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2-01

SOME CONSEQUENCES OF A KIND OF HAHN-BANACH’S THEOREM

by Richard BECKER

Seminaire CROQUET
(Initiation a 1’Analyse~
17e annee, 1977/78, n° 2, 13 p. 10 novembre 1977

Abstract. - The aim of this work is to give some consequences of a theorem of.
H. DINGES used by M. F. SAINTE-BEUVE.

Preliminaries

1. THEOREM. - Let X be an ordered vector space, and p an extended sub-linear

functional on X, such that p(x) E R u (+ ~) for each xeX , and p(x) ,~ 0 for

each x $ 0 . Let Y a linear subspace of X , and f a linear form on Y majo-

rized by p . There exists a linear form on Z = (x ; 3 x. , Y with

which extends f and is majorized by p on Z 

What is needed concerning conical;:tmeasures can be found in [3] ( § 30, 38, 40).
Notation not included in [3]. In this paper, C will be the class of weakly com-

plete convex cones, not necessarily proper.

2. Summary. - Part I is devoted to conical measures. We generalize specially

(proposition 12) the theorem of Cartier-Fell-Meyer ([10] p. 112) concerning dilata-
tions of measures on a metrizable convex compact set. Positive measures on a metri-

zable convex compact set can be considered as conical measures on a proper convex

closed cone of RN . Here, we will consider arbitrary conical measures on 

Part II (A) extends a result of STRASSEN ([8], p. 300-301), from which the theo-
rem of Cartier-Fell-Heyer can be derived. We weaken, here, a condition of compact-
ness (proposition 2I). Part II (B) extends some results about "theory of balayage"
(C 8~~ p. 294, 297). This theory studies cones of continuous functions on a compact
set containing a strictly positive function, We weaken this condition.

Part I : The case of conical measures.

I (A). Conical measures on an arbitrar weak s ace.

Recall the following proposition which enlightens the definition of the order .

3. PROPOSITION. - Let E a complete T~~eak space, and r C E a convex cone of c .

For each f E h(E), such that f|0393 is sub-linear, there 

such that we have on r, f= lub(;~ , ,~ , , .. , ,~ ) ,
Proof. - We can suppose E of finite dimension.



T here exist u ~ ". , u p 
E E’ such that, for each x E E , is equal to

one of the u (x~ . 1 Hence, for each pair x , y E r , there exist p 
x~Y 

, an inte-

ger  p , such that

For each x e F , let v~ = ) . The family is finite, and

we have on r f = ?as (-v ) e s(E) ~ we can conclude with the help of
the elementary form of the theorem of Hahn-Banach because dimension of E : co .

4. PROPOSITION. - If E is a complete weak space, ,and jj, = M+(E) , then, for
each l e E’ with l ~ 0 , the two following properties are equivalent.

2° 3 m, a-additive and positive functional on the tribe on e - ~-~’( 1 gene-

rated by h(E)t~ , such that w(f~ _ m(f ~ , for each 

If  satisfies to 1° and 2°, then with X ~ ~, , satisfies

also to 1° and 2°.

Proof .1. ° and 2° are equivalent on account of ([3], 38.13).
Proof that ~ satisfies to 1 ° . Note that h(E) = S+(E) - S+ E . Let ’ f E S+(E) ,
we have

5. PROPOSITION. - Suppose E is a weak space9 and E M+(E) .If 03BB~  , then,
for each sequence 03BB1 , 03BB2 , ... , 03BBn of M+(E) such that 03BB = 03A3n1 03BBj , there

exists a sequence 1 , 2 , ... , of such that > = 03A3n1 i , and

03BBi ~ i for i = 1 , 2 , ... , n .

Proof. - For each f E h( E) , let f such that :

f = ~ E E’ and £ % f) if f is majorized by an element of E’ .

( In fact, on account ( chap. II, § 7, exerc ice 24), we have - f E S ( E .
2° Otherwise, f = + ~ on E.

For each v E hI+(E) , let p 
v 

such that : . 

.

For i=1 ~ 2,~... , n, let p, =p .
1 v.

