, \beta \in \mathbb{M}^{+}\right.$, and $\left.\ell(\alpha, \beta) \leqslant 1\right\}$. Moreover m can be assumed to be carried by the cone B.
Let Ψ be the l. s. c. function defined on R^{N} by $\Psi(x)=\ell\left(\varepsilon_{x}, \varepsilon_{x}\right)$. For each $n \in N$, let $K_{n}=\left\{\left(\varepsilon_{x}, \alpha\right) ;\left(\varepsilon_{x}, \alpha\right) \in K\right.$, and $\left.1 /(n+1)<\Psi(x) \leqslant 1 / n\right\}$. Let m_{n} be the restriction of m to K_{n}. We have $m=\sum m_{n}$ on account of $\S 10$, since (λ, μ) is a pure pair. Let π_{n} be the conical measure on $M^{+} \times M^{+}$localized by m_{n}.
Let m_{n}^{\prime} be the Radon measure on $(n+1) K$ such that, for each continuous function f on $(n+1) K$, we have

$$
m_{n}^{\prime}(f)=\int_{K} \Psi(x) f\left(\varepsilon_{x} / \Psi(x), \alpha / \Psi(x)\right) d m_{n}\left(\varepsilon_{x}, \alpha\right)
$$

then m_{n}^{\prime} localizes π_{n}.
Suppose p is the projection on the first factor of the product $M^{+} \times M^{+}$, then $p\left(m_{n}^{1}\right)$ is carried by $\mathbb{K}=\left\{\varepsilon_{x} ; \quad x \in R^{N}\right.$ with $\left.\Psi(x)=1\right\}$. \mathbb{K} is a Borel set because Ψ is l.s.c., moreover \tilde{K} intersects each half-line issued from 0 in at most one point.
Suppose $x \longmapsto m_{x}^{n}$ is a disintegration of m_{n}^{\prime} with respect to p ([2], p. 58). Then each m_{X}^{n} has a resultant which is a conical measure ν_{X}^{n} on R^{N}, and we have $\mu\left(\nu_{x}^{n}\right)=x$.
Now $\Lambda=\sum_{n} p\left(m_{n}^{\prime}\right)$ can be seen as a Radon measure on a K_{σ} subset X_{λ} of \tilde{K}. We
can write, for each $n \in N, p\left(m_{n}^{\prime}\right)=u_{n} \Lambda$ where u_{n} is a Borel function on X_{λ}. We have $\sum_{n} u_{n}=1, \Lambda$-a.e.
Recall that Λ represents λ, and that $\mu=\sum_{n} \int \nu_{X}^{n} d\left(p\left(m_{n}^{1}\right)\right)$ (equality of conical measures), then we have $\mu=\int\left(\sum_{n} u_{n} \nu_{x}^{n}\right) d \Lambda$. Therefore $\mu_{x}=\Sigma_{n} u_{n} \nu_{x}^{n}$ exists as a conical measure Λ-a.e., and we have $r\left(\mu_{x}\right)=x$.

On account of [3] (38.8), there exists a compact subset H of R^{N} with $H=\prod_{1}^{\infty}\left(-k_{n}, k_{n}\right)$ where $k_{n}>0$, such that μ is localizable on H by a Radon measure.
For simplification we shall use the same notation for μ, and its unique ([7], prop. 2.13) localization on the set $E(H)=\{x ; x \in H, \forall k>1, k x \notin H\}$. As μ_{x} is a Daniell integril on $h\left(\mathrm{R}^{\mathrm{N}}\right)$ ([3] 38.13), and since

$$
E(H)=\left\{x ; \operatorname{lub}\left(\left|x_{n}\right| / k_{n}\right)=1\right\}
$$

then ([9] prop. II.7.1) μ_{x} can be extended to a σ-additive measure, called also μ_{x} for simplification, on the tribe \mathcal{G} of $E(H)$ generated by the closed halfspaces containing 0 . Recall we know that, for each $f \in h\left(R^{N}\right)$, the map $x \longmapsto \mu_{x}(f)$ is Borel-measurable. Then, for each $e \in G$, we have $\mu(e)=\int \mu_{x}(e) d \Lambda$. Let X_{μ} be a K_{σ} subset of $E(H)$ which bears μ. In order to show that μ_{x} lives on X_{μ} for Λ-a.e. x , it is sufficient to prove the following lemme.
13. LEMMA. - Each compact subset A of $E(H)$ is a member of τ.

