
Astérisque

BERNARD CHAZELLE
The PCP theorem

Astérisque, tome 290 (2003), Séminaire Bourbaki, exp. no 895, p. 19-36
<http://www.numdam.org/item?id=SB_2001-2002__44__19_0>

© Société mathématique de France, 2003, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SB_2001-2002__44__19_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

THE PCP THEOREM

[after Arora, Lund, Motwani, Safra, Sudan, Szegedy]

by Bernard CHAZELLE

Seminaire BOURBAKI

54e annee, 2001-2002, n° 895, p. 19 a 36
Novembre 2001

1. INTRODUCTION

The notion of interactive proof systems evolved out of cryptography and computa-
tional group theory. The cryptographic context is best explained through a little tale

(perhaps one day to come true). One fine morning, one of your esteemed colleagues
wakes up with, in his head, a crisp, concise, complete proof of Riemann’s Hypothesis!
Wisdom being one of his many qualities, he is not about to post his proof on the
internet. Paranoia being another one, he is not even willing to reveal a single bit of
information about the proof; that is, besides its conclusion that the RH is true. Is

there any way for your colleague to convince you and the rest of the mathematical

community that, indeed, he has a correct proof? Of course, one needs to define what

exactly is meant by not "revealing a single bit". That is the subject of zero-knowledge
cryptography.

The PCP theorem addresses a simpler variant: Can your colleague write down his

proof in such a way that, were you to peek into it at a constant number of randomly
chosen spots, you would leave utterly convinced of its validity? In other words, can
he encode the proof as a string of bits so that: (i) a correct proof will never fail to
convince you; (ii) an incorrect one will fool you with only a negligible probability?
The catch is, you will be allowed to look at only a constant number of bits chosen at
random. The PCP theorem asserts the existence of such an encoding. It is striking
that the number of lookups can be kept constant regardless of the length of the proof.
In fact, if you can put up with a failure rate slightly above 1/2, i.e., accept a wrong
proof half the time, but still never reject a correct one, then the number of bits can
be reduced to 3. On the other hand, if you are allowed to read as many bits as are
needed to store, say, two lines of this article, the probability of failure drops to 10-l00,
A key point is that the new proof can be derived from the old one purely syntactically.
In other words, one can write a compiler to translate the proof mechanically without
any knowledge of mathematics. Furthermore, the new proof is not much longer than
the previous one.

20

A common initial reaction to the PCP theorem is that it must be either wrong or

trivial. Why wrong? It seems to imply that any flaw in the proof should spread itself
all over the place, so as to be caught immediately in a random peek. But, how can so
much information be stored in so few bits? Here is how: If the proof is correct, print
it as such; if it is wrong, then intersperse the statement 2 + 2 = 3 at every other step.
The problem with that encoding is that a correct proof will not convince anyone.
The beauty of the PCP theorem is not that flaws are caught so easily: it is that the

mere absence of a flaw is persuasive in and of itself. There is nothing amazing about

catching a liar’s lie. But it is quite a feat to hear a true story from a congenital liar
and end up believing it.

2. THE PCP VIEW OF NP

A Turing machine is a computer model whose main feature, for our purposes, is to
be universal: in particular, whatever it can compute in time polynomial in the length
of the input is believed to constitute what is tractable in any (non-quantum) model.
The class P consists of the sets for which membership can be decided by a Turing
machine in polynomial time. For example, the set of singular square integer matrices
is in P, because determinants can be computed in a polynomial number of steps. The
class NP includes the sets for which membership can be verified in polynomial time.
For instance, the set of polynomials in ..., Xn~ with at least one zero in
is in NP. The reason is that, given a polynomial f and a point x E one can

check if f (x) = 0 in time polynomial in the number of bits needed to represent f. To
find such a zero from scratch seems more difficult (to put it mildly), and it is widely
conjectured that P ~ NP. Within computer science, this open question dwarfs all
others in importance.
A 3-CNF formula is a conjunction of clauses, each one consisting of three lit-

erals ; for example, (vi v3) ~ (v2 V v3 V ~ v4). It is satisfiable if some

true/false assignment of the v2’s makes the formula true. The one above is, whereas

(vi V vi V fi) A (T vi V V is not. The set of satisfiable 3-CNF formulas is

called 3-SAT. A classical result of Cook and Levin says that 3-SAT is NP-complete,
meaning that, not only it is in NP, but deciding membership in any NP set can be
reduced to testing the satisfiability of a 3-CNF. The Cook-Levin theorem shows that
to understand 3-SAT is to understand all of NP.

Many other sets are known to be NP-complete: for example, the set of 3-colorable

graphs. (A graph is 3-colorable if its nodes can be colored red, white, and blue with no

edge sharing the same color.) The existence of NP-complete sets brings breathtaking
universality into the computing picture. It implies that anyone who can quickly color

graphs can also solve algebraic equations over finite fields, factor integers, compute
discrete logarithms, find short vectors in lattices, determine the largest clique in a

graph, etc.

