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TRAVAUX DE ZINK

by William MESSING

1. INTRODUCTION AND PRELIMINARY DEFINITIONS AND

RESULTS

Fix a prime number p. All rings considered will be Z(p)-algebras. If R is a ring we

will consider p-divisible groups overR and in particular those which are formal groups.

If 1
p ∈ R, then p-divisible groups are étale and consequently given by continuous

representations ρ : π1(Spec(R)) → GLh(Zp). Hence we shall assume p is either

nilpotent in R or R is separated and complete for a topology having a neighborhood

basis of 0 consisting of ideals and that p is topologically nilpotent.

With these conventions, the aim of the various Dieudonné theories is to clas-

sify the category of p-divisible groups over R via functors to categories living in

the realm of (semi)linear algebra. One should think of them as analogous to the

functor G 7→ Lie(G) which establishes an equivalence of categories between formal

groups and Lie algebras when R is a Q-algebra. We will not give an overview of

the various Dieudonné theories, but rather concentrate on the most recent, Zink’s

theory of displays. Nevertheless it will be necessary for us to relate Zink’s theory to

Cartier’s theory and to the crystalline theory. We refer the reader to [Ta], [Ser], [Gr1],

[Gr2], [Dem], [Fon1] for p-divisible groups, to [Car1], [Car2], [Haz], [Laz], [Z1], [Z2]

for Cartier theory, to [Gr1], [Gr2], [MM], [M], [BBM], [BM1], [BM2], [dJ2], [dJM] for

crystalline Dieudonné theory.

If R is a perfect field of characteristic p, these theories are, for p-divisible groups

(formal in the case of Cartier’s theory), all equivalent. Indeed it was one of Zink’s

motivations in developing his theory to relate the Cartier theory to the crystalline

theory. But, in establishing properties of his theory, he uses both the Cartier and

the crystalline theories. Hence there is a symbiotic relationship between the three

theories.
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We refer to [Bour] for the standard facts about the Witt vector ring, W (R). We

write wn : W (R) → R for the ghost component maps, f : W (R) → W (R) for the

Frobenius ring endomorphism and v : W (R) → W (R) for the additive Verschiebung

endomorphism. Let IR = Ker(w0) = im(v). If a ∈ R, [a] denotes its Teichmüller

representative.

Lemma 1.1. — If R is separated and complete in the p-adic topology, then W (R) is

separated and complete in both its p-adic and IR-adic topologies. If p is nilpotent in

R, these topologies coincide and it is finer than the v-adic topology.

Definition 1.2. — A display P over R is a quadruple (P,Q, F, F1) where P is a

finitely generated projective W (R)-module, Q a submodule, F : P → P , F1 : Q → P

are f -semilinear such that

(i) IR P ⊂ Q.

(ii) 0 → Q/IR P → P/IR P → P/Q→ 0 is a split sequence of R-modules.

(iii) P is generated by im(F1).

(iv) F1(v(ξ)x) = ξ F (x) for ξ ∈ W (R), x ∈ P .

If u : M → N is a f -semilinear map of W (R)-modules, we set M (1) =

W (R) ⊗f,W (R) M for the extension of scalars using f and denote by u] : M (1) → N

the associated linear map.

With the obvious notion of morphisms, displays form an additive category and, if we

define a morphism of displays u : P ′ → P to be an admissible monomorphism (resp.

epimorphism) provided u : P ′ → P is injective (resp. surjective) and u−1(Q) = Q′

(resp. u(Q′) = Q), we equip DisplaysR with the structure of an exact category.

Definition 1.3. — A normal decomposition for a display P over R is a direct sum

decomposition P = L⊕ T such that Q = L⊕ IR T .

If R is a p-adic ring, in particular if p is nilpotent in R, normal decompositions

always exist. This is a consequence of the fact that finitely generated projective

modules can always be lifted for surjections A→ B whose kernel is a nilideal or such

that A is separated and complete for the topology given by powers of the kernel.

Examples.– (i) The display corresponding to the formal multiplicative group G =

(W (R), IR, f, v
−1).

(ii) If R = k, a perfect field of characteristic p, M 7→ PM = (M,V (M), F, V −1) es-

tablishes an equivalence of categories between Dieudonné modules over k and displays

over k.

From now on we assume p is nilpotent in R, unless we explicitly state the contrary.
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If u : R → R′ is a ring homomorphism and P is a display over R, the base

changed display u∗(P) is the display over R′, P ′ = (P ′, Q′, F ′, F ′1), where P ′ =

W (R′) ⊗W (R) P , Q′ = Ker(P ′ → R′ ⊗R P/Q), F ′ = f ⊗ F and F ′1 is determined by

F ′1
(
v(ξ) ⊗ x

)
= ξ ⊗ F (x) , ξ ∈W (R′) , x ∈ P

and

F ′1
(
ξ ⊗ y

)
= f(ξ) ⊗ F1(y) , ξ ∈W (R′) , y ∈ Q.

Using a normal decomposition, it is easy to show that F ′1 exists and P ′ is a display.

Definition 1.4. — Let P,P ′ be displays over R. A bilinear form of displays

( , ) : P × P ′ → G is a bilinear map P×P ′ → W (R) such that v(F1y, F
′
1y
′) = (y, y′)

for y ∈ Q, y′ ∈ Q′.

If P is a display over R, its dual display Pt = (P∨, Q̂, F, F1) where P∨ =

HomW (R)(P,W (R)), Q̂ = {z ∈ P∨|z(Q) ⊂ IR} and F and F1 are determined by

(F1x, Fz) = f(x, z) for x ∈ Q , z ∈ P∨

(Fx, Fz) = pf(x, z) for x ∈ P , z ∈ P∨

(Fx, F1z) = f(x, z) for x ∈ P , z ∈ Q̂

v(F1x, F1z) = (x, z) for x ∈ Q , z ∈ Q̂.

We have a canonical isomorphism

Bil(P,P ′; G ) ' Hom(P ′,Pt).

Proposition 1.5. — There is a unique linear map V ] : P → P (1) determined by

V ](ξFx) = pξ ⊗ x, V ](ξF1y) = ξ ⊗ y, for ξ ∈W (R), x ∈ P , y ∈ Q.

This is established by taking a normal decomposition P = L ⊕ T , showing that

F ]1 ⊕ F ] : L(1) ⊕ T (1) → P is bijective and defining V ] to be the composite

(id ⊕ p · id) ◦ (F ]1 ⊕ F ])−1 : P → L(1) ⊕ T (1) = P (1).

One has F ] ◦ V ] = p · idP , V ] ◦ F ] = p · idP (1) . If P (i) is the scalar extension of P

using f i, then V ] gives rise to V ]i : P (i) → P (i+1).

Definition 1.6. — P satisfies the nilpotence condition or P is a nilpotent display

provided there is an N such that V ]N ◦ V ]N−1 ◦ · · · ◦ V
] is zero modulo IR + pW (R).