Proof. - Let us suppose the sequence $\left(\omega_{n}\right)_{n \in N}$ is a basis of open subsets of R^{N}. Let Σ be the subset of N such that $n \in \Sigma$ if, and only if, there exists $h \in h^{+}(E)$, with $h=0$ on A, and $h>0$ on ω_{n}. For each $n \in \Sigma$, we choose $h_{n} \in h^{+}(E)$, with $h_{n}=0$ on A, and $h_{n}>0$ on ω_{n}. Let us show that, for each $x \notin R^{+} A$, we have $h_{n}(x)^{n}>0$ for at least one $n \in \Sigma$. For each $y \in A$, there exists $h_{y} \in E^{\prime}$ with $h_{y}(x)>0$, and $h_{y}(y)<0$. By compacity, there exists $h_{x} \in h^{+}(E)$, with $h_{x}(x)>0$, and $h_{x}=0$ on A. As the set $\left\{z ; h_{x}(z)>0\right\}$ is open, then there exists $n \in N$ such that $x \in \omega_{n}$ and $h_{x}>0$ on ω_{n}. Therefore, we have $n \in \Sigma$ and $h_{n}(x)>0$.
Now, if we let $h=l u b_{n \in \Sigma}\left(h_{n}\right)$, then we have $h=0$ on A, and $h(z)>0$ for each $z \notin R^{+} A$. Hence $A \in \mathcal{G}$.
Now, it is easy to complete the proof of $\S 12$ by a mixture of X_{λ} and X_{μ}.
14. Remark (M. F. SAINTE BEUVE [11], theorem 3). - In the case of R^{n}, we can take the unit sphere of R^{n} (for the usual distance) for X.
15. Example (Answer to a question of G. CHOQUET). - Let $d r$ be the set of Radon measures on $\left[0,1 〕\right.$, and \mathfrak{l}_{1}^{+}the subset of probability measures.
Let E the vector subspace of $T b$ generated by the Dirac probabilities, E is equiped with the weak亚*-topology. Suppose μ is the maximal measure on ${\pi_{1}^{+}}_{1}$ which represents the element $d x \in \pi_{1}^{+}$.

The measure μ and $d x$ induce, in a canonical way, elements of $M^{+}(E), \tilde{\mu}$ and $\varepsilon_{d x}$, since $E \cap \mathbb{M}_{1}^{+}$is dense in \mathbb{M}_{1}^{+}。

Let φ be the canonical injection from $\left[0,1 〕\right.$ into π_{0}, and $X=\varphi([0,1\rceil)$. We have $\varepsilon_{d x}<\tilde{\mu}$ (in fact, $\varepsilon_{d x}=\varepsilon_{r}(\tilde{\mu})$ in the weak completion of E), however $\tilde{\mu}$ has a localization on the compact subset X of E, while $\varepsilon_{d x}$ does not have such a localization.

Part II : Extension of a result of SrRASYEN and "theory of balayage".

II (A). Extension of a result of STRASSEN.