To formalize what a mathematical proof has to do with NP takes some effort, but
the intuition is clear. In any reasonable axiomatic system, this set is in NP:

{ (T.1 n) T is a theorem with a proof of size at most n~,

where denotes the 0~1 string formed by writing the theorem T in binary in the
axiomatic system and appending n ones at the end. A prover can guess a proof of

length at most n, and the verifier can then check it in time polynomial in its length.
The class NP can be described in the language of proofs. If L E NP then, given

any x E L, there exists a short proof, i.e., a polynomial-time computation, that x
indeed belongs to L; for example, the solution of an algebraic equation. Conversely,
if x g L, then no proof can convince anyone that x is in L. Probabilistically checkable

proofs (PCP) add a small twist to this view: randomization. A PCP system for a

set L consists of a string of bits (the proof) and a Turing machine with access to
random bits (the verifier). Given an input x of n bits, the verifier generates r (n)
random bits(l); then it looks up q(n) bits of the proof at locations of its choice. The
lookups are done all at once nonadaptively. Finally, after a polynomial amount of

(deterministic) computation, the verifier must either accept or reject the proof. The
class of sets L that satisfy the two requirements below is denoted by PCP[r(n), ~(?~)]:

- Given any x E L, there is a proof that causes the verifier to accept x with

probability 1.
- Given any x ~ L, every proof is rejected with probability at least 1/2.
The functions r and q are called the random-bit complexity and query-bit complexity,

respectively. To alleviate the notation, both of them are understood up to a constant
factor. If r(n) = 0(log n), the number of distinct random strings is polynomial and, by
running the verifier on all of them, it is immediate that PCP [log n, 1] C NP. Proving
the reverse inclusion requires a great deal of ingenuity. The purpose of this article is
to explain the proof at a conceptual level, leaving mathematical technicalities aside.
The PCP theorem states that

Note that the proof size can be assumed to be polynomial since at most
bits of the proof have a chance of ever being read. The PCP theorem can

be restated in a way that highlights its "error-spreading" aspect. Given any 3-CNF
formula ~ on n variables, there exists another one, denoted by ~, which contains
variables and is satisfiable if and only if ~ is. Furthermore, if W is not satisfiable, then
no truth assignment can satisfy more than a fraction 1 - é of its clauses, for some
constant é > 0. Finally, W can be derived from ~ in polynomial time.

~ 1 ~ Throughout our discussion, random points or numbers are drawn uniformly, independently from
a set that is always clearly understood from the context; in this case the set is {0,1}.

It is instructive to see how this follows from (1), because the argument anticipates
aspects of the proof of the PCP theorem. Consider a PCP system for ~. Among the
2r~n~ possible random strings, some lead to acceptance, others (possibly) to rejection.
Given such a string s, let IIi,..., IIq be the bits of the proof read by the verifier. (The
locations of these bits depend on s but not on the proof itself.) Let ~g be a Boolean
formula that evaluates to true if and only if 03A01, ... , IIq lead to acceptance: 03A6s has

q = 0(1) variables, each one corresponding to one of the bits read. It is routine to

convert into a constant size 3-CNF formula ~s by adding a few auxiliary variables
if necessary. The formula W = ns ~s fits the bill. To see why, consider the (only
interesting) case: If 03A6 is not satisfiable, then regardless of the proof, i.e., of the truth
assignment of the variables, at least half of these formulas are false and, hence,
so is a constant fraction of the clauses in ~. D

This characterization of the PCP theorem, which interestingly makes no mention
of proofs, verifiers, or even randomization, points to the connection between PCP and
inapproximability. Indeed, it implies that it is NP-complete to distinguish between a
satisfiable formula and one for which no truth assignment satisfies at least a fraction
1 - é of the clauses. Another way to look at this result is that if we set out to

maximize the number of satisfied clauses in a formula, then we cannot hope to find
an approximate solution within a factor 1 - é of the maximum in polynomial time,
unless P = NP. (Other applications are mentioned in the Historical Notes section.)

Remark 2.1. - From a mathematician’s perspective, the PCP theorem might appear
to focus on the "uninteresting" part of mathematics. It is a restatement of NP, not
of P; as such, it says nothing about the difficulty of finding proofs. Also, it treats

readers as mere fact-checkers. But mathematicians read proofs not so much to find

bugs in them but to understand the ideas behind them. This mental picture, so vital
to mathematics, is absent from the PCP viewpoint. Within the restrictive framework
of verification, the PCP theorem is an impressive statement nevertheless.

Remark 2.2. - The proof of the PCP theorem is a mix of elementary algebra and

probability theory; it is long and technical but not particularly difficult. Its originality
lies elsewhere: in two places to be precise. One is its use of computational self-

reducibility. Instead of keeping the usual separation between proving and verifying,
the verifier’s work is itself re-encoded as part of the proof: the reader of a proof
is made partly its author! The other intriguing aspect of the PCP theorem is its

ingenious use of error-correcting codes to express not just signals and bit streams (in
typical coding theory fashion) but mathematical proofs, instead.

We close this section presenting a short, archetypical motif of the proof. Given a
3-CNF formula ~, we wish to design a PCP system to verify its satisfiability. The
idea is to construct a large family of multivariate polynomials fz i such that: if ~ is

satisfiable, then any satisfying truth assignment corresponds to a common zero to all

the /,’s; otherwise, no more than half of them have a common zero. Suppose that the
proof falsely claims that ~ is satisfiable. The verifier asks the prover to present the
value of the f 2’s at that common zero. If the prover obliges, then half of them will
be nonzero and the verifier will easily catch the lie by random sampling. Therefore,
the prover must cheat by substituting 0 for the actual values. The verifier’s strategy
is then to push the prover into the liar’s standard pattern of generating new lies to
cover up old ones.