Remark 1.7. — In [Z5], displays were called 3n-displays (3n for“not necessarily nilpo-

tent”) and nilpotent displays were called displays. We follow Zink’s more recent ter-

minology (cf. his Paris 13 lectures of February, 2006) here. Also in [Z5], F1 was

denoted by V −1. Zink and Langer have initiated a theory of higher displays, [LZ2],

in which P = P0, Q = P1 and there are higher Pi and Fi : Pi → P . For this reason

we write, following Zink, F1 instead of his original V −1.
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Remark 1.8. — Locally on Spec(R), if L⊕T is a normal decomposition we will have L

and T free modules and if T has basis {e1, . . . , ed} and L has basis {ed+1, . . . , eh}, the

map F ]1⊕F
] will be expressed in terms of these bases by a matrix (αij) ∈ GLh(W (R)).

Conversely any such invertible matrix will determine a display. If the matrix (αij)

has inverse (βk`), and B is the (h − d) × (h − d) matrix with entries in R/pR given

by B = (w0(βk`))mod p)k,`=d+1,...,h, then P is nilpotent if and only if there is an N

such that

B(pN ) . . . B = 0,

where B(pi) is the matrix obtained by applying the i-th iterate of Frobenius to B.

If ei is a basis for a free module over the Cartier ring, then the relations

Fei =
∑
αjiej , i = 1, . . . d ;

ei = V

(∑
αjiej

)
, i = d+ 1, . . . h

define a reduced Cartier module. Relations of this form were called by Norman [N]

“displayed structural equations” of a reduced Cartier module. This is the origin of

Zink’s use of the term display.

Remark 1.9. — Let S
u
� R be a surjection whose kernel is a nilideal. Let P be a

display over R. Then there is a display P ′ over S and an isomorphism u∗(P
′)
∼
−→ P.

This is proven using the fact that finitely generated projective W (R)-modules can

be lifted to finitely generated projective W (S)-modules and using normal decompo-

sitions. Nakayama’s lemma then shows that lifting modules are determined up to

isomorphism (non-unique!).

If P/R is a nilpotent display and P ′ is a lifting to S, then P ′ is nilpotent too.

This is clear as Ker(S → R) is a nilideal.

We ask about the ambiguity in the lifting P ′ of P. If P ′ = (P ′, Q′, F ′, F ′1),

J = Ker(S
u
� R) and α : P ′ → W (J) ⊗W (S) P

′, we define a display P ′
α over S

lifting P by P ′
α = (P ′, Q′, F ′α, F

′
1α), where F ′α(x) = F ′x − α(F ′x), for x ∈ P ′,

F ′1α(y) = F ′1y − α(F ′1y), for y ∈ Q′. Then P ′
α is a display and Zink shows any lifting

of P is isomorphic to a P ′
α.

Remark 1.10. — Assume p · 1R = 0. Let P be a display over R, P(p) be the display

over R given by (Frob)∗P. Then V ] commutes with F and F1 and hence defines a

morphism of display FP : P → P(p). Similarly F ] defines a morphism of displays

VP : P(p) → P. Of course both composites are multiplications by p.

If R→ R′ is a ring homomorphism, there is an obvious notion of a descent datum

for P ′ a R′-display and, if P is a R-display, PR′ has a canonical descent datum,

can.
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Zink proves:

Proposition 1.11. — If R → R′ is faithfully flat and p is nilpotent in R, then

P 7→ (PR′ , can) is an equivalence of categories between Displays/R and the category

of R′-displays equipped with descent data. The same is true for nilpotent displays.

2. THE CRYSTALS ASSOCIATED TO DISPLAYS

We refer to [Ber] for a detailed discussion of crystals, crystalline cohomology,...

and recall the bare minimum here. An ideal J ⊂ A has divided powers if we are

given maps γn : J → J , n ≥ 1, satisfying axioms imposed by thinking of γn(x)

as xn

n! . The ideal (p) ⊂ Z(p) has unique divided powers since pn

n! ∈ (p). It follows

that for any ring A, p · A has divided powers. If J ⊂ A is an ideal with divided

powers we require that its divided powers agree with those on J ∩ pA. This is called

the compatibility condition. If R is a Z(p)-algebra, then IR ⊂ W (R) has canonical

divided powers which are compatible with those on p ·W (R). These are determined

by γn
(
v(x)

)
= pn−1

n! v(x
n), [Gr2]. The ideals vm(W (R)) are sub-divided power ideals.

We refer to [Ber] for the definition of nilpotent divided powers and to [M], [Z3] for a

weaker notion.

We continue to assume p is nilpotent in R. If A is an R-algebra, a divided power

thickening of A is a surjection A′
π
� A such that p is nilpotent in A′ and Ker(π) is

equipped with divided powers (satisfying the compatibility condition). A morphism

of divided power thickenings is a commutative diagramm

(∗) A′
π

//

ψ

��

A

φ

��

B′
eπ

// B

such that Ker(π), Ker(π̃) have divided powers, ψ(γn(x)) = γn(ψ(x)), n ≥ 1 for

x ∈ Ker π.

A crystal in modules M on R is the giving for every divided power thickening A′
π
�

A of a A′-module, M
(A′

π
−→A)

, and for every morphism of divided power thickenings

of an isomorphism

T(ψ,φ) : B′ ⊗
A′

(
M

(A′
π
−→A)

) ∼
−→M

(B′
eπ
−→B)

,

these isomorphisms being required to satisfy the obvious transitivity condition.

Similarly we define a Witt-crystal on R as the giving for any divided power thick-

ening of an R-algebra
(
A′

π
−→ A

)
of a W (A′)-module K

(A′
π
−→A)

together with, for
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any diagram (∗), an isomorphism

T ′(ψ,φ) : W (B′) ⊗
W (A′)

K
(A′

π
−→A)

∼
−→ K

(B′
eπ
−→B′)

.

We want now to explain Zink’s functors

Nilpotent Displays/R −→ Crystals/R

P 7−→ DP

Nilpotent Displays/R −→ Witt crystals

P 7−→ KP .

Note first, and for later use as well, that if C is a Z(p)-algebra commutative and

associative, but not necessarily with an identity, W (C) is defined.

Assume C has divided powers; then we can divide the n-th ghost component and

write w′n =“wn

pn ” via

w′n(γ) =

∑n
i=0 p

ixp
n−i

i

pn
=

n∑

i=0

(
pn−i − 1

)
! γpn−i(xi).

In particular if J = Ker(π), π : A′ � A has divided powers, then the map W (J)
w′

−→

JN, x 7−→
(
w′0(x0), w

′
1(x0, x1), . . . , w

′
n(x0, . . . , xn), . . .

)
is an isomorphism of W (A′)-

modules where the target is made into a W (A′)-module via

ξ · y =
(
w0(ξ)y0, w1(ξ)y1, . . . , wn(ξ)yn, . . .

)
, y ∈ JN.