On the space (h(E~~ ~ let us consider the functional p , such that



p is sub-linear with values in R u (+00) ~ and

Let $ the linear form on the diagonal of (h(E)~n , such that

Q is majorized by p. As each element of is majorized by an element of

the diagonal, ~~e can apply the version of the theorem of Hahn-Banach recalled in 1,

w has an extension G E (h(E ~n~’~ p . ~e can write G = ( ~,, ~ , with

~ h(E)*+ , for 2, ... , n. 

1 ’ ’

The i are convenient.

. 6. Su ose E is a complete weak space, and X ,  M+(E) . The
two following properties are equivalent.

1° ?t~~,.

2° There exists a conical measure r~ E r~+(M+(E~ x ~~I+(E~ ~ carried by the cone
B = , v) ; x E E and E  such that ( ~ , i~~ , .

x x

Proof. - For simplification, we will write sometimes M instead of and

M~ instead of M+(E~ ,
1° ~ 2° : For each sequence ~~ , ~~ , ..~, ~ h n satisfying the hypothesis of

proposition 5, let us choose a sequence ~,~ , ~,2 , , " ~ ~ satisfying the conclu-
sion of 5. -

~~e say sequence s’ ~ ~,s 2 t , , , ~ ~,1 m is finer sequence
s = h2 , ... , n if, and only if, there exists a partition of ~1, 2~ ... ,m~

subsets p , , , . , 2 ’ such that ~ t for i = 1 ~ 2, ... ~ n .

Let Us the set consisting of all the (finite) sequences finer than s , The fa-

mily of sets Us is a filter basis over U where (03BB) means the sequence x .

Let 03C6 be the application

we have rts E x M+) . The family of sets is a filter basis over

x I~I+ ~ . We have r ( rrs ~ _ I[ ( E~(~ ~ ’ lb. ) .

i 
i

Each element of h(E)+ is majorized by an element of S(E)+ , and for each

f E S ( E)+ , we h.ave

Hence the filter basis has at least a cluster point, let n . The element
TT answers the question, since each 03C0s is carried by B , and we have

r(n) = (B , p,) .
2o ==~lo, If with r(n) = (B , ~), and if n is carried by B,
then for each f e S(E) , we have rr((- f , f)) ~ 0 , since the element (- f , f)



of h(E) x h(E~ is > ~ on B . Hence we have ~ ~ 1 .

7. Remark. - We can prove 6 with the method of [10] (p. 108) (and without the
theorem of § 1) by looking at the convex closure of the set

in M .M . Then § 5 can be obtained for Rn as in [10] (p. 112) and in the gene-
ral case by a projective limit argument.

8. Definition (of a pure pair and a pure 
say the pair ( h , ~,~ is pure if, ans only if,

Suppose B e M (E) . We say that ~ is pure, when the two following equivalent
condition are fulfilled.

1° (~C~ ~ ~) is a pure pair.

2o K. admits 0 as an extremal point.

Proof.

1° ~ 2°: Suppose 2° is false. and 03BB2  X with r(03BB1) = - 
If ~== X- (~+ B~)/2 , have 0 ~ X ~~ ~ B ~ X , and r(~) =r(B) , then
(e /.x ~ X) is not a pure pair.
2o ==~io: Suppose ~~~ with ~~0 and r(~) == 0 . Let + ~ + ... 

be any decomposition of  where ~. ~0 . We have ~. r(~.)=0,
hence =0 for i = 1 , 2 , ... , n . Then ~=0 . 

’ ’ 1

9. Example. - In the cartesian product R ? y let a, b , c , d be the consecu-

tive vertices of a square of center 0 . If

we have r(~) =r(~)= 0 , and (~-X) , (B- B) are pure.

10. PROPOSITION. - Suppose E is a complete weak space, and X ~ ~ with

03BB   . Then, the three following properties are equivalent.

1~ The pair (B , ~) is pure.

2° For each n x M ) ~ representing (~ ~ according to § 6 and car-
ried by the cone B , then the restriction ~ of rr to the cone

A = v) ; ~ and r(v) = 0) is equal to zero.

3° Each n e x M~) representing (~ ~) ~ and carried by the cone B, is
carried by the cone ((~ , v) ; x E E, r(~)=x , ~ is ure) .

Proof.



1° 2014~ 2° : Suppose 2° is false. If n represents ( ~. , ~,~ with ~r 0 7~ 0 (for the
definition see ~3~, 30.8), we have (0 , v) with v ~ 0 and

r(v) = 0 .
For each we have ( - f , f ~ ~ 0 on B . Hence

Therefore X   - 03BD , and (03BB , ) is not pure.