Here is one way to do that: Encode any linear combination of the Ii’s at the
claimed zero as the image of a linear form g at some point x, and ask the prover to
present g by values, i.e., provide a table, indexed by x, of all the values of g(x). If
the prover lies at one spot g(~), then it must lie all over the place as well, since the
verifier can evaluate g(x) as g(x + y) - g(y) for a random y, and hence, quickly spot
any inconsistency. Many other such error-detecting mechanisms are needed. They
all share the same goal, which is to force the prover to present functions that are
very close to some "canonical" functions. Canonical functions are chosen to satisfy
certain functional equations. Furthermore, any family of functions that satisfy these
equations yield a satisfying assignment for ~ and, hence, a contradiction.

Notation. - denotes the set of m-variate polynomials of total degree at most
d with coefficients in Fq, the finite field of q elements (not to be confused with the
query time). We restrict ourselves exclusively to prime fields. We say that a function
f : Fq H Fq is 6-close to a (finite) family of functions if, for some g in that family,

g(x)~ 8, for random x E The smallest such J is called the distance
of f to the family. Given any nonempty H C Fq, we use f as shorthand for

f (xl, ..., xm). All logarithms are to the base 2.

3. TESTING TOOLS

Intuitively, the encoding of a proof in a PCP system must be such that any local
deviation from what the verifier expects should be visible nearly everywhere. The
relation between a polynomial and the corresponding polynomial map shares this
characteristic: Changing a polynomial map at a single point has a rippling effect
visible almost everywhere. This analogy suggests a line of attack: encode proofs as
polynomials. In this section we pursue this lead and build a number of algebraic
tools to be used later when proving the PCP theorem. We specify a polynomial in
two different ways. It can be presented, i.e., written down, by coefficients (with the
obvious meaning) or by values (as mentioned earlier). The appeal of the presentation
by values is that it is extremely redundant and, hence, provides a built-in error-
correcting mechanism.

3.1. The Sumcheck Test

Given f E .~’q m, c E Fq, and some nonempty H C Fq, how can a proof convince
a verifier that LHTn f = c? Of course, the verifier can compute the sum on its own
without a proof, but that requires evaluating f at points. Can it be done
faster? If the field is big enough, say, q > 2dm, it can be done with a single evaluation
of f. Write fa = f (a, x2, ... , E if m = 1, denotes f (a). For
m > 0, the PC proof is defined recursively as follows:

PC PROOF THAT f = c

[1] Present g(x) = fx by coefficients.

[2] For all a E Fq, write down the PC proof that f a = g(a).

The recursion bottoms out at m = 0: no PC proof needed there. The verifier

adopts a two-pronged strategy: First, trust the proof and check that it supports the
claim; then, test the proof for internal consistency. Accordingly, the verifier begins by
checking that = c, rejecting the proof if this fails. Next, it verifies that g(x) is,
indeed, the polynomial it thinks it is. It picks a random a G Fq, and uses the PC proof
in [2] to verify recursively that, indeed, f a is equal to g(a). (If m = l, the
verifier does not need to go to [2], since f a is available via a single evaluation
of the polynomial f .) If this succeeds, the verifier accepts the proof and its claim that

f = c; else, it rejects it.

To argue that this works, we first observe that if the proof is correct, the verifier

always accepts it. On the other hand, if any test fails, rejection ensues. So, the

only case worth considering is where the claim is not true but all the tests pass and,
therefore, the proof is accepted. Important: all subsequent correctness proofs in this

paper will be limited to this case, too, without a need to repeat why.
The case m = 0 is error-free. Note that it is the (only) place where the verifier

can match the proof against its own knowledge of f. All other tests involve only
the internal consistency of the PC proof. Assume now that m > 0. We prove by
induction on m that the verifier wrongly accepts with probability at most dm/q. Since
the first test passes, g(x) cannot agree with the true f x everywhere (else their
respective sums would be both equal to c). But, being univariate polynomials of degree
at most d, they agree at x = a with probability at most d/q. This agreement might
lead the verifier to wrongly accept. If there is disagreement at x = a, however, the
verifier is back to its old task, but now with only m - 1 variables. So, by induction,
it is fooled with probability at most d(m - 1)/q. Adding the earlier bound of d/q
completes the induction.

LEMMA 3.1. - Given any f E ,~’q m, c E Fq, and nonempty H C Fq, if
f(x) = c, then there exists a proof of that fact that the verifier always

accepts. Otherwise, no proof is accepted with probability greater than dm/ q. The ver-
ifier reads O(dm log q) bits of the proof, needs O(m log q) random bits, and performs
a single evaluation of the polynomial f.

The most remarkable feature of this test is that only one evaluation of the function f
is necessary. Note how increasing the size of the field, by making the polynomial
map f increasingly redundant, has the effect of decreasing the error probability. The
sumcheck test can be used in conjunction with the simple fact below to test if a
function that is close enough to a polynomial vanishes everywhere.

LEMMA 3.2. - Given H C Fq of size h > 0, it is possible to build polynomials
Rl, ... , Rq~ in .~’q ~, each one in time (h + so that for any nonzero function
g : Hl ~ Fq and a random index 1 i qe, the probability that gRi = 0 is at
most

3.2. The Low-Degree Test

,

We wish to design a PCP system to convince a verifier that a function f : Fq H Fq
is close to being a polynomial. Restrictions to lines are particularly useful for that
purpose. Given t E Fq, let f a,b (t) denote the univariate function f (a + tb) . We define

as the expected distance of fa,b to for random a, b E Fq .
LEMMA 3.3. - If is large enough, given any function f : Fq, the
distance of f to is at most for some absolute constant c > 0.