16. Notations and definitions. - Suppose X and Y are two compacts(HAUSDORFF) spaces and $x \longmapsto M_{X}$ is a mapping of X in the set of closed convex subsets of $\mathbb{K}^{+}(Y)$ (positive Radon measures on Y).
For each $f \in \mathbb{C}(Y)$ (continuous real functions on Y), we let

$$
\forall x \in X, \quad \hat{f}(x)=\operatorname{lub}_{v \in \mathbb{M}}(\nu(f))
$$

we have $\hat{f}(x) \in \bar{R}$, and $(\hat{f}(x)=-\infty) \Longleftrightarrow\left(H_{x}=\varnothing\right)$.
The map $f \longmapsto \hat{f}$ has been previously considered by P.-A. MEYER ([8], p. 301). Suppose $\lambda \in \mathbb{m}^{+}(X)$. For each function φ on X with vialues in \vec{R}, we let

$$
\lambda^{*}(\varphi)=\operatorname{g\ell b}(\lambda(u) ; u \geqslant \varphi, u \text { l.s. c. on } X \text {, with values in } R \cup(+\infty)) \text {. }
$$

We have $\lambda^{*}(\varphi) \in \overline{\mathrm{R}}$.
If $\lambda \in{\pi^{+}}^{+}(X)$ and $\mu \in \mathcal{H}^{+}(Y)$, we write $\lambda<\mu$ if, and only if, for each $f \in \mathcal{C}(Y)$, we have $\mu(f) \leqslant \lambda^{*}(\hat{f})$. We let $p_{\lambda}(f)=\lambda^{*}(\hat{f})$.
17. PROPOSITION. - Suppose $\lambda \in \mathcal{H}^{+}(X)$ and $\mu \in \pi^{+}(Y)$ with $\lambda<\mu$. For each se . quence $\lambda_{1}, \ldots, \lambda_{n}$, such that $\lambda=\lambda_{1}+\ldots+\lambda_{n}$ with $\lambda_{i} \geqslant 0$, there exists a sequence μ_{1}, \cdots, μ_{n} with $\mu_{i} \geqslant 0$, such that $\mu=\mu_{1}+\ldots+\mu_{n}$, and $\lambda_{i}<\mu_{i}$ for $i=1,2, \ldots, n$.

Proof. - Let 1 be the constant function equal to 1 on Y. We have $\lambda^{*}(-1) \geqslant \mu(-1)>-\infty$. Hence, for each $f \in C(Y)$, we have

$$
\lambda_{i}(\hat{f}) \in R \cup(+\infty) \text { for } i=1,2, \ldots, n,
$$

then we can use the same proof than in proposition 5.
18. PROPOSITION. - We let $H=\left\{\left(\varepsilon_{x}, \nu\right) ; \quad x \in X, \nu \in M_{x}\right\}$. If $\lambda \in \operatorname{mit}^{+}(X)$ and $\mu \in \pi^{+}(Y)$, the two following properties are equivalent
$1^{0}(\lambda, \mu) \in \overline{\operatorname{conv}\left(R^{+} H\right)}$ in $\pi^{+}(X) \cdot \pi^{+}(Y)$ equiped with the weak- x-topology.
2° For each $f \in C(Y)$, we have

$$
\mu(f) \leqslant g \ell b(\lambda(g) ; g \in C(X) \text { and } \hat{f} \leqslant g)
$$

Proof. - We apply the theorem of Hahn-Banach.
Suppose $g \in \mathbb{C}(X)$ and $f \in \mathbb{C}(Y)$. Then ($g,-f$) is in the polar of H if, and only if, $\hat{f} \leqslant g$.
$1^{\circ} \Longrightarrow 2^{\circ}$: If $f \in \mathbb{C}(Y)$, we have $\lambda(g) \geqslant \mu(f)$ for each $g \in \mathbb{C}(X)$ with $\hat{\mathrm{I}} \leqslant \mathrm{g}$, hence 2° is fulfilled.
$2^{\circ} \Longrightarrow 1^{0}$: For each $g \in \mathcal{C}(X)$ and each $f \in \mathcal{C}(Y)$ with $\hat{f} \leqslant g$, we have, on account of $2^{\circ}, \mu(f) \leqslant \lambda(g)$. Hence 1° is fulfilled on account of the bipolar theorem.
19. Definition of the relation \ll. - If $\lambda \in \operatorname{mit}^{+}(\mathrm{X})$, proposition 18 invites us to let, for each $f \in \mathcal{C}(Y)$

$$
q_{\lambda}(f)=g \ell b(\lambda(g) ; g \in \mathbb{C}(X) \text { and } g \geqslant \hat{f}) .
$$