2° ~ 3°: We can write n= lim I&#x26;/ ~x , 03BD) 
with (~x , 03BD) ~ B where U is an

ultrafilter.

For each B~ e M (E) , let us choose p ~ such that :

(a) p03BD is pure ,

(b) P~~~ ~ .

(c) p~~ for any k ~0 .

We will prove that n = lim.,(I LL e/ ~6 , P ; B) .We have 
" 

On account of the hypothesis, we have limu 03A3(03BD - p ) = 0 , hence

B~ 
B)=0 .For each f==s(Mx M) , we have

As we have ~) = 0 , then n(f) = f(e y P )) . Therefore n

is carried by B . 
"

3~ =====~ Suppose 10 is false. We have (B ~ n) = r(e/. x + e/.. ~x) with (X , c~
pure~ and (0 , g) e A with P ~ 0 . Therefore e/~ gB is not carried by B .

11. Example (G. CHOQPET). - In R suppose C and C are the circles (for
the classical distance) of center 0 with radius 1 and p > 1 . For each x ~ C ~
let x~ ~ x~ so that (x~ , x~) is tangent to C Let dx be the

Haar measure on C.. We have

as conical measures.

The e + e ) is pure for C, . 
but the resultant of

C1 ~(~x , ~x1 + ~x2) 
dx is the pair (C1 ~x dx , 03C1’ C1 ~x dx) which is not pure

since p’ >1 . 
’

I R or R~ ~

12. PROPOSITION. - Suppose ~, ~~ with ~~ , and the pair (B , ~)
is pure. Then, there exist :



K of let X such that each half-line issued from 0 inter-

sects X into at most one point,

2~ a Radon measure A on X,

3° a Borel application x 2014~ ~ defined on X where ~ 
x 

is a Radon measure on

X such that r((i ) = x .
And we have :

(a) A is a localization of 03BB (Note that A is unique when X is given).

Proof (with the notations of the proof of § 6). - We had 
’

For each n E N ’ let x 
n 

be the function n-th coordinate on RN . We have

Let £ be the affine 1. s. c. function defined on M+ x by

n has a localization by a Radon measure m on a cap K of M+ x M+ ~ with
K = {(03B1 , 03B2 ) ; 03B1 , 03B2 E M+ , and l(03B1 , 03B2)  1 } . Moreover m can be assumed to be

carried by the cone B.

Let Y be the 1. s, c, function defined on RN by ’~ x _ ~ E £ ) . For eachY ~ ) ( 
x 

~ 
x 

)
n E N , let K = ~( ~ , a) ; ( E , ~) E K , and + 1)  ’Y(x)  1~n3 . Letn x x

mn be the restriction of m to K . We have on account of § 10 ,n n n

since (03BB , ) is a pure pair. Let rr be the conical measure on M+ x M+ loca-
n

li zed by m .
Let mn be the Radon measure on (n + 1)K such that, for each continuous function
f on (n + 1)K , we have

then m’ localizes rr .

Suppose p is the projection on the first factor of the product M+ x M+ , then
p(m’n) is carried by = {~x ; x ~ RN with 03C8(x) = 1 } .  is a Borel set be-

cause 03C8 is 1. s, c., moreover intersects each half-line issued from 0 in

at most one point.

Suppose x ~ mn is a disintegration of with respect to p ~C 2 ~~p . 58).
Then each mn has a resultant which is a conical measure vn on R , and we have

= x . 

x x , we

Now A = 03A3np(m’n) can be seen as a Radon measure on a K03C3 subset X. of K . We



can write, for each n E N, u 
n 

A where u 
n 

is a Borel function on X, .
We have ~ u - 1, A-a.e. 

n n 

J 
n ~ A

Recall that A represents 03BB , and that  = 03A3n  03BDnx d (p(m’n)) (equality of coni-

cal measures), then we have  = 
n 

u 
n 

dA . Therefore x = 03A3n un 03BDnx exists

as a conical measure A-a.e., and we have r( x) = x .
On account of [3] (38.8), there exists a compact subset H of RN with

H = kn, kn) where k > 0 , such that is localizable on H by a Radon
measure.