Intuitively, this is saying that if the restriction of a function to a random line is
close to a polynomial, so is the function itself. This suggests an obvious PCP system.

PC PROOF THAT f IS 6-CLOSE TO
For every pair a, b E present by coefficients the polynomial
ga,b E that is closest to f a,b.

The verifier chooses two small constant parameters b, ~ > 0 and picks k =
random (ai, bi, ti), with ai, bi E Fq and ti E Fq. Next, it checks that

9 ai, bi (t2) = f (a2 + tibi), for each 1 i k. If all k tests succeed, then the proof is
accepted. Any failure means rejection.

Correctness is immediate: If f E F;,m, then ga,b(t) coincides with f (a + tb), for all
a, b, and all tests succeed. Suppose now that the distance from f to exceeds ~.
For any fixed and random ti, the probability that f(ai + tibi) =1= gai,bi (ti) is

precisely the distance from f ai,bi to ,~q 1. Averaging over all ai, bi, it follows from
Lemma 3.3 that, for any fixed i and random ai, bi, ti,

therefore, all k tests succeed with probability less than (1 - ~. This implies
the following lemma.

LEMMA 3.4. - Let ~, ~ be two arbitrarily small positive constants. Given a function
f : Fq, fi~ some integer d such that is large enough. If f E .~’q m, then
there exists a proof that the verifier always accepts. If f is not ~-close to .~q m, then
no proof is accepted with probability greater than ~. The verifier reads O(d log q) bits

of the proof, needs 0(mlogq) random bits, and performs D(1) evaluations of f.

If f is 6-close to ,~’q m, then its nearest polynomial (unique for small enough ~)
can be evaluated at a random point by using f. To evaluate it at an arbitrary point,
however, requires a recovery mechanism. The striking feature of the result below is
that a single evaluation of f is sufficient to recover f(x) at k (non-necessarily random)
points.

LEMMA 3.5. - For b > 0 small enough, fix d such that is large enough. Given
a function f : Fq, let f o be a nearest polynomial in Fdq,m. Pick k arbitrary
points, zl, ..., zk in If f is 03B4-close to Fdq,m, then f o is unique and there exists a

proof that allows the verifier to output f o (zl), ... ,
Otherwise, with probability 1 - the verifier either outputs the right val-

ues or rejects the proof. The verification reads O(dk log q) bits of the proof, needs
random bits, takes time, and perf orms a single evaluation

of the function f.

3.3. The Linearity Test

How hard is it to tell whether a function is almost a linear form, i.e., x E Fq H
for some a E We restrict ourselves to the case q = 2, the only one of interest
for our purposes. Consider a function f : F2 - F2 such that, for random x, y E F2 ,

+ f (y) ~ f(x + y)~ b, for some small enough b > 0. A simple argument
shows that the function is 26-close to some linear form. By now, we trust that the
reader can easily write a PC proof for linearity testing.

LEMMA 3.6. - Given a function f : F2, fi~ a small enough constant b. I f f
is a linear f orm, then there exists a proof of that fact that the verifier always accepts.
On the other hand, if its distance to any linear f orm exceeds b, no proof is accepted
with probability greater than b. The verifier reads 0(1) bits of the proof, needs 0(m)
random bits, and perf orms 0 (1) evaluations of the function f.

4. THE PCP THEOREM

The proof consists of three parts: the first two involve the design of suboptimal
PCP systems for 3-SAT; the third provides a composition method that allows us to
plug the two suboptimal schemes together to produce the desired PCP system.

4.1. Optimal Random Bit Complexity: NP C PCP[logn,
Let ~ be a 3-CNF formula consisting of m clauses Cl, ... , C~ and n vari-

ables vl, ... , vn. Since m = 0(n3) and our PCP bounds in this section are all
(poly)logarithmic, we might as well assume that m = n. We associate a polynomial
with each clause in a fairly obvious way:)Xk with ‹ vi V Vj V plus seven
other possibilities. It is clear that ~ is satisfiable if and only if all these n polynomials
have a simultaneous zero over Fq. Given a 0/1 assignment f of the we define a
function Gf : ~ l, . , . , n~4 H ~0,1 ~ as follows:

~ is satisfiable if and only if there exists an assignment f such that the function
Gf vanishes everywhere. To take advantage of the redundancy of polynomial maps
mentioned earlier, we encode f and then Gf as polynomial maps.

Let h = and m = and define q to be a prime sufficiently larger
than Without loss of generality, assume that n = hm. Fix a bijection between
{1,..., n} and Hm, where H = ~0, ... , h -1 }; for example, write i -1 in base h. From
now on, we regard the index i of xi as an element (yl, ... , ym) of Hm C The
assignment f maps Hm to ~0,1} and, by Lagrange interpolation, can be extended
into a map defined by a polynomial of degree (h - l)m (still called f, for simplicity):

Similarly, we regard Gf(i,j, k, l) as a function from H4m to Fq, which we extend into
a polynomial Gpoly in ,~’q,4m. This is how we do it. First, we express Gf in a more
unified manner:

with the obvious meaning of all these functions: s specifies one of the three literals
in the clause Gz; is is the index (viewed as an element of Hm) of the corresponding

variable Xis and is its 0/1 assignment; bs (l) = 0/1 indicates if Xis is negated,
etc. The polynomial extension of Gf is defined as

where as, bs are the polynomial extensions of as, bs as defined in (3). It is immediate

that Gpoly is of degree less than 9hm. (Note that we avoid Lagrange interpolation on
Gf itself.)