Note we have $p_{\lambda} \leqslant q_{\lambda}$. Moreover, if H is a closed subset of $\pi^{+}(X) \times \pi^{+}(Y)$, then we have $p_{\lambda}(-1(y))=q_{\lambda}(-1(y))$ because $-\hat{1}(y)$ is negative, and u. s. c. If $\mu \in \operatorname{Hit}^{+}(Y)$, we write $\lambda \ll \mu$ if, and only if, $\mu<q_{\lambda}$. We have

$$
(\lambda<\mu) \Longrightarrow(\lambda \ll \mu) .
$$

Of course, we can prove the analogous of proposition 17 for the relation \ll Note, in the case, study by P.-A. MEYER ([8] p. 302) (i. e. H is compact), $\hat{\mathrm{f}}$ is u. s. c. so that $\hat{f}=g \ell b(g ; g \in \mathbb{C}(X), g \geqslant \hat{f})$. Hence $p_{\lambda}=q_{\lambda}$.
20. PROPOSITION. - Suppose $\overline{\mathrm{K}}$ is the closure, in $\pi^{+}(\mathrm{X}) \times \pi^{+}(\mathrm{Y})$, equiped with the weak-**-topology, of the set

$$
K=\left\{\left(\varepsilon_{x} /\left(1+\nu_{x}(1)\right), \nu_{x} /\left(1+\nu_{x}(1)\right)\right) ; x \in X, \quad \nu_{x} \in M_{x}\right\}
$$

If $\lambda \in \pi^{t^{+}}(X)$ and $\mu \in \pi^{+}(Y)$, the two following properties are equivalent :
10 $\lambda \ll \mu$,
2° There exists a positive Radon measure π on the compact set \bar{K} such that $r(\pi)=(\lambda, \mu)$.

Proof.

$1^{0} \Longrightarrow 2^{0}$: Each element u of $\operatorname{conv}\left(R^{+} H\right)$ can be written $u=\sum_{x \in X} k_{x}^{u}\left(\varepsilon_{x}, \nu_{x}^{u}\right)$ where the k_{x}^{u} are unique, positive, and equal to 0 except for a finite number of $x \in X$. We have $\nu_{x}^{u} \in M_{x}$.
On account of § 18, there exists an ultrafilter \mathcal{U} on $\operatorname{conv}\left(R^{+} H\right)$ such that $\lim _{u}(u)=(\lambda, \mu)$.
u is the resultant of the following conical measure π_{u} on $\pi^{+}(X) \times \pi^{+}(Y)$ with $\pi_{u}=\sum_{x \in X} a_{x}^{u}{ }^{\varepsilon}\left(\left(b_{x}^{u}, c_{x}^{u}\right)\right)$ where

$$
a_{x}^{u}=\left(1+\nu_{x}^{u}(1)\right) k_{x}^{u}, \quad b_{x}^{u}=\varepsilon_{x} /\left(1+\nu_{x}^{u}(1)\right)
$$

and

$$
c_{x}^{u}=\nu_{x}^{u} /\left(1+\nu_{x}^{u}(1)\right) .
$$

π_{u} can be also seen as a positive Radon measure on \bar{K}.
We have $\lim _{u}\left(\pi_{u}(1)\right)=\lambda(1)+\mu(1)$. Hence $\lim _{u}\left(\pi_{u}\right)$ exists as a positive Radon measure π on \bar{K} and $r(\pi)=(\lambda, \mu)$.
$2^{\circ} \Longrightarrow 1^{\circ}$: Each discrete positive Radon measure on K can be written