For simplif ication we shall use the same notation for ~, , and its unique ~~ 7 ~ 9
prop. 2.13) localization on the set E(H) = (x ; x E H , V k > 1, kx i H~ .
As  x is a Daniell integral on ([3] 38.13)~ and since

then ([9] prop. 11.7.1) p. can be extended to a 0-additive measure, called also

x for simplification, on the tribe S of E(s) generated by the closed half-

spaces containing 0 . Recall we know that, for each f e h(RN) , the map
x *2014) Borel-measurable. Then, for each e e S , we have ~(e)= j ~ (e) dA.
Let X 

p 
be a K~. subset of E(H) which bears p, . In order to show that p, x

lives on X 
> 

for A-a.e.x , it is sufficient to prove the following lemma.

13. LE&#x26;iMA. - Each compact subset A of E(H) is a member of S .

Proof. - Let us suppose the sequence basis of open subsets of R~ .
Let E be the subset of N such that n e s if, and only if, there exists
h e h (E) , with h = 0 on A , and h > 0 on (u . For each n ~ S , we choose

~~ ’ with ~n ~ ~ on ~ ~ and h 
n 
> 0 on uj 

n 
.

Let us show that, for each x ~ R~ A , we have h (x) > 0 for at least one n e S .
For each y e A , there exists h e E’ with h (x) > 0 , and h (y)  0 . By
compacity, there exists hx e h+(E) , with hx(x) > 0 , and h = 0 on A . As the
set (z ; >0) is open, then there exists n~ N such that 

n 
and

h~ >0 Therefore, we have and h (x) >0 .
Now, if we let h = then we have h = 0 on A , and h( z) > 0 for
each z ~ R~ A . Hence A e S .

Now, it is easy to complete the proof of § 12 by a mixture of X03BB and X p,
14. Remark (n. F. SAINTE BEUVE [ll], theorem 3). - In the case of R~ , we can

take the unit sphere of R~ (for the usual distance) for X .

15. Example (Answer to a question of G. CHOQUBT). - Let M be the set of Radon
measures on (o , l) , and ~ the subset of probability measures.
Let E the vector subspace of M generated by the Dirac probabilities, E is

equiped with the weak-**-topology.
Suppose p. is the maximal measure on ~ which represents the element dx e 



The measure ~, and dx induce, in a canonical way, elements of ~~~+(E~ ’ ~, and

is dense in ~+ . 1
Let 03C6 be the canonical injection from (0 , 1) into £ , and X = 03C6([0 , 1]) .

We have (in e /~B in the weak completion of E ), however
{I has a localization on the compact subset X of E , while Edx does not have

such a localization. 
, 

’

Part II : Extension of a result of STRASSEN and "theory of balayage".

II (A) . ~tension of a re sult of STRASSEN.

16. Notations and definitions. - Suppose X and Y are two compacts(HAUSDORFF)
spaces and is a mapping of X in the set of closed convex subsets of

(positive Radon measures on Y ~.
For each f ~ C(Y) (continuous real functions on Y ~, we let

we have and (~(x)=-~)~===~(M =~) . .

The map f 2014~ ~ has been previously considered by P.-A. MEYER ([8], p. 30l).
Suppose B For each function (p on X with Values in R, we let

= u  (p , u 1. s. c. on X, with values in R u (+ 
We have X~((p) e R .
If we write ~ ~ if, and only if, for each

f e C(Y) , we have 03BB*() . We let p,(f) = 03BB*() .
17. PROPOSITION. - Suppose with 03BB ~  . For each se-

quence ... , 03BBn , such that + ... + B with B.  0 , there exists a

sequence ~ , ... , ~ with ~$0 , such that p.=p. + ...+p. , and B. 
for i = 1 , 2 , ... , n .

Proof. - Let 1 be the constant function equal to 1 on Y.

We have ~ (-l) ~ ~(- 1 ) > - co . Hence, for each f e C(Y) , we have

then we can use the same proof than in proposition 5.

18. PROPOSITION. - We let H = {(~x , 03BD) ; x ~ X , 03BD ~ Mx} . If 03BB ~ m+(X)
the two following properties are equivalent

1° (03BB , ) ~ conv(R+ H) in equiped with the weak-*-topology.

~ ° For each we have



Proof. - We apply the theorem of Hahn-Banach.