PC PROOF THAT 4$ IS SATISFIABLE

[1] Present f : Fq H Fq by values, where f is a polynomial extension of
a satisfying assigment for ~.

[2] Write down the PC proof that f is c-close to ,~’q m. (low-degree test)
[3] Form all R2’s in Lemma 3.2 (£ = 4m) and, for each 1 ~ i ~ qf, write

down the PC proof that 03A3H4m GfpolyRi = 0. (sumcheck test)

The verifier applies the low-degree test on f and rejects the proof if it fails. Other-
wise, it picks a random 1 i q4m, and sumchecks that 03A3H4m GfpolyRi = o. It

accepts the proof if this test succeeds and rejects it otherwise.

Remark 4.1. - The verifier can compute Ri and as, bs on its own and also evaluate

Gpoly anywhere by querying f at three places in the proof. Also, we said earlier that
the sumcheck test requires that the verifier can trust its evaluations of f. But what
if the prover cheated in the presentation of f ? This cannot happen: whatever is

presented is what defines f.

Why does this protocol work? As usual, we do not have false negatives. If ~ is

satisfiable, then the prover only has to stick to the scenario above and all tests will
succeed. Suppose now that ~ cannot be satisfied. For the usual reasons, we assume
that all tests (i.e., low-degree and sumcheck) succeed. We distinguish between three
cases:

(1) f E ,~q m : Then, is a polynomial of degree at most 9hm, which is nonzero
because ~ is not satisfiable. So, by Lemma 3.2, the probability that the sum to check
is 0 is at most 4hm/ q. Assume that it is not 0.

The degree of GpolyR2 does not exceed 13hm; therefore, by Lemma 3.1, the prob-
ability that the sumcheck test succeeds is This bounds the probability of
failure in this case by 0(hm2/q).

(2) f is E-close (but not 0-close) to .~’q m: Let f o be a nearest neighbor in ,~~ m.
The sumcheck test requires a single evaluation of Gpoly and, hence, evaluations of f at
three points. The probability that f and f o agree at all three points is at least 1- 3~.
The agreement means that the sumcheck test is, in effect, carried out on
The previous case now shows that the failure probability is at most 3E + 0(hm2/q).

(3) f is not E-close to ,~’q m: By Lemma 3.4, the low-degree test will fail to catch
that fact with probability at most c.

To summarize, the verifier might fail to spot an inconsistency with probability
 1/2, for a small enough constant £ > 0. Since q = 0(m4h3), the num-

ber of proof bits read is the running time is (hm)O(l) ==
the number of random bits needed is O(m log q) = O(log n) (the motiva-

tion for our choice of h), and the number of places at which the candidate assignment
function is evaluated is 0(1). This proves that, indeed, NP C P CP ~log n,

4.2. Optimal Query Bit Complexity: NP C 1]

Adding random bits allows the verifier to do with fewer lookups; in fact, a constant
number of them. The strategy is roughly the same as before. Since the verifier is given
access to only 0(1) bits of the proof, however, the ground field must be of constant
size, so we set q = 2.

Let ~ be a 3-CNF formula consisting of m clauses Ci,... Cm and n variables
vl , ... , vn . As usual, we model each clause, say, -’ vi V vj V -~ vk as This

defines m cubic polynomials G1, ... , Gm, and ~ is satisfiable if and only if all the Gi’s
have a common zero over F2. Given r = (ri,... rm) E F2 , let Fr(x) == ~ riGi(x).
Our interest in Fr comes from this (trivial) fact:

LEMMA 4.2. - is satisfiable, all 2m polynomials Fr have a common zero; other-
wise, given any a E F2 and a random r E F2 , Fr(a) = 0 with probability 1/2.

The PC proof of satisfiability is based on this simple test. The prover wants to

convince the verifier that it knows a common zero a to all the Fr’s (whether that is true
or not). To do that, the proof will list the values of Fr(a), for all r, so that the verifier
can test that, indeed, Fr (a) = 0. The prover must also provide a consistency check
that satisfies the verifier that its evaluations of Fr are correct. The cubic polynomial
Fr can be written as Fr(x) = f r + E. firxi + E.j XiXJ. + frijk The

verifier can evaluate Fr (a) by using the three linear forms
~

Forgive our (abusive) notation y to refer to a set of n, n2, and n3 labeled variables,
respectively. The PC proof will present each Ha by values (i = 1,2,3). Of course, no
guarantee exists that the prover will not corrupt the presentation.

To catch any cheating, the verifier relies on two sets of functional equations: the
Hi’s are (i) linear and (ii) related by the identities

where y, y’ E F2 and z E F2 . If y E F2 and z E F2, then Y (9 z denotes the vector
E F2t.

PC PROOF THAT ~ IS SATISFIABLE

Present the functions Hf, ~f~ by values, where a is a common
zero to G1, ... , G m .