We also refer to the yi = w′i(x) as the logarithmic coordinates and write this isomor-

phism as log : W (J)
∼
−→ JN. Then log−1(J, 0, 0, . . . ) ⊂ W (J) is an ideal in W (A′)

which we abusively denote by J .

This embedding J ⊂W (A′) depends of course on the divided power structure on J .

We have J ⊕ IA′ ⊂ W (A′) and f(J) = (0). By using a normal decomposition, one

easily obtains the basic lemma:

Lemma 2.1. — Assuming P ′ is a display over A′, p is nilpotent in A′ and J ⊂ A′

is an ideal with divided powers, F ′1 has a unique extension to W (J) · P +Q such that

F ′1(J · P ) = (0).

Corollary 2.2. — Assume p is nilpotent in A′, J ⊂ A′ is a nilpotent ideal and P ′
1,

P ′
2 are nilpotent displays over A′. Let π : A′ → A′/J , Pi = π∗(P

′
i). Then

Hom(P ′
1,P

′
2) −→ Hom(P1,P2)

is injective and its cokernel is p-torsion. Further, if the nilradical of A′ is nilpotent,

Hom(P ′
1,P

′
2) is p-torsion free.
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This result is the analogue of rigidity for p-divisible groups.

We now introduce the concept of a P-triple where P is a nilpotent display over

R. Let R′
π
� R be a surjection whose kernel J is equipped with divided powers and

where p is nilpotent in R′.

Definition 2.3. — A P-triple over R′ is a triple (P ′, F ′, F ′1) such that P ′

is a finitely generated projective W (R′)-module which lifts P , and if Q′ =

the inverse image of Q, F ′ : P ′ → P ′, F ′1 : Q′ → P ′ are f -semilinear and sat-

isfy

(i) F ′ (resp. F ′1) lifts F (resp. F1).

(ii) F ′1(v(ξ) · x) = ξF ′(x), ξ ∈ W (R′), x ∈ P ′.

(iii) F ′1(J · P ′) = (0).

If Pi, i = 1, 2 are nilpotent displays and Ti are Pi-triples and α : P1 → P2,

there is an obvious notion of an α-morphism α̃ : T1 → T2.

There is also the notion of base change for P-triples. If

R′
u′

//

��

S′

��

R
u

// S

is a morphism of divided power thickenings and T is a P-triple, u′∗(T ) is a u∗(P)-

triple with P ′S′ = W (S′) ⊗W (R) P
′ and F ′S′ , F ′1S′ determined in the obvious way.

Theorem 2.4. — Let α : P1 → P2 be a morphism of nilpotent displays over R,

R′ → R a divided power thickening and Ti, Pi-triples over R′. Then there exists a

unique α-morphism α̃ : T1 → T2.

Using this theorem, we construct functors:

D : nilpotent displays/R −→ crystals/R

K : nilpotent displays/R −→ Witt crystals/R

If P is a nilpotent display over R and T = (P ′, F, F1) is a P-triple over the divided

power thickening R′ → R, then DP(R′) = P ′/IR′ P ′ and KP(R′) = P ′.

Let P = (P,Q, F, F1) be a nilpotent display over R. We consider its “Hodge

filtration” Q/IR P ⊂ P/IR P . If R′ → R is a divided power thickening and T =

(P ′, F, F1) is a P-triple over R′, we call a lift of the Hodge filtration the giving of a

direct summand L ⊂ P ′/IR′ P ′ such that L ⊗R′ R = Q/IR P . If Q′L is the inverse

image of L in P ′, then P ′ = (P ′, Q′L, F, F1) is a nilpotent display over R′ which lifts

P.

Consider a divided power thickening R′ → R. Let C be the category whose objects

are pairs (P, L) where P is a nilpotent display over R and L is a direct summand
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of DP(R′) lifting the Hodge filtration. A morphism φ : (P1, L1) → (P2, L2) in C is

a morphism of nilpotent displays φ : P1 → P2 such that D(φ)(R′)L1 ⊂ L2.

The following result is the analogue of [M, V (1.6)].

Proposition 2.5. — The functor nilpotent display/R′ → C given by P ′ =

(P ′, Q′, F, F1) 7→
(
P ′
R, Q

′/IR′ P ′
)

is an equivalence of categories.

If R is a ring of characteristic p, then the morphisms

FP : P −→ P
(p) , VP : P

(p) −→ P

define associated morphisms of the crystals. In particular DP is endowed with the

structure of a Dieudonné crystal in the sense of [Gr1], [Gr2], [BBM].

Let R′
π

−→ R be a divided power thickening where p is nilpotent in R′. If J =

Ker(π), then J ⊂ W (R′) has divided powers given by transport of structure via log.

IR′ has divided powers and as J + IR′ = J ⊕ IR′ , we obtain divided powers on this

ideal. Hence W (R′)
π◦w0−→ R is a (topological) divided power thickening, inducing

divided power thickenings Wn(R′) → R.

Using the Cartier map W (R)
δ

−→ W (W (R)), characterized by wn ◦ δ = fn, n ∈ N,

Zink proves:

Proposition 2.6. — Let P be a nilpotent display. There is a canonical isomorphism

KP(R′) ' lim
←−

DP(Wn(R′)).

If R has characteristic p, this isomorphism is compatible with Frobenius and

Verschiebung.

Proposition 2.7. — Let R have characteristic p. Assume there is a topological di-

vided power thickening S → R which is a flat Zp-algebra. Then the functor P 7→(
DP , Q/IR P

)
from nilpotent displays to filtered Dieudonné crystals is fully-faithful

in the following weak sense. Given a morphism ψ between the filtered Dieudonné crys-

tals, there is a morphism of displays φ inducing ψ for every divided power thickening

R′ → R which receives a map from (some) S to R′.

Remark 2.8. — The same result is true for the filtered Witt-crystals, the filtration

being given by Q̂. Also one need only assume ψ is compatible with Frobenius. Finally,

if p 6= 2, the same result holds for the nilpotent crystalline site.
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3. THE FUNCTOR BT

Recall that an R-algebra N without identity is nilpotent provided Nn = (0) for

some positive integer n. There are many equivalent ways to define formal groups. For

us we will regard a formal group G over R as a functor from nilpotent R-algebras to

abelian groups satisfying:

(i) if 0 → N1 → N2 → N3 → 0 is exact (as a sequence of R-modules)

0 −→ G(N1) −→ G(N2) −→ G(N3) −→ 0

is exact;

(ii) if any R-module M is viewed as a nilpotent R-algebra (M2 = (0)), then

⊕i∈IG(Mi)
∼
−→ G

(
⊕i∈IMi

)
;

(iii) G(R) is a finitely generated projective module, R being viewed as having

square zero. This is the tangent space, denoted Lie(G).

We will define a functor BT : Displays/R −→ Formal Groups/R.