$$
m=\sum_{p \in K} a_{p}^{m}\left(\left(b_{p}^{m}, c_{p}^{m}\right)\right) \text { where }\left(b_{p}^{m}, c_{p}^{m}\right) \in K, \quad a_{p}^{m} \geqslant 0 \text { and } a_{p}^{m}=0
$$

except for a finite number of $p \in K$.
There exists an ultrafilter U on the discrete positive measures on K such that $\lim _{q}(m)=\pi$.
If $g \in \mathcal{C}(X)$ and $f \in \mathbb{C}(Y)$ with $g \geqslant \hat{f}$, we have

$$
\lambda(g)=\lim _{q}\left(\sum_{p \in K} a_{p}^{m} b_{p}^{m}(1) g\left(b_{p}^{m} / b_{p}^{m}(1)\right)\right)
$$

and

$$
\mu(f)=\lim _{u}\left(\sum_{p \in K} a_{p}^{m} c_{p}^{m}(f) .\right.
$$

As $g \geqslant \hat{f}$, we have $b_{p}^{m}(1) g\left(b_{p}^{m} / b_{p}^{m}(1)\right) \geqslant c_{p}^{m}(f)$, hence $\lambda(g)>\mu(f)$.
21. PROPOSITION (Extension of a result of STRASSEN [8], p. 302). - Suppose moreover that X and Y are metrizable, and that H is a closed subset of $\pi t^{+}(X) \times \pi^{+}(Y)$ equiped with the weak-*-topology. If $\lambda \in \pi_{t^{+}}(X)$ and $\mu \in \pi_{t^{+}}(Y)$ with $\lambda \ll \mu$, then, there exists a Borel mapping $x \longmapsto \nu_{x}$ defined on X such that $\nu_{x} \in M_{x} \lambda-a . e .$, and $\mu \geqslant \int \nu_{x} d \lambda(x)$, and $0 \ll \mu-\int \nu_{x} d \lambda(x)$.
Proof. - Note that $\left\{x ; M_{x}=\varnothing\right\}$ is a $G_{\delta} \lambda$-null subset of X since $\lambda(-\hat{1}(\mathrm{y})) \geqslant \mu(-1(\mathrm{y}))>-\infty$. We shall use the notations of the proof of $\delta .20$. Suppose v is the projection of $\pi^{+}(X) \times \pi^{+}(Y)$ on $\pi^{+}(X)$. We have $v(\pi)=\lambda$ as conical measures on $\pi_{0}^{+}(X)$. Let $A_{0}=\left\{(0, \beta) ; \beta \in \pi_{1}^{+}(Y)\right\}$, and π_{0} the part of π carried by A_{0}.
Let $\pi^{2}=\pi-\pi_{0}$.
Suppose $\pi^{\prime}=\pi_{1}^{\prime}+\ldots+\pi_{n}^{\prime}+\ldots$ is a decomposition of π^{\prime} such that, for each n, π_{n}^{2} lives on $A_{n}=\left\{(\alpha, \beta) ; \alpha \in \mu_{l^{+}}(X), \beta \in \pi^{+}(Y)\right.$ and $\left.\alpha(1) \geqslant 1 / n\right\}$. Let $\pi_{n}^{\prime \prime}$ the Radon measure on $(1, n) \bar{K}$ such that, for each $f \in \mathbb{C}((1, n) \bar{K})$, we have

$$
\pi_{n}^{\prime \prime}(f)=\int \alpha(1) f(\alpha / \alpha(1), \beta / \alpha(1)) d \pi_{n}^{\prime}(\alpha, \beta)
$$