The verifier performs three basic sets of tests. Fix some small constant c > 0.
- The first test is to check the linearity of each Hf, by using the criterion of

Lemma 3.6, with 6 = é2. The verifier rejects the proof if any of these 3 tests fail.
From now on, any evaluation of Hf (y) is to be immediately confirmed by the following
test: pick a random y’ and check that Ha(y) = Ha(y + y’) - If this test ever

fails, the proof is rejected.
- Next, the verifier checks that the Ha’s are related by the two identities (5). Each

one is tested 0(l/c) times for random pairs (y, y’) and (y, z), where y, y’ E F2 and
z E F22. Again, any failure implies rejection of the proof.

- Finally, the verifier picks a random r and evaluates Fr (a). To do that, it computes
on its own yi = (f r), y2 = (f r~), y3 = as well as f r, and then looks up the

proof at three places to compute the sum Fr(a) = fr + Hl (yl) + H2 (y2) + H3 (y3).
If Fr (a) = 0 and none of the previous tests have failed, the verifier accepts the claim
that ~ is satisfiable.

Why does this work? If ~ is satisfiable, then the proof needs simply to conform to
the directives of the verifier and it will be accepted. Suppose that ~ is not satisfiable
and that, by contradiction, the proof is accepted. What is the probability of failure?
If the linearity tests passes then, by Lemma 3.6, with probability a least 1- 3~2, there
exists a linear form H2, for i = 1, 2, 3, that disagrees with Hf over a fraction at most
s2 of its domain. This means that, with probability 1- 0(c), we can assume that all
identity tests are performed with respect to the true values of Hi . If either identity
fails to be satisfied by the Hi’s, then by Lemma 4.3 (and its omitted analog for the
first identity) a conservative estimate of 0(~) bounds the probability that the verifier
fails to catch that fact.

Therefore, with probability 1- 0(6-), the value Fr(a) computed by the verifier is,
indeed, f r + jii (yi) + H2 (y2) + H3 (y3), for some linear forms Hi defined by some
vector a in accordance with the format specified by (4). Since ~ is not satisfiable, we
know by Lemma 4.2 that the value of Fr(a) is zero with probability 1/2. Therefore,

the verifier will accept a wrong proof with probability 1/2 + 0(c). By setting E to a
small enough constant and repeating the verification, we bring the failure probability
below 1/2. The number of random bits is 0(n3) and the number of bit lookups in
the proof is constant. This concludes the proof that NP C 1].

LEMMA 4.3. - If H3(y ® z) - Hl(y)H2(z) is nonzero then, with probability 1 /4, it

evaluates to 1 at random y, z.

4.3. Self-Reduction: NP = PCP ~log n, l~
We have built two PCP systems: one, Sl, needs O(logn) random bits; the other,

62, uses 0(1) queries. We now combine them to extract the best feature from each.
The basic idea is simple. We caught a glimpse of it in Section 2. Recall the action

of the verifier Vi for Sl. First, it generates a random bit string s; then, it computes
a set of addresses ii , ... , iq to look up in the proof II, where q = (log n)°(1). Upon
reading the corresponding bits, IIiI , ... , 03A0iq, the verifier evaluates a predicate in time

to decide whether to accept or not.

Now comes the self-reducibility part. By the Cook-Levin theorem the predicate in
question can be expressed as a 3-CNF formula ~S of size The verifier accepts
if and only if there exists a string X s such that the concatenated string Iliq Xs
forms a satisfying truth assignment for ~S. The key idea is that a PCP system such
as 32 is exactly the sort of thing that can be used to check the satisfiability of ~S . So,
instead of computing the verification predicate itself, Vi can hand the problem over
to the PC proof system 32. Its verifier V2 will then consult its own proof to check
whether satisfiable, and will accept or reject accordingly. A minor technical
point: Of course, we cannot let both Vi and V2 err with probability 1/2. By repeating
the verifiers’ runs (the standard trick), we can trivially lower the odds of an error to
any small constant.

Even though the number of bits read in the proof can be arbitrary, it is important
for composition purposes that the number of entries be 0(1). Polynomial extensions
give us a convenient tool for achieving that. A proof II of length N can be viewed as
a function f : ~l, ... , ~0, l~, where f(i) = lli. As we did in Section 4.1, we can
change our point of view and regard f as a function from Hm to ~0,1~, where Hm is
in bijection with ~1, ... , TV} and H = ~0, ... , h -1~, for some parameters h, m such
that N = hm. (Pad the proof with junk if N is inexpressible in this way.) Let / be
a polynomial extension of f in .~’q m. The proof II is now rewritten as a presentation
of f by values, with all the bells and whistles needed to apply the low-degree test and
the recovery mechanism (Lemmas 3.4 and 3.5). The verifier applies the low-degree
test to check that the presentation is 6-close to .~’q ~ (for some suitably small 6 > 0),
and rejects the proof if it is not. Otherwise, it appeals to Lemma 3.5 to evaluate f at
k (= q) points by a single evaluation of f . In this way, the verifier can gain access to

03A0i1 ... 03A0iq in 0(1) queries to the new proof. Note that an entry in this new proof is

no longer a single bit but a field element represented as a bit string. For simplicity,
we still call the new proof II: the difference is that now q = 0(1).

The benefits of composing proof systems are now obvious. Let us try our hand at
composing Sl with itself, i.e., Sl with 62, where 82 denotes 5’i. The verifiers for Si
and 82 need and O(log(log n)°(1)) random bits, respectively, i.e., a total of

of them. Obviously, the number of queries remains 0(1). All the verification
work, being now done by 62, amounts to i.e., (log log n)o(1) . This
bound can be further reduced by iterating the composition, but this is not the way to
go to make it 0(1). For that, we take the previous system, call it 63, and compose it
with 62. This requires = random bits, 0(1) queries
and 0(1) amount of work. It follows that 0(1) bits are read in the proof, and the
PCP theorem is proven.