If N is a nilpotent R-algebra, let Ŵ (N) ⊂ W (N) be the W (R)-subalgebra con-

sisting of all Witt vectors almost all whose components are zero. Given a display

P = (P,Q, F, F1) over R, we set G0
P

(N) = Ŵ (N) ⊗W (R) P , G−1
P

(N) ⊂ G0
P

(N) is

the subgroup generated by {v(ξ) ⊗ x, ξ ⊗ y | ξ ∈ Ŵ (N), x ∈ P, y ∈ Q}. The functors

G−1
P

(N) and G0
P

(N) are exact in the sense of condition (i) in our definition of a

formal group.

Lemma 3.1. — (i) The map F1 : Q → P extends to a map G−1
P

(N)
F1−→ G0

P
(N)

determined by F1

(
v(ξ) ⊗ x

)
= ξ ⊗ F (x), F1

(
ξ ⊗ y

)
= f(ξ) ⊗ F1(y).

(ii) If N is equipped with nilpotent divided powers, the F1 of (i) extends to a nilpotent

endomorphism of G0
P

(N).

(iii) If i is the inclusion of G−1
P

(N) in G0
P

(N), F1 − i : G−1
P

(N) → G0
P

(N) is

injective.

Definition 3.2. — Let BTP be the functor on nilpotent R-algebras BTP(N) =

coker(F1 − i).

Theorem 3.3. — (i) The functor BT takes values in the category of formal groups

and commutes with base change.

(ii) If N has nilpotent divided powers, there is a canonical isomorphism

exp : N ⊗
R

P

Q

∼
−→ BTP(N).

(iii) If P is a nilpotent display, BTP is a p-divisible formal group.

(iv) If R has characteristic p, BT transforms FP and VP to Frobenius and

Verschiebung.
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Recall that the Cartier ring CR is by definition End(Ŵ )0 and that its elements

may be uniquely expressed as c =
∑

n,m≥0 V
n[an,m]Fm where, for fixed n, anm = 0

for all but finitely many m. For x ∈ Ŵ (N), c ∈ CR as above, we have x · c =∑
n,m≥0 v

m
(
[an,m] fn(x)

)
. The Cartier module associated to a formal group G is the

left CR-module Hom(Ŵ ,G) = M(G).

Proposition 3.4. — Let P be a display over R, CR⊗W (R)P
∼
−→ Hom

(
Ŵ ,G0

P

)
via

c⊗ z 7−→ (x 7→ xc⊗ z). The map G0
P

→ BTP induces a surjection CR ⊗W (R) P −→

M
(
BTP

)
whose kernel is the CR-submodule generated by

{F ⊗ x− 1 ⊗ Fx , V ⊗ F1y − 1 ⊗ y |x ∈ P , y ∈ Q}.

Recall that if G/R is a p-divisible formal group, the crystalline Dieudonné theory

associates to G a crystal as follows. For any divided power thickening R′ → R

with nilpotent divided powers and any p-divisible group G′ lifting G, we consider the

universal extension by a vector group

0 −→ ωG∗ −→ E(G′) −→ G′ −→ 0.

By definition D(G)R′ is Lie(E(G′)) which is, up to canonical isomorphism, indepen-

dent of G′. Because G is a formal group, this definition extends to the site consisting

of divided power thickening R′
π

−→ R where Ker(π) is a nilpotent ideal [MM], [Z5].

The following is one of Zink’s main theorems.

Theorem 3.5. — (i) The functors P 7→ DP and P 7→ D(BTP) from the category

of nilpotent displays to the category of crystals (where the divided power ideals of

thickenings are nilpotent) are canonically isomorphic. The canonical isomorphism

transforms Hodge filtration to Hodge filtration.

(ii) If P is a nilpotent display over R, R′
π
� R has nilpotent kernel and G′/R′ is

a p-divisible group lifting BTP , then there is a nilpotent display P ′ lifting P and an

isomorphism BTP′ → G′ lifting the identity.

With the notation of (ii),

(iii) if α : P → P̃ is a morphism of nilpotent displays over R and G̃′ is a lift to

R′ of BTfP
with corresponding display P̃ ′, then α lifts to α′ : P ′ → P̃ ′ if and only

if BT (α) lifts to an homomorphism G′ → G̃′.

(iv) The functor BT from nilpotent displays to p-divisible formal groups is faithful.

Parts (ii), (iii) of Theorem 3.5 follow from Proposition 2.5 and [M] in the case where

R′ � R has kernel with nilpotent divided powers. As usual this extends inductively

to the case where this kernel is a nilpotent ideal. For (iv), let α : P → P ′ induce

a : BTP → BTP′ . If a = 0, D(a) = 0. But evaluating D(a) on the thickenings

Wn(R) → R and passing to the projective limit, we find, by (i) and Proposition 2.6,

that α = 0.
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4. PROPERTIES OF THE FUNCTOR BT FOR NILPOTENT

DISPLAYS

All displays in this paragraph are nilpotent. Before stating the next result recall

that a noetherian ring R is said to be a Nagata ring if, for every prime ideal p of R,

the integral closure of R/p in a finite extension of Frac(R/p) is a finitely generated

R/p-module. Examples of such rings include excellent rings. The concept of Nagata

ring is discussed in [Bour, IX, § 4] and, of course, in E.G.A. IV, § 7.7, where these

rings are called (noetherian and) universally Japanese(1).

Proposition 4.1. — (i) Let p be nilpotent R and assume the nilradical of R is nilpo-

tent. Then BT : nilpotent displays over R → p-divisible formal groups is fully faith-

ful.

(ii) Assume R has characteristic p and admits a topological divided power thickening

S
π
� R, i.e. J = Ker(π) has divided powers and S is separated and complete for the

linear topology defined by a sequence of sub-divided power ideals J = J1 ⊃ J2 ⊃ . . .

such that Ker(S/Jn → R) is a nilpotent ideal and S is flat as a Zp-algebra. Then BT

is fully-faithful.

Theorem 4.2. — Assume R is a Nagata ring which is separated and complete in the

p-adic topology. Then BT is an equivalence of categories between nilpotent displays

over R and p-divisible formal groups over R.

Proof.— The theorem is proved in successive steps. As each category is the projective

limit in the sense of Lim
←−

of the categories relative to R/pn, we may assume p is

nilpotent in R. Then, by Proposition 4.1, we know BT is fully-faithful. Hence we

need show that it is essentially surjective.

(i) Assume R = k a field. Let K = kp
−∞

. By classical Dieudonné theory the

result is true over K. If G/k is a p-divisible formal group, let PK be a nilpotent

display over K such that BT
(
PK

)
= GK . If C is a Cohen ring for k we choose

a map C → W (K) lifting the inclusion of k in K. Let A = W (K) ⊗C W (K), a

p-torsion free ring such that A/pA = K ⊗k K. If S = Â, the p-adic completion,

then Proposition 4.1 (ii) tells us that BT is fully-faithful over K ⊗k K. Then PK is

equipped by Proposition 4.1 (ii), with descent data and, by Proposition 1.11, there is

a nilpotent display P over k which descends PK . Then BT (P) is isomorphic to G.