Suppose g E and f E C(Y) . Then (g , - f) is in the polar of H if, and

only if,   g.

1 ° -~-~-- 2° : If f E C(Y) , we have ?~( g~ > ~,( f ~ for each g E 

hence 20 is fulfilled.

2° 10: For each g e and each f E C(Y) with f ~ g , we have, on

account of 2°, A(g) . Hence is fulfilled on account of the bipolar

theorem.

19. Definition of the relation «. - If X E proposition 18 invites us

to let, for each fe C(Y)

Note we have q . Moreover, if H is a closed subset of x 

then we have PÀ(- l(y)) = l(y)) because - A 1(y) is negative, and u. s. c.

we write 03BB   if, and only if,   q03BB . We have

Of course, we can prove the analogous of proposition 17 for the relation «.

Note, in the case, study by P.-A. MEYER ~~8~ po 302) (i. e. H is compact~, ~ is

u. s. c. so ge ~~X~ , g >. f ~ . Hence p ‘ q .

20. PROPOSITION. - Su se K is the closure in x equiped with
the weak-*-topology, of the set

If 03BB E E the two f ollowing properties are equivalent :

1 ° X « p ,

2° There exists a positive Radon measure n on the compact set K such that

( A ~ I~~ ..

Proof.

1° ~ 20 ; Each element u of conv(R+ H) can be written u = 03A3x~Xku x(~x , 03BDu x)
u 

x x x x

where the k~ are unique, positive, and equal to 0 except for a finite number of

x ~ X . We have vuEM .
x x

On account of § 18, there exists an ultrafilter ~ on conv(.R+ H~ such that

= ( ~ f ~) .
u is the resultant of the following conical measure 03C0 on x with

u 
u

u °" 03A3x~Xau x ~((bu x,cu x)) ’There



03C0u can be also seen as a positive Radon measure on K.

We have = + ~(i) . Hence exists as a positive Radon
measure n on K and r(n)=(~~ ~) .
~~ ===~ ~-~~ Each discrete positive Radon measure on K can be written

except for a finite number of p E K .

There exists an ultrafilter ~, on the discrete positive measures on K such that

_ ~ .

If g E and f E with g ~ f , we have

As g # I , we have bmp(1) g(bmp/bmp(1))  cmp(f) , hence X ( g ) > p( f ) .P P P P

21 . PROPOSITION (Extension of a result ,of S££fS,£§ [8], p. 302) . - Suppose more-
over that X and Y are metrizable, and that H is a closed subset of

x $lfi(Y) equiped with the If X e llfi(X) ~ llfi(Y)
with 03BB   , then, there exists a Borel mapping x B+ 03BDx defined on X such
that v e FI X-a, e. , and  § j v dX(x) and 0 « p - j v dX(x)~ x x - x ’ 

- x 
°

Proof. - Note that (x ; M = §#) is a G03B4 03BB-null subset of X since

X(- I(y) ) g p(- 1 (y) ) > - cD . Ve shall use the notations of the proof of .§ .20.
Suppose v is the projection of llfi(X) x llfi(Y) on llt(X) . Ve have v(TT) = X as

conical measures on M+(X) . Let Ao = 1(0 , fl) ; > e ((Y)I , and no the part
of TT carried by £ .
Let 03C0’ = 03C0 - 03C00 .

Suppose TT’ = TT( + ... + TT£ + ... is a decomposition Of TT’ such that, for each
n , 03C0’n lives on A 

n 
= (( cY , $) j cY e e and cy( 1) > 1/n)

Let 03C0" n the Radon measure on (I , nl such that, for each f e C((1 , n#) , we
have

n’ and n" induce the same conical measure on lJfi(X) x llt(Y) . Then v(n") isn n 
n

carried by ( £ , x e X) ; the image of X by the map x -+ e of X intox 
x2fi(X) is I v(n") . If e -P is a disintegration ([2] p 58) of TT" withn n x x ’ ° 

n
respect to v , then, for each n , we have v(Tr")-a,e. , that § lives on the setn x( ( £ , v) ; v G Fi and v( I )  n) let ’ G FI such thatx » ’ ’ 

x x

For each x G X , we identify x and £ . Let 0 e lft(Y) be such that

(0 , %) = r(03C00) . We have x = I v(ng) and > - , = I 03BDnx dv«1r’ ) .