But is it really? The task of Vi is not only to check that ~S is satisfiable but that
IIil ... 03A0iq is part of a satisfying assignment.

Here is a simple illustration of the conundrum we face. Say, a prover claims to have
a satisfying assignment for /~2 Ci. A verifier might want to check this by picking Ci at
random and verifying that the assignment makes Ci true. But suppose that, instead,
it chooses to delegate that task to some other PC proof system. A second verifier will
then take Ci as input and check that it is satisfiable. But any disjunction of three
literals, such as Ci, is always satisfiable. What needs to be checked is not whether
Ci is satisfiable on its own, but whether it is by using the assignment specified by 6’i.
Returning to V2 , its job is not to check that is satisfiable but that there exists Xs
such that Xs makes ~S true. To resolve this consistency issue is key to
making self-reducibility work. This is easy to do; in fact, by reducing the number of
queries to 0(1), we have done the hardest part already.
We sketch what remains to be done.

For the verification to be delegated to V2, of course, it is necessary to encode

IIiqXs into the format IIiqXs) that V2 expects. It might be tempting
to simply append at the end of II, but doing so would raise the
consistency problem mentioned earlier. Instead, we must effectively replace II (and
not just add on to it) with the encoding cr of every possible string IIiqXS. But
to do so would cause the same II2 J to appear in different encodings throughout the
proof, again raising consistency issues. The solution is to encode each 03A0ij separately.
Specifically we replace each 03A0ij by 03C3(03A0ij). Likewise, we encode Xs

This solves one problem, consistency, only to create another one. In this scheme,
~/2 does not have access which is the only encoding it can read,
but to 03C3(03A0i1) ... 03C3(03A0iq)03C3(Xs). Is that good enough? Instead of encoding a whole
truth assignment ai ... an via r, suppose we encode it in chunks: first 0"(al ...
then ~(ail+1 ’ ’ ’ ai2), etc, and finally Q(a2q_1+1 ’ ’ ’ an). Can the verifier deal with that

sort of split f orm encoding? The answer is yes. It is, in fact, a rather simple exercise
to modify V2 accordingly.

This completes the proof of the PCP theorem or, at least, of its conceptual outline.
The doubting reader can always sample the proof at random and see if that helps...

5. HISTORICAL NOTES

Following the seminal work of Goldwasser, Micali, and Rackoff [20] and Babai [5],
which introduced the notion of interactive proofs, an important variant was introduced
by Ben-Or et al. [9], in which the verifier interacts with not one but several provers.
This framework led to early incarnations of PCP systems by Fortnow, Rompel and
Sipser [14]. The idea of putting tight resource restrictions on both the verifier (query
time) and the proof (size) originated in the works of Babai et al. [6] and Feige et al. [13].
The algebraic view of Boolean expressions gained currency in a series of papers that
highlighted the enormous expressive power of interactive proofs [7, 24]. Turning to
co-NP, Lund et al. [24] explained how a prover can convince a verifier that a graph
is not 3-colorable. (By contrast, to convince someone that a graph is 3-colorable is
trivial.) Finally, the ultimate power of interaction was resolved by Shamir [30], who
proved that languages with interactive proofs are precisely those that can be decided
in polynomial space.

The current notion of PCP itself, with its focus on randomness and query complex-
ity, was formally introduced by Arora and Safra [4]. This development was spurred in
large measure by the key insight of Feige et al. [13], which for the first time tied proba-
bilistic proof systems to inapproximability. Babai, Fortnow, and Lund [7] established
that coincides with the class of problems solvable in nondetermin-
istic exponential time. Babai et al. [6] and Feige et al. [13] essentially showed that NP
is contained in PCP[polylog,polylog] (the precise bounds being somewhat stronger).
Arora and Safra [4] proved that NP = PCP [log n, and introduced the power-
ful concept of proof composition. The PCP theorem itself, i.e., NP = PCP[logn, 1],
was proven by Arora et al. [3]. Finetuning the constants followed in quick order. Has-
tad [22] proved the striking result that three queries are sufficient as long as we can
tolerate an c chance of rejecting a correct proof. Building on that result, Guruswami
et al. [21] showed that such false-negatives can be avoided provided that the error
probability for wrongly accepting is 1/2 + c.

The connection to inapproximability [13] blossomed into a plethora of hardness
results, one of the most impressive being Hastad’s proof [23] that to approximate the
clique number of an n-node graph within a factor of is impossible (unless NP
coincides with the randomized version of P, i.e., the class of sets for which member-
ship can be decided in expected polynomial time by a randomized, error-free Turing

machine). At the other end of the spectrum, consider MaxCut, the problem of parti-
tioning the node set of a graph into two subsets with the maximum number of edges
joining them. It is possible to find a solution in polynomial time that has a number
of edges at least 0.878 times the maximum possible [17]. On the other hand, to push
that approximation factor above 0.942 would require that P = NP [22, 33] (building
on [8]). A comprehensive 1996 survey of approximation results was compiled by Arora
and Lund [2].
Many of the tools for checking the internal consistency of proof systems originated

in the area of program checking [10, 11, 29~ . For example, the low degree test, due to
Arora et al. [3], incorporates ideas from [4, 11, 16, 28].