(ii) R is an artin local ring with residue field k. Let G/R be a p-divisible formal

group. Let Pk be a nilpotent display such that BT
(
Pk

)
= Gk. By theorem 3.5 (ii),

there is a nilpotent display P lifting Pk and an isomorphism BT (P) → G.

(1)Gabber has told me that if V is a complete height 1 valuation ring with algebraically closed

fraction field, then V {X1, . . . , Xn}[Y1, . . . , Ym] is universally Japanese, but of course not noetherian.
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(iii) R is a complete local ring. By the result just used in case (ii) we may assume

R is reduced. Let Gn = G ⊗ R/mn. Then Gn = BT
(
Pn

)
and let P be the display

corresponding to the system
(
Pn

)
. We must show that P is a nilpotent display.

If H = BT (P) we look at M(H) described in Proposition 3.4, the Cartier module.

We embed R in a finite product of algebraically closed fields and hence reduce to the

case where R = k is an algebraically closed field. Then P = Pnil ⊕ Pét, where Pnil

is a nilpotent display and Pét has a basis {e1, . . . , eh}, Q = Pét and F1(ei) = ei for

i = 1, . . . , h and M(BT (Pét)) has a presentation ⊕hi=1Ck ·
ei

V ei−ei
. But V −1 is a unit

in Ck so M
(
BT (Pét)

)
= (0) and M

(
BT (Pnil)

)
= M(BT (P)). But height(G) =

rank
(
Pnil

)
and height(G) = rank(P ). Then Pnil = P, finishing the case when R is a

complete local ring.

(iv)R is a Nagata local ring. Let R̂ be its completion. We may assume R is reduced.

Then R̂ and R̂ ⊗R R̂ are both reduced [Bour, IX, § 4, théorème 3]. Given G/R, let

P̂ be a nilpotent display over R̂ such that BT (P̂) = G bR. Using Proposition 4.1 (i),

Theorem 3.5 (iv), we see P̂ is equipped with descent data and this gives the result

just as in the case when R is a field.

(v) The general case. We may assume that the h = height of G is constant on

Spec(R). Let R′ = ΠRm, the product running over all maximal ideals of R. Then to

give a p-divisible formal group G of height h over R′ is the same as giving for each m

a p-divisible formal group Gm of height h over each Rm. Similarly to give a display

P over R′, with rank(P ) = h, is the same as giving displays Pm over each Rm, these

each having rank(Pm) = h. Both statements follow because idempotents in Mn(R
′)

are given by families of idempotents in the Mn(Rm). If all the Pm are nilpotent

displays, then P is a nilpotent display also because the exponent of nilpotency for V ]m
is bounded above by h. As each Rm is a Nagata local ring we conclude from Part (iv)

that there is a nilpotent display P ′ over R′ such that BT (P ′) = GR′ . We will be able

to apply descent to finish the proof, provided we can showR′⊗RR
′ is reduced (so to be

able to invoke Proposition 4.1 (i), Theorem 3.5 (iv) again). For any ring A, let Q(A) be

its full ring of quotients. As R′ is faithfully flat overR, R′⊗RR
′ ↪→ Q(R′)⊗Q(R)Q(R′).

As R is noetherian and reduced, Q(R) =
∏n
i=1Q(R/pi) if {p1, . . . , pn} is the set of

minimal prime ideals of R. The ring Q(R′) ⊗Q(R) Q(R′) then decomposes as the∏n
i=1

(
Q(R′)⊗Q(R)Q(R′)

)
⊗Q(R)Q(R/pi). AsQ(R′) ↪→

∏
Q(Rm), we see thatR′⊗RR

′

embeds into the product of the rings

∏

m

Q
(Rm

pi

)
⊗

Q(R/pi)

∏

m

Q
(Rm

pi

)
, i = 1, . . . n.

This reduces us to showing that if K is a field and I any index set KI ⊗K KI is

reduced. This is standard as products and tensor products of separable algebras are

separable.
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Remark 4.3. — In [Z5], Zink stated Theorem 4.2 only for p nilpotent in R and R an

excellent local ring or R/pR of finite type over a field (which implies R is excellent).

But his proof works, as we have seen, in general. Indeed the proof shows that all we

need to assume is that if R is noetherian and reduced, for each localization Rm, R̂m

and R̂m ⊗Rm
R̂m are both reduced.

If R is a complete noetherian local ring which is normal, with fraction field K of

characteristic zero and residue field of characteristic p, then for a nilpotent display

P over R, the Tate module Tp(BTP) can be described explicitly in terms of P. Let

K be an algebraic closure of K, R the integral closure of R in K, m its maximal

ideal. For K ⊂ E ⊂ K with [E : K] finite, set Ŵ (mE) = lim
←−

Ŵ (mE/m
n
E) and

Ŵ (m) = lim
−→

Ŵ (mE). Let W (m) be the p-adic completion of Ŵ (m). Let m̃ be the

p-adic completion of m. For P a nilpotent display over R, let G = BTP and define

G
0

P to be W (m) ⊗W (R) P ,

G
−1

P = Ker

(
W (m) ⊗

W (R)
P −→ m̃⊗

R
P/Q

)
.

As G is p-divisible we may write G = lim
−→

Gn where Gn is the kernel of pn on G. The

Tate module Tp(G) is by definition Hom
(
Qp/Zp, lim

−→
Gn(K)

)
.

Proposition 4.4. — There is an exact sequence of Gal(K/K)-modules

0 −→ Tp(G) −→ G
−1

P

F1−i−→ G
0

P −→ 0.

5. DUALITY

We briefly sketch now the duality theory for nilpotent displays and correspond-

ing p-divisible formal groups. From Zink’s perspective it is based upon a canonical

homomorphism

Bil(P,P ′; G ) −→ Biext
(
BTP , BTP′ ; Ĝm

)
.

We do not review here the formalism of biextensions referring the reader to Mumford’s

original paper [Mu], Grothendieck’s geometric and homological versions of the theory

[Gr3] and Zink’s reformulation of these in his context [Z5]. Let us only say that we

have, if A, B, C are abelian groups (in a topos) and we are given exact sequences

0 −→ K1 −→ K0 −→ B −→ 0

0 −→ L1 −→ L0 −→ C −→ 0,
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an exact sequence

Hom(K0 ⊗ L0, A) −→ Hom(K0 ⊗ L1, A) ×
Hom(K1⊗L1,A)

Hom(K1 ⊗ L0, A)

−→ Biext(B,C;A) −→ Biext(K0, L0;A).

