SÉMINAIRE CHOQUET. INITIATION À L'ANALYSE

GUSTAVE CHOQUET

Sur certaines moyennes associées à un opérateur positif

Séminaire Choquet. Initiation à l'analyse, tome 14 (1974-1975), exp. nº 11, p. 1-3 http://www.numdam.org/item?id=SC 1974-1975 14 A7 0>

© Séminaire Choquet. Initiation à l'analyse (Secrétariat mathématique, Paris), 1974-1975, tous droits réservés.

L'accès aux archives de la collection « Séminaire Choquet. Initiation à l'analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

23 janvier 1975

SUR CERTAINES MOYENNES ASSOCIÉES A UN OPÉRATEUR POSITIF (*) par Gustave CHOQUET

Il s'agit d'une suite à une conférence du Séminaire, 1972/73, sur des travaux de CHOQUET-FOÏAS.

Notations. - T est un opérateur linéaire positif sur C(K), où K est un compact. On dit qu'il est presque-multiplicatif, et associé à un couple (α, φ) , où $\alpha \in C^+(K)$ et $\varphi \in C(K, K)$ si, pour toute $f \in C(K)$, on a

$$(\mathrm{T}f)(x) = \alpha(x) \ f(\phi(x))$$
, i. e. $\mathrm{T}_f = \alpha_{\bullet}(f \circ \phi)$.

On note

$$S_n^f = (f + Tf + \dots + T_f^{n-1})/n$$
; et $\sigma_f = \lim \inf_{n \to \infty} S_n^f$.

On note aussi

$$\mathbf{g_n} = (\mathbf{T_1^n})^{1/n} \; ; \quad \mathbf{y} = \lim \; \inf_{n \to \infty} \; (\mathbf{g_n}) \; ; \quad \mathbf{\Gamma} = \lim \; \sup_{n \to \infty} \; (\mathbf{g_n}) \; .$$
 On désire étudier le comportement des suites $(\mathbf{S_n^f})$ et $(\mathbf{g_n})$.

Rappels.

THÉORÈME 1.

COROLLAIRE 2.

(1)
$$\lim_{n\to\infty} [\max g_n] = \sup \gamma = \sup \Gamma$$
.

(2)
$$\lim_{n\to\infty} [\min g_n] = \inf \gamma = \inf \Gamma$$
.

COROLLAIRE 3. - $\underline{\text{Si}}$ lim \underline{g}_n = constante, $\underline{\text{la convergence des}}$ \underline{g}_n $\underline{\text{est uniforme}}$.

Ces énoncés s'étendent à des f>0 de C(K), par exemple à cause du fait qu'alors lim inf $(T_f^n)^{1/n}$ et lim $\sup(T_f^n)^{1/n}$ sont indépendants de f, donc égales à γ et Γ .

1. Etude des moyennes s_n^f .

THEOREME 4. - Pour une $f \geqslant 0$, si les s_n^f convergent simplement vers une fonction continue $\sigma > 0$, la suite des r_n^f est équicontinue, et la convergence des

^(*) Le texte définitif fera l'objet d'une publication aux Annales de l'Institut Fourier, Grenoble, 1975.

 $s_n^f \underline{\text{vers}} \sigma \underline{\text{est uniforme}}.$

Par contre, le cas où o a des zéros pose le problème suivant.

PROBLÈME 5 (on a pris f = 1 pour simplifier). - Existe-t-il un opérateur T tel que la suite des s_n^1 converge de façon non uniforme vers une fonction continue σ ?

En particulier, en existe-t-il un qui soit presque-multiplicatif?

Les théorèmes existant permettent d'affirmer que, pour un tel T presquemultiplicatif, les faits suivants ont lieu :

- (a) La suite des T_1^n n'est pas équi-bornée,
- (b) σ prend la valeur 0, des valeurs non nulles < 1, et des valeurs > 1,
- (c) $\sigma^{-1}(0)$ et son complémentaire sont tous deux T-stables,
- (d) Il n'existe aucun voisinage fermé de $\,\sigma^{-1}(\text{O})\,\,$ qui soit T-stable et sur lequel $\,\sigma<1$.

Il peut être utile de remarquer qu'un a alors l'identité suivante sur le complémentaire de $\sigma^{-1}(0)$:

$$s_n^1 = \sigma s_n^{1/\sigma}$$
 (et partout $\sigma = \alpha \cdot (\sigma \cdot \varphi)$).