The sumcheck and linearity tests are due respectively to Lund et al. [24] and
Blum, Luby, and Rubinfeld [11]. Testing that a polynomial is nonzero (Lemma 3.2)
is from [6, 13].

Essential tools in PCP-related work also include the parallel repetition theorem by
Raz [27], the long code by Bellare, Goldreich and Sudan [8], and Fourier transform
techniques by Hastad [22]. For background material in complexity theory, the follow-
ing texts [15, 31, 26, 12], listed in increasing order of technical depth, are excellent
entry points. We also mention [1, 2, 25, 32] for in-depth coverage of proof verification
and approximation algorithms, and [18, 19, 20] for an introduction to zero-knowledge
cryptography.

Acknowledgrrtents. - I wish to thank Lance Fortnow, Oded Goldreich, and Muli
Safra for their helpful comments on this manuscript.

REFERENCES

[1] S. ARORA 2014 Probabilistic Checking of Proofs and the Hardness of Approximation
Problems, Ph.D. Thesis, UC Berkeley, 1994, also available as http://www.cs.
princeton.edu/~arora.

[2] S. ARORA & C. LUND 2014 Hardness of approximations, in Approximation Algo-
rithms for NP-hard Problems (D. Hochbaum, ed.), PWS Publishing, 1996.

[3] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN & M. SZEGEDY - Proof verifica-
tion and the hardness of approximation problems, J. ACM 45 (1998), p. 501-555.

[4] S. ARORA & M. SAFRA 2014 Probabilistic checking of proofs: a new characterization
of NP, J. ACM 45 (1998), p. 70-122.

[5] L. BABAI 2014 Trading group theory for randomness, in Proc. 17th Annual ACM,
Symp. Theory Comput., 1985, p. 421-429.

[6] L. BABAI, L. FORTNOW, L. LEVIN & M. SZEGEDY 2014 Checking computations in
polylogarithmic time, in Proc. 23rd Annual ACM Symp. Theory Comput., 1991,
p. 21-31.

[7] L. BABAI, L. FORTNOW & C. LUND 2014 Non-deterministic exponential time has
two-prover interactive protocols, Computational Complexity 1 (1991), p. 3-40.

[8] M. BELLARE, O. GOLDREICH & M. SUDAN - Free bits, PCPs and non-
approximability2014towards tight results, SIAM J. Comput. 27 (1998), p. 804-915.

[9] M. BEN-OR, S. GOLDWASSER, J. KILIAN & A. WIGDERSON 2014 Multi-prover
interactive proofs: how to remove intractability, in Proc. 20th Annual ACM
Symp. Theory Comput., 1988, p. 113-131.

[10] M. BLUM & S. KANNAN 2014 Designing programs that check their work, in Proc.
21st Annual ACM Symp. Theory Comput., 1989, p. 86-97.

[11] M. BLUM, M. LUBY & R. RUBINFELD 2014 Self-testing/correcting with applications
to numerical problems, J. Comp. Sys. Sci. 47 (1993), p. 549-595.

[12] D.-Z. DU & K.-I. Ko - Theory of Computational Complexity, Wiley-
Interscience, 2000.

[13] U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA & M. SZEGEDY - Interactive
proofs and the hardness of approximating cliques, J. ACM 43 (1996), p. 268-292.

[14] L. FORTNOW, J. ROMPEL & M. SIPSER 2014 On the power of multi-prover inter-
active protocols, Theoret. Comput. Sci. 134 (1994), p. 545-557.

[15] M. GAREY & D. JOHNSON 2014 Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.

[16] P. GEMMELL, R. LIPTON, R. RUBINFELD, M. SUDAN & A. WIGDERSON -

Self-testing/correcting for polynomials and approximate functions, in Proc. 23rd
Annual ACM Symp. Theory Comput., 1991, p. 32-42.

[17] M.X. GOEMANS & D.P. WILLIAMSON 2014 Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming,
J. ACM 42 (1995), p. 1115-1145.

[18] O. GOLDREICH 2014 Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness, Algorithms and Combinatorics, vol. 17, Springer, 1999.

[19] O. GOLDREICH, S. MICALI & A. WIGDERSON 2014 Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems, J. ACM
38 (1991), p. 691-729.

[20] S. GOLDWASSER, S. MICALI & C. RACKOFF 2014 The knowledge complexity of
interactive proof systems, SIAM J. Comput. 18 (1989), p. 186-208.

[21] V. GURUSWAMI, D. LEWIN, M. SUDAN & L. TREVISAN 2014 A tight charac-
terization of NP with 3 query PCPs, in Proc. 39th Annual IEEE Symp. Found.
Comput. Sci., 1998, also available as ECCC Technical Report TR98-034, p. 8-17.

[22] J. HÅSTAD 2014 Some optimal inapproximability results, in Proc. 29th Annual ACM
Symp. Theory Comput., 1997, also available as ECCC Technical Report TR97-
037, p. 1-10.

[23] _, Clique is hard to approximate within n1-~, Acta Mathematica 182
(1999), p. 105-142.

[24] C. LUND, L. FORTNOW, H. KARLOFF & N. NISAN 2014 Algebraic methods for
interactive proof systems, J. ACM 39 (1992), p. 859-868.

[25] E.W. MAYR, H.J. PROMEL & A. STEGER 2014 Lectures on Proof Verification and