We apply this formalism to the exact sequences

0 −→ G−1
P

F1−i−→ G0
P −→ BTP −→ 0

0 −→ G−1
P′

F1−i−→ G0
P′ −→ BTP′ −→ 0

where P, P ′ are displays. Mumford proved that Biext
(
G0

P
, G0

P′ , Ĝm) = (0) so

every biextension of BTP , BTP′ , by Ĝm is defined by a pair of morphism

α1 : G−1
P

⊗G0
P′ −→ Ĝm

α2 : G0
P ⊗G−1

P′ −→ Ĝm

agreeing on G−1
P

⊗G−1
P′ .

Let α ∈ Bil(P,P ′,G ). We will associate to α a pair of such homomorphisms as

follows. First, for N a nilpotent R-algebra we have

αN : G0
P(N) ⊗G0

P′(N) −→ Ŵ (N)

defined by (ξ ⊗ x) ⊗ (ξ′ ⊗ x′) 7→ α(x ⊗ x′)ξξ′.

Next recall that the Artin-Hasse exponential defines an exact sequence

0 −→ Ŵ (N)
v−id
−→ Ŵ (N)

AH
−→ Ĝm −→ 0.

Here for x ∈ Ŵ (N),

AH(x) =
[
exp

( ∞∑

n=0

wn(x)
T p

n

pn

)]
T=1

.

Then with these notations we define

α1(y, x
′) = AH

(
αN (F1y ⊗ x′)

)
, y ∈ G−1

P
(N) , x′ ∈ G0

P′(N)

α2(x, y
′) =

[
AH

(
αN (x⊗ y′)

)]−1
, x ∈ G0

P
(N) , y′ ∈ G−1

P′(N).

The verification that α1, α2 agree on G−1
P

⊗ G−1
P′ is easy. One can show that we

obtain the same biextension if F1y is replaced by y in the equation defining α1 and,

simultaneously, y′ is replaced by F1y
′ in the equation defining α2.

The category of nilpotent R-algebras is isomorphic to that of augmentedR-algebras

such that the augmentation ideal is nilpotent, AugR. We endow (AugR)◦ with the fpqc

topology and consider formal groups as abelian sheaves on this site. For any abelian

sheaf F , we define a subsheaf F+ by setting F+(X) = Ker
(
F (X)

F (ε)
−→ F (Spec(R))

)
,

where ε : Spec(R) → X is the canonical section.

The homological formalism provides a canonical homomorphism Biext(B,C;A) →

Hom(B,Ext1(C,A)). We apply this taking a nilpotent display P, its dual display
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Pt and the tautological α ∈ Bil(Pt,P,G ). This furnishes us with a homomorphism

BTPt

χ
−→ Ext1(BTP , Ĝm).

Proposition 5.1. — The map χ defines an isomorphism of formal groups

BTPt −→ Ext1
(
BTP , Ĝm

)+
.

Remark. — In the case where Pt is also a nilpotent display, this result was given in

[MM], with a completely different proof using [Ill3] and [Ill4].

Proposition 5.2. — Assume P, P ′ are nilpotent displays and (P ′)t is also a nilpo-

tent display. Then the map Bil(P,P ′,G ) → Biext
(
BTP , BTP′ ; Ĝm

)
is an isomor-

phism.

6. DIEUDONNÉ DISPLAYS AND p-DIVISIBLE GROUPS

Assume R is a complete noetherian local ring with perfect residue field k of char-

acteristic p. If p = 2, assume in addition that 2R = (0). We will modify the definition

of a display so as to obtain an equivalence of categories

BT : Dieudonné displays/R
≈
−→ p-divisible groups/R.

If R is artinian we will consider a subring Ŵ (R) ⊂ W (R), stable under f and v,

functorial in R and having Ŵ (k) = W (k). Let m be the maximal ideal of R and let

x ∈ W (k). Let yn ∈ W (k) satisfy fn(yn) = x. Let ỹn ∈ W (R) be any lift of yn.

Then for n� 0, fn(ỹn) is independent of the choice and the map δ : W (k) → W (R)

defined by δ(x) = fn(ỹn), n large, is a ring homomorphism which is a section of

W (R)
π

−→W (k).

We consider the sequence

0 −→ W (m) −→W (R)
π

−→W (k) −→ 0.

Let Ŵ (m) =
{
x0, . . . , xi, . . . ) ∈ W (m) | almost all xi = 0

}
. Then Ŵ (m) is stable

under f and v and we define Ŵ (R) = {x ∈ W (R) |x − δπx ∈ Ŵ (m)}. Ŵ (m) is an

ideal in W (R) and consequently Ŵ (R) is a ring. This ring is stable under f and v.

It is easy to see that Ŵ (R) is a (non-noetherian) local ring which is separated and

complete in the topology defined by its maximal ideal Ŵ (m) + δ(p ·W (k)).

Now we define a Dieudonné display P over R in exactly the same manner as we

defined a display in Definition 1.2, replacing W (R) by Ŵ (R). Just as before there is

a map V ] : P → P (1) and we have

F ] ◦ V ] = p · idP , V ] ◦ F ] = p · idP (1) .
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We consider divided power thickenings S
π

−→ R such that for each a ∈ Ker(π) = J ,

we have γn(a) = 0 for n� 0 (depending on a). We have an exact sequence

0 −→ Ŵ (J) −→ Ŵ (S) −→ Ŵ (R) −→ 0.

The condition imposed on the divided powers implies that log induces an isomorphism

log Ŵ (J)
∼
−→ J (N).

With this nilpotency assumption on the divided powers, Lemma 2.1 and Theorem 2.4

extend to Dieudonné displays. Just as before this enables us to define the Witt and

Dieudonné crystals associated to a Dieudonné display.

We have a “forgetful” functor Dieudonné displays
F
−→ displays, P 7→W(R)⊗cW(R)P .

We say that a Dieudonné display P is nilpotent if F (P) is nilpotent. The func-

tor F establishes an equivalence of categories between nilpotent Dieudonné displays

and nilpotent displays. This follows easily from the fact that, for a divided power

thickening S
π

−→ R, the functor

Dieudonné displays/S −→ Dieudonné displays/R+ lifts of the Hodge filtration

is an equivalence of categories.

Proposition 6.1. — The category of nilpotent Dieudonné displays is equivalent via

a functor BT to the category of p-divisible formal group/R. If A is a finite R-algebra

(so a product of artinian local rings) and P is such a nilpotent display with base

change to A, PA = (P ′, Q′, F, F1), then we have an exact sequence

0 −→ Q′
F1−i−→ P ′ −→ BTP(A) −→ 0.

Proposition 6.2. — Let P be a finitely generated projective Ŵ (R)-module and

φ : P (1) → P (resp. φ : P → P (1)). Then there is a direct summand P tm of P

(resp. a projective quotient P ét of P ) such that φ induces on P tm (resp. on P ét)

an isomorphism. Further, if M is any Ŵ (R)-module equipped with an isomorphism

ψ : M (1) → M (resp. an isomorphism ψ : M → M (1)) and α : M → P (resp.

α : P → M) and φ ◦ α(1) = α ◦ ψ (resp. α(1) ◦ φ = ψ ◦ α), then α factors uniquely

through P tm (resp. P ét).