If we let ~=1~ BIn then, we have ~ A-a.e. and

~"~0=j TT~ is carried by we have 0 «~~ .
22. Remark. - Strictly speaking, in [8] (chap. Strassen theorem is T51 which

admits T52 as a consequence, but T51 can be also derived from T52. We sketch a

proof, with the notations of [8]. Suppose E’ is the unit ball of E’ 
. 

equiped
with the weak-1»-topology. For each w 6 Q , let P 

W 
be the set

We suppose Let 

Now, suppose (x~) is a sequence of E everywhere norm-dense in the unit ball Eo.f E. Let 03C6 be the map 03A9 ~ [- 1 , 1 ]N such that (03C6(03C9)) = p (x ) . We let
2014~ 

T 

~ 
. 

n w n
X = and A = cp(~.) , which is a regular Borel measure on X ([9] prop. 117.2).
For each t = (tn) in X, because of [8] (p. 300 footnote), there exists a sub-
linear form pt on E such that = tn , for each n, and e [-1, i).
Then the definition of P~ and M~ (given for t = are meaningfull, and the
set ((t , v) ; t ex, is a compact subset of 
Now it is sufficient to apply T52 to X and measure A, with Y = E’ using the
map X 2014~ P(~(Y)) defined by t (2014~M~ , and taking an extension of x’
to C(Y) such that, for each f e C(Y) , p.(f) ~ A(~) , then T51 follows since in

X, cp(0) is of A-outer measure equal to A(l) .

II (B). Theory of balayage.

23. Notations. - Suppose X is a compact (HAUSDORFF) space, r a convex subcone
of C(X) whichisaninf-lattice (i. e. if f, ge r , then g)= r )
and r is the polar of r in 

Using the previous notations, we take Y = X ,

j i

Note that we do not suppose as in [8] (p. 294-297) that r contains a strictly po-
sitive function. ’

24. Definition (of f~ and r~ ). -For each f= c(x) , we let

. and for each B e we let r~(f) = X(f~) . r~ is a sublinear functional on
C(x) , with values in R u (+ ec) ~ and we have r..

25. PROPOSITION (Extension of a balayage formula of MOKOBODZKI [8] chap. 11 T45) .
For we have fp = ~ .
Moreover the following properties are equivalent :

1° There is no element > 0 in r ,



2° i = + co everywhere on X y
~

3° 1 is equal to infinity in at least one point of X,
~

4° 1 is unbounded on X.

Proof. - Let us prove that for each f  0 of C(x) .
If X ~ because of the theorem of Hahn-Banach recalled in § 1, for each

k = )- r.(- f) , r03BB(f)] , there exists k ~ with k(f) = k 
It suffices now to take A. = e and k = fp(x) = r (f) . Now 1° =====~2~ can be

proved in the same and we see that 4° ~ 1°. 
x

26. PROPOSITION.

(a) Suppose f is an u. s. c. function  0 On X. We have (the defi-

nition of  is as in §16 and that of fr as in § 24).

(f.) is a family of u. s. c. functions  0 on X, directed downward,
having a limit f , we have (f.) 

Proof.

(a) can be proved as in [7J (prop. 5.6) because it is enough to work, for each
on a compact subset of M .

(b) can be proved as in [~7~] (prop. 5.6).
Proposition 25 enables us to give a balayage proof of the following result of

CHOQUET-DENY [4].

27. PROPOSITION. - Suppose F is a closed convex subcone of (f(x) which is an

inf-lattice and contains - 1 . If we let

then we have 0393 = T’ , .

Proof. ~- ~’ is a closed. convex subcone of ~w(X~ which is an inf-lattice and

~’ For each f ~ such that f  0 , we have, because of 25,
and we see that = 

x x

Therefore, by Dini lemma, we have f = f r if, and only if, fEr and f = f ~A ^ ^

if, and only if, f E T’ , hence r n (f  0 ~ _ r n if  0 ~ . Then r ~ i , since
, 

A

F and  are the closure of r n {f  0} and r n {f  0} .

28. Remark. - Suppose r is separating. Then we can apply to r the theorem 48

( chap, 11) about the Silov compacts. It is enough to apply [8] (chap. 11,
th. 48) to the cone r _ f = g + a with g E r and which is an

inf-lattice.
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