2. Etude des racines $g_n = (T_1^n)^{1/n}$.

C'est un prolongement de l'étude des corollaires 2 et 3.

LEAVE 6. - Pour tout $a \in K$, on a:

 $\begin{array}{l} \gamma(a) = (\sup \, \mu_a - \underline{\text{essentiel de }} \, \gamma), \, \text{ où } \, \mu_a = \delta_a \, \, \underline{\text{T}} \, \, \underbrace{(\underline{\text{plus généralement}}}_{a,p} = \delta_a \, \underline{\text{T}}^p) \, \, . \\ \underline{\text{Et pour tout}} \, \ k > 0 \, , \, \, \{\gamma < k\} \, \, \underline{\text{et}} \, \, \{\gamma < k\} \, \, \underline{\text{sont T-stables}}. \end{array}$

PROPOSITION 7. - Si y est s. c. i., alors :

- (1) $\gamma = \Gamma$, c'est-à-dire la suite (g_n) converge (limite notée g),
- (2) Pour tout $a \in K$, $g(a) = (\sup \underline{de} g \sup \underline{sur \ le \ support \ de} \mu_a \underline{et \ des} \mu_{a,p})$,
- (3) Pour tout $\epsilon > 0$, on a $g_n < g + \epsilon$ pour tout n assez grand.

COROLLAIRE 8. - Si γ est s. c. i. et si toute μ_a a pour support fermé K , γ est constante, et la suite (g_n) converge uniformément vers γ .

Ceci a lieu en particulier si K est fini, bien sûr !

PROPOSITION 9.

- (1) On a toujours $T(\gamma f) \leq \gamma T f$ pour toute $f \geq 0$.
- (2) L'égalité sur toute f équivant à dire que chaque $\{\gamma = k\}$ est T-stable,

(3) Si γ est continue avec $T(\gamma f) = \gamma T f$ pour toute f, la suite (g_n) converge uniformément vers γ .

Il est faux qu'inversement la convergence uniforme des \textbf{T}^n entraîne l'identité $\textbf{T}(\gamma f) = \gamma \textbf{T} f$.

THEOREME 10. - Si T est presque-multiplicatif, et si γ est continue, les g_n convergent uniformément vers γ .

PROBLÈME. - Ceci s'étend-il à tout opérateur T ?

On va apporter trois réponses partielles à ce problème plus général.

LEMME 11. - Si pour des scalaires k_0 , $k_1 \ge 0$, les ensembles $\{\gamma \ge k_1\} = K_1$, $\{\gamma \le k_0\} = K_0$ sont fermés et disjoints (où $k_0 < k_1$), alors pour tout $\epsilon > 0$, on a:

 $g_n \leqslant (k_0 + \epsilon) \quad \underline{\text{sur}} \quad K_0 \; ; \; \; g_n \geqslant (k_1 - \epsilon) \quad \underline{\text{sur}} \quad K_1 \quad \underline{\text{pour tout n}} \quad \underline{\text{assez grand.}}$ THEOREME 12. - Si γ est continue, et si $\gamma(K)$ est totalement discontinu (par exemple si K est dénombrable), γ est limite uniforme des g_n .

<u>Définition</u> 14. - Une famille (μ_i) de mesures positives sur K est dite <u>uniformément continue</u> par rapport à une $\mu \geqslant 0$ si, pour tout $\epsilon > 0$, il existe un $k \geqslant 0$ tel que, pour tout i,

$$\mu_i = \epsilon_i + \nu_i$$
, où ϵ_i , $\nu_i \geqslant 0$ et $\|\epsilon_i\| < \epsilon$, $\nu_i \leqslant k_\epsilon \cdot \mu$.

THEORÈME 15. - Si γ est s. c. i. et si le support de toute μ_a est la fermeture de son intérieur, la suite (g_n) "majore" γ en tout point de K . Si de plus, γ est continue, les g_n convergent uniformément vers γ .

THEOREME 16. - Même conclusion si la condition sur les supports est remplacée par : "La famille des μ_x est uniformément continue par rapport à une μ ".

C'est le cas par exemple si les $\mu_{\rm X}$ ont des densités bornées par rapport à μ . Essentiel du §2. - Les théorèmes 10, 12, 15, 16 apportent des solutions partielles au problème. En outre, la semi-continuité inf de γ entraîne la convergence des $g_{\rm n}$.

(Texte reçu le 22 janvier 1975)

Gustave CHOQUET 16 avenue d'Alembert 92160 ANTONY