Proposition 6.3. — Let P = (P,Q, F, F1) be a Dieudonné display.

a) P = Q⇐⇒ V ] is an isomorphism.

b) IR P = Q⇐⇒ F ] is an isomorphism.

We say P is étale if a) holds and P is of multiplicative type if b) holds.

Proposition 6.4. — Let P/R be a Dieudonné display. There is a map P → P ét

to an étale Dieudonné display which is universal with respect to morphisms from P

to étale Dieudonné displays. The map P → P ét is surjective and if P nil is its kernel,

then Pnil = (P nil, P nil ∩Q,F, F1) is a nilpotent Dieudonné display.
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This proposition has a dual proposition which we do not state explicitly.

Our artin ring R is canonically a W (k)-algebra. Let k be an algebraic closure of

k, Γ = Gal(k/k) and R = R ⊗W (k) W (k), equipped with its continuous action of Γ.

If H is a finitely generated free Zp-module endowed with a continuous, for its p-adic

topology, action of Γ we set

P (H) =
(
Ŵ (R) ⊗Zp

H
)Γ

.

The natural map Ŵ (R) ⊗cW (R)
P (H) → Ŵ (R) ⊗Zp

H is an isomorphism. Let P(H)

be the étale Dieudonné display (P (H), Q(H), F, F1) where P (H) = Q(H) and F1 is

induced by f ⊗Zp
idH on Ŵ (R) ⊗Zp

H , F = p · F1.

Conversely, if P is an étale Dieudonné display over R define H(P) to be the kernel

of the Zp-linear homomorphism.

F1 − id : Ŵ (R) ⊗cW (R) P −→ Ŵ (R) ⊗cW (R) P.

Proposition 6.5. — These functors establish equivalences of categories between

étale Dieudonné displays over R and continuous Γ-modules, finitely generated and

free as Zp-modules.

Proposition 6.6. — Let P be a nilpotent Dieudonné display over R, P the corre-

sponding nilpotent Dieudonné display over R and CR the cokernel of F1 − i : Q→ P .

Then there is an isomorphism HomΓ(H,CR)
∼
−→ Ext(P(H),P).

This is proved using Galois cohomology to establish that H1(Γ,HomZp

(
H,Q)

)
=

(0).

Let G be a p-divisible group over R; we wish to associate to it a Dieudonné display.

As R is an artin local ring we have an exact sequence

0 −→ Ĝ −→ G −→ Gét −→ 0

where Gét is étale and Ĝ is a p-divisible formal group.

Write Gét = BT (H) = lim
−→

p−nH/H and Ĝ = BTcP
, where P̂ is a nilpotent

Dieudonné display.

Proposition 6.7. — There is a canonical isomorphism

HomΓ(H, Ĝ(R))
∼
−→ Ext(BT (H), Ĝ).

Theorem 6.8. — There is an equivalence of categories

Dieudonné displays/R
≈
−→ p-divisible groups/R.

This follows from Propositions 6.1, 6.6, 6.7 and the fact that there are no non-trivial

homomorphisms in either direction between étale and nilpotent Dieudonné displays

(resp. étale and p-divisible formal groups over R).
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Remark 6.9. — The following questions raised by Zink in [Z3] remain open.

(i) If G/R is a p-divisible group with associated Dieudonné displays P, is the

Dieudonné crystal associated to P (canonically) isomorphic to that associated to G

by crystalline Dieudonné theory? The answer is of course yes by Theorem 3.5 if G is

a p-divisible formal group.

(ii) Lau has shown that the equivalence between p-divisible groups and Dieudonné

displays is compatible with duality, [L2].

(iii) The classification when R is a complete noetherian local ring is obtained by

defining Ŵ (R) = lim
←−

Ŵ (R/mn) and Dieudonné displays in the obvious manner since

p-divisible groups/R
≈
−→ LIM

←−
p-divisible groupsR/mn.

7. WINDOWS AND DIEUDONNÉ DISPLAYS

IfK is a local field of characteristic zero with perfect residue field of characteristic p,

then one knows how to classify p-divisible groups over the ring of integer OK . If the

absolute ramification index e ≤ p − 2, the maximal ideal mK has nilpotent divided

powers and [Gr1] explains how to do this using the filtered Dieudonné module. A

more direct approach to this classification is given in [Fon1]. Breuil has extended this

result if p 6= 2 to the case where e is arbitrary,[Br], see also the appendix of [K]. Zink

has generalized Breuil’s result to give a classification of p-divisible groups over a local

finite flatW (k)-algebra S. When S = OK , Zink further shows that the category Breuil

uses, strongly divisible modules, is naturally equivalent to the category of Dieudonné

displays over OK . We indicate now Zink’s generalization.

Let R be a local ring with perfect residue field of characteristic p ≥ 3. Assume

there is a n such that xn = 0 for all x ∈ m. If S
π

−→ R is a divided power thickening

and S satisfies the same hypotheses we have the log : W (J)
∼
−→ JN, J = Ker(π). Let

W̃ (J) = log−1(J (N)). Then Ŵ (J) ⊂ W̃ (J) and they are equal if the γm(x) of each

x ∈ J are zero, for m � 0, depending on x. Denote by W̃ (S) the subring of W (S)

generated by Ŵ (S) (cf. § 6) and W̃ (J). If A is a p-adic local ring equipped with an

homomorphism A
π

−→ R and Ker(π) has divided powers compatible with those on

pA, we define W̃ (A) = lim
←−

W̃ (A/pn), the limit over those n such that pn = 0 in R.

Similarly we define Ŵ (A).

Definition 7.1. — (i) A frame for R is a flat Zp-algebra A which is a p-adic ring

equipped with a surjection π : A → R whose kernel has divided powers and an endo-

morphism σ : A→ A which lifts Frobenius.

(ii) A Dieudonné frame for R is a frame for R which, in addition, satisfies A/pnA,

is for all n a local ring whose maximal ideal satisfies the nilpotence condition imposed

on R and the Cartier map A
δ

−→W (A) factors through W̃ (A).
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(iii) A Dieudonné window for a frame (A, σ) (resp. a Dieudonné frame) is a finitely

generated projective A-module M a submodule M1 which contains JM , J = Ker(π),

a σ-linear map Φ : M → M such that M/M1 is a projective R-module, ΦM1 ⊂ pM

and M is generated by ΦM ∪ 1
p ΦM1.

The hypothesis that A
δ

−→W (A) factors through W̃ (A) implies that the composite

A
δ

−→W (A)
W (π)
−→ W (R)

factors through Ŵ (R). Hence we may associate to a Dieudonné window a Dieudonné

display over R as follows

P = Ŵ (R) ⊗AM

Q = ker
(
Ŵ (R) ⊗AM −→M/M1

)

F (ξ ⊗ x) = fξ ⊗ Φx , ξ ∈ Ŵ (R) , x ∈M

F1(ξ ⊗ y) = fξ ⊗ 1
pΦy , ξ ∈ Ŵ (R) , y ∈M1

F1(vξ ⊗ x) = ξ ⊗ Φx , ξ ∈ Ŵ (R) , x ∈M.