π_{n}^{1} and $\pi_{n}^{\prime \prime}$ induce the same conical measure on $\pi_{t^{+}}(X) \times \pi_{t^{+}}(Y)$. Then $v\left(\pi_{n}^{\prime \prime \prime}\right)$ is carried by $\left\{\varepsilon_{x}, x \in X\right\}$; the image of λ by the map $x \longmapsto \varepsilon_{X}$ of X into $j_{i}^{+}(x)$ is $\sum_{n} v\left(\pi_{n}^{\prime \prime}\right)$. If $\varepsilon_{x} \longrightarrow \nu_{x}^{n}$ is a disintegration ([2], $p \cdot 58$) of $\pi_{n}^{\prime \prime \prime}$ with respect to v, then, for each n, we have $v\left(\pi_{n}^{\prime \prime}\right)$-a.e., that v_{x}^{n} lives on the set $\left\{\left(\varepsilon_{x}, \nu\right) ; \nu \in M_{x}\right.$ and $\left.v(1) \leqslant n\right\}$, let $\nu_{x}^{n} \in M_{x}$ such that

$$
r\left(\varepsilon_{\varepsilon_{W}} \otimes \pi_{x}^{n}\right)=\left(\varepsilon_{x}, \nu_{x}^{n}\right)
$$

For each $x \in X$, we identify x and ε_{x}. Let $\mu_{0} \in \operatorname{RH}^{+}(Y)$ be such that $\left(0, \mu_{0}\right)=r\left(\pi_{0}\right)$. We have $\lambda=\sum_{n} v\left(\pi_{n}^{\prime \prime}\right)$ and $\mu-\mu_{0}=\sum_{n} \nu_{x}^{n} d v\left(\pi_{n}^{\prime \prime}\right)$.

If we let $\nu_{x}=\sum_{n} \nu_{x}^{n}\left(d v\left(\pi_{n}^{\prime \prime}\right) / d \lambda\right)$, then, we have $\nu_{x} \in M_{x}$, $\lambda-a . e$. and $\mu-\mu_{0}=\int \nu_{x}^{x} d \lambda(x) \cdot$ As π_{0} is carried by A_{0}, we have $0 \ll \mu_{0}$.
22. Remark. - Strietly speaking, in [8] (chap. 11), Strassen theorem is T51 which admits T52 as a consequence, but T51 can be also derived from T52. We sketch a proof, with the notations of [8]. Suppose E_{1}^{\prime} is the unit ball of Et equiped with the weak-艹-topology. For each $\omega \in \Omega$, let P_{ω} be the set

$$
\left\{y ; y \in \mathbb{E}^{\prime}, \quad y \leqslant p_{\omega}\right\}
$$

We suppoise $P_{\omega} \subset E_{1}^{\prime}$. Let $M_{\omega}=\left\{\nu ; \quad \nu \in \operatorname{Hit}_{1}^{+}\left(E_{1}^{\prime}\right), \quad r(\nu) \in P_{\omega}\right\}$. Now, suppose $\left(x_{n}\right)$ is a sequence of E everywhere norm-dense in the unit ball E_{1} of E. Let φ be the map $\Omega \longmapsto[-1,1]^{N}$ such that $(\varphi(\omega))_{n}=p_{\omega}\left(x_{n}\right)$. We let $X=\overline{\varphi(\Omega)}$ and $\Lambda=\varphi(\lambda)$, which is a regular Borel measure on X^{ω} ([9] prop. II7.2). For each $t=\left(t_{n}\right)$ in X, because of $[8]$ ($p .300$ footnote), there exists a sublinear form p_{t} on E such that $p_{t}\left(x_{n}\right)=t_{n}$, for each n, and $p_{t}\left(E_{1}\right) \in(-1,1)$. Then the definition of P_{t} and M_{t} (given for $t=p_{\omega}$) are meaningfull, and the set $\left\{(t, \nu) ; \quad t \in X, \nu \in \mathbb{M}_{t}\right\}$ is a compact subset of $X \times \|_{1}^{+}\left(E_{1}^{\prime}\right)$. Now it is sufficient to apply $T 52$ to X and measure Λ, with $Y=E_{1}^{:}$using the $\operatorname{map} X \longmapsto \rho\left(H_{1}^{+}(Y)\right)$ defined by $t \longmapsto M_{t}$, and taking for μ an extension of x^{\prime} to $C(Y)$ such that, for each $f \in C(Y), \mu(f) \leqslant \Lambda(\hat{f})$, then T51 follows since in X , $\varphi(\Omega)$ is of Λ-outer measure equal to $\Lambda(1)$.