Theorem 7.2. — Let R satisfy our hypotheses and (A, σ) be a Dieudonné frame

for R. Then the functor Dieudonné A-windows → Dieudonné displays/R is an equiv-

alence of categories.

This theorem is established by constructing a quasi-inverse functor. To do this

one associates to a Dieudonné display a crystal generalizing the discussion of § 6 in

that we no longer require any nilpotence condition on divided power thickenings.

Lemma 2.1 and Theorem 2.4 extend to this situation. Note if the divided powers on

J = ker
(
S

π
−→ R

)
are not nilpotent it is essential that one works with W̃ (S) and not

Ŵ (S) for proving Lemma 2.1 in this context. Then, if P is a Dieudonné display over

R and P̃ is a triple over A which lifts P in the sense that P̃ = (P̃ , F, F1) where P̃

is a finitely generated free W̃ (A)-module, the window associated to P is

M = A ⊗
fW (A)

P̃ , M1 = Ker
(
M −→ R ⊗

cW (R)

P −→ P/Q
)
.

The crystal associated to P/R depends only on P = PR/p. For this Dieudonné

display we have

V
P

: P
(p)

−→ P

and this induces Φ : M →M , σ-similinear.

Let S be a finite flat local W (k)-algebra. Consider a presentation

0 −→ I −→W (k)[T1, . . . , Td] −→ S −→ 0,

where each Ti has image in the maximal ideal of S.
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Let A0 = the divided power envelope of I modulo p-torsion (i.e. if K =

Frac(W (k)), the subring of K[T1, . . . , Td] generated over W (k) by
{
xn

x! , x ∈ I
}
.

We have a surjection A0 � S. Let σ : W (k)[T1, . . . , Td] → W (k)[T1, . . . , Td] be f

semi-linear with σ(Ti) = T pi . Then σ leaves I + (p) stable. If J0 = Ker(A0 → S),

that is the divided power ideal, J0 + pA0 has divided powers and σ extends to A0, σ

lifts Frobenius. Let A be the p-adic completion of A0. If R = S/pn S for some fixed

n, then (A, σ) is a Dieudonné frame for R since one shows that A
δ

−→ W (A) factors

through W̃ (A). By Theorem 6.8 and 7.2, Dieudonné windows for (A, σ) classify

p-divisible groups over R.

Passing to the limit over n we obtain:

Theorem 7.3. — The category of Dieudonné windows for the frame (A, σ) is equiv-

alent to the category of p-divisible groups over S.

8. FURTHER RESULTS

Zink has applied techniques from his theory of displays to give new and simpler

proofs of a purity result for p-divisible groups. This result [dJO] states the following:

Proposition 8.1 (de Jong–Oort). — Let R be a noetherian local ring of dimen-

sion ≥ 2, U the complement of the closed point in Spec(R). If G/R is a p-divisible

group which has constant Newton polygon over U , then G has constant Newton poly-

gon over Spec(R).

Zink’s proof of this result uses, in part, ideas of Vasiu, who proved a more general

result of [V].

Langer and Zink have developed a theory of the de Rham–Witt complex valid for

X an arbitrary scheme over a Z(p)-algebra R. This theory is related to, but not the

same as the “absolute theory” of [HM]. It generalizes the classical theory of Bloch–

Illusie, [Ill1]. If R is a ring with p nilpotent in R and X is an R-scheme there are

complexes Wn Ω•X/R of Wn

(
OX

)
/Wn(R) differential graded algebras such that

Wn

(
OX

)
= Wn Ω0

X/R , d : Wn

(
OX

)
→Wn Ω1

X/R

satisfies d(γn(vξ)) = γn−1(vξ)d(vξ). There are algebra homomorphisms F :

Wn+1 Ω•X/R → Wn Ω•X/R and additive maps V : Wn Ω•X/R → Wn+1 Ω•X/R. If X/R

is smooth, then H
∗
(
X,Wn Ω•X/R

)
is canonically isomorphic to H∗crys

(
X/Wn(R)

)
.

Passing to the inverse limit one defines WΩ•X/R. It has operators F , V , d satisfying

the standard relations FdV = d, V d = dV p, dF = pFd.

If X/R is proper and smooth, we have

H
∗
(
X,WΩ•X/R

)
' H∗crys

(
X/W (R)

)
.
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As an application we give the Zink–Langer construction of the display associated to

an abelian scheme. Let X/R be an abelian scheme of relative dimension g. Let P =

H1
crys

(
X/W (R)

)
, a projective W (R)-module of rank 2g. Consider the subcomplex of

WΩ•X/R obtained by replacing W
(
OX

)
by IX = v(

(
W (OX)

)
. Denote this complex

by IWΩ•X/R.

We have a commutative diagram

(∗) IX
d

//

V −1

��

WΩ1
X/R

d
//

F

��

WΩ2
X/R

//

pF

��

· · ·

W (OX)
d

// WΩ1
X/R

d
// WΩ2

X/R
// · · ·

Let Q be the W (R)-module obtained as the H
1
(
X, IWΩ•X/R

)
.

We have an exact sequence

0 −→ IWΩ•X/R −→WΩ•X/R −→ OX −→ 0

where OX is viewed as a complex concentrated in degree zero.

Taking H
1 of this sequence we find

0 −→ Q −→ P −→ Lie(X) −→ 0.

Proposition 8.2. — Let F1 : Q → P be the f -linear map induced by the diagram

(∗). Then P = (P,Q, F, F1) is a display over R.

We end with a question and two comments:

1) Can the de Rham–Witt complex be used to directly construct the nilpotent

display associated to a p-divisible formal group over a Nagata ring R. More generally

we ask whether using crystalline techniques will allow us to associate a Dieudonné

display to a p-divisible group over a complete noetherian local ring whose residue field

is perfect of characteristic p.

2) Breuil has, extending work of Fontaine and Conrad, classified finite flat commu-

tative p-group schemes over OK (notation as in § 7) for p 6= 2. Crystalline Dieudonné

theory is defined for such group schemes over any base where p is nilpotent and has

good faithfullness properties if the base is of characteristic p and is a reasonably nice

scheme, [BM2], [dJ1], [dJM]. Thus it seems reasonable to hope that a good theory of

displays which will classify finite flat p-group schemes can be developed.

3) In [Z5], page 132, Zink says he “would expect” that BT defines an equivalence of

categories between nilpotent displays and p-divisible formal groups over any noethe-

rian R. Recently Lau, [L1], has proven this conjecture of Zink without the noetherian

hypothesis on R, requiring only that R is separated and complete for the p-adic topol-

ogy. His proof uses the Grothendieck-Illusie theory, [Ill2], of deformations of truncated

Barsotti-Tate groups.
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