II (B). Theory of balayage.

23. Notations. - Suppose X is a compact (HAUSDORFF) space, Γ a convex subcone of $\mathcal{C}(X)$ which is an inf-lattice (i.e.if $f, g \in \Gamma$, then $g b(f, g) \in \Gamma$), and Γ^{0} is the polar of Γ in $\pi_{6}(X)$.
Using the previous notations, we take $Y=X$,

Note that we do not suppose as in [8] (p. 294-297) that Γ contains a strictly positive function.
24. Definition (of f_{Γ} and r_{λ}). - For each $f \in C(X)$, we let

$$
f_{\Gamma}=g \ell b(g ; \quad g \in \Gamma \text { and } g \geqslant f)
$$

and for each $\lambda \in{\pi^{+}}^{+}(X)$, we let $r_{\lambda}(f)=\lambda\left(f_{\Gamma}\right) \cdot r_{\lambda}$ is a sublinear functional on $\mathcal{C}(X)$, with values in $R \cup(+\infty)$, and we have $p_{\lambda} \leqslant q_{\lambda} \leqslant r_{\lambda}$.
25. PROPOSITION (Extension of a balayage formula of HOKOBODZKI [8] chap 11 T45): For each $f \in C(X)$ with $f<0$, we have $f_{\Gamma}=\hat{f}$. Moreover the following properties are equivalent :

10 There is no element >0 in Γ,
$2^{\circ} \hat{1} \equiv+\infty$ everywhere on X,
$30 \hat{1}$ is equal to infinity in at least one point of X,
$4^{\circ} 1$ is unbounded on X.
Proof. - Let us prove that $f_{\Gamma}=\hat{f}$ for each $f<0$ of $C(X)$.
If $\lambda \in J^{+}(X)$, because of the theorem of Hahn-Banach recalled in § 1 , for each $\left.k \in J_{-} r_{\lambda}(-f), r_{\lambda}(f)\right]$, there exists $\mu_{k} \in J^{+}(X)$ with $\mu_{k}(f)=k$ and $\mu_{k} \leqslant r_{\lambda}$. It suffices now to take $\lambda=\varepsilon_{x}$ and $k=f_{\Gamma}(x)=r_{\varepsilon_{x}}(f)$. Now $1^{0} \Longrightarrow 2^{\circ}$ can be proved in the same way, and we see that $4^{\circ} \Longrightarrow 1^{\circ}$. X
26. PROPOSITION.
(a) Suppose f is an u. s. c. function <0 on X. We have $f_{\Gamma}=\hat{f}$ (the definition of \hat{f} is as in $\S 16$ and that of f_{Γ} as in § 24).
(b) If (f_{i}) is a family of u. s. c. functions <0 on X, directed downward, having a limit f, we have $\left(f_{i}\right) \rightarrow f_{\Gamma}$.

Proof.
(a) can be proved as in [7] (prop. 5.6) because it is enough to work, for each $x \in X$, on a compact subset of M_{X}.
(b) can be proved as in [7] (prop. 5.6).

Proposition 25 enables us to give a balayage proof of the following result of CHO QUET-DENY [4].
27. PROPOSITION. - Suppose Γ is a closed convex subcone of $e^{-}(X)$ which is an inf-lattice and contains - 1 . If we let

$$
\begin{aligned}
& \hat{\Gamma}=\left\{f ; \quad f \in \mathbb{C}^{-}(X) \quad \text { with } m(f)\right. \leqslant f(x), \\
& \forall x \in X, \quad \forall m \in d^{+}(X) \quad \text { with } m|\Gamma \leqslant \varepsilon| \Gamma
\end{aligned}
$$

then we have $\Gamma=\hat{\Gamma}$.
Proof. - $\hat{\Gamma}$ is a closed convex subcone of $\mathcal{C}^{-}(X)$ which is an inf-lattice and $\Gamma \subset \hat{\Gamma}$. For each $f \in \mathbb{C}(X)$ such that $f<0$, we have, because of 25 , $f_{\Gamma}(x)=\operatorname{lub}_{V \in M_{X}}(\nu(f))$, and we see that $f_{\hat{\Gamma}}(x)=\operatorname{lub}_{\mathcal{L}}\left(M_{X}(\nu(f))\right.$, hence $f_{\Gamma}=f_{\hat{\Gamma}}$. Therefore, by Dini lemma, we have $f=f_{\Gamma}$ if, and only if, $f \in \Gamma$ and $f=f_{\Gamma}$ if, and only if, $f \in \hat{\Gamma}$, hence $\Gamma \cap\{f<0\}=\hat{\Gamma} \cap\{f<0\}$. Then $\Gamma=\hat{\Gamma}$, since Γ and $\hat{\Gamma}$ are the closure of $\Gamma \cap\{f<0\}$ and $\hat{\Gamma} \cap\{f<0\}$.
28. Remark. - Suppose Γ is separating. Then we can apply to Γ the theorem 48 of [8] (chap. 11) about the Silov compacts. It is enough to apply [8] (chap. 11, th. 48) to the cone $\Gamma_{1}=\{f ; f=g+a$ with $g \in \Gamma$ and $a \geqslant 0\}$ which is an inf-lattice.
[1] BOURBAKI (iv.). - Espaces vectoriels topologiques. Chap. 1 et 2. - Paris, Hermann, 1953 (Act. scient. et ind., 1189 ; Bourbaki, 15).
[2] BOURBAKI (IT.). - Intégration. Chap. 6. - Paris, Hermann, 1959 (Act. scient. et ind., 1281 ; Bourbaki, 25).
[3] CHOQUET (G.). - Lectures on analysis. 3 volumes. - New York, W. A. Benjamin, 1969 (hathematics Lecture Note Series).
[4] CHOQUET (G.) and DEIVY (J.). - Ensenbles semi-réticulés et ensembles réticulés de fonctions continues, J. Math. pures et appl., ge série, t. 36, 1957, p. 179-189.
[5] DINGES (H.). - Decompasition in ordered semi-groups, J. funct. Analysis, t. 5, 1970, p. 436-483.
[6] GOULLET de RUGY (A.). - Géométrie dessimplezes. - Paris C.D.U. et S.E.D.E.S., 1968.
[7] GOULLET de RUGY (A.). - La théorie des cônes biréticulés, Ann. Inst. Fourier, Grenoble, t. 21, 1971, fasc. 4, p. 1-64.
[8] MEYER (P.-A.). - Probabilités et potentiel. - Paris, Hermann, 1966 (Act. scien scient. et ind., 1318 ; Publ. Inst. Math. Univ. Strasbourg, 14).
[9] NEVEU (J.). - Bases mathematiques du calcul deis probabilités. - Paris, Masson, 1964.
[10] PHELPS (R. R.). - Lectures on Choquet's theorem. - Princeton, D. Van Nostrand Company, 1966 (Van Nostrand mathematical Studies, 7).
[11] SAINTE-BEUVE (M. F.). - Sur une relation d'ordre entre mesures positives sur S^{n}, Séminaire d'Analyse convexe, Hontpellier, 1976, $n^{\circ} 4$.

Richard BECKER
Equipe d'Analyse, Tour 46
Université Pierre et Miarie Curie
4 place Jussieu
75230 PARIS CEDEX 05

[^0]: © Séminaire Choquet. Initiation à l'analyse
 (Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.
 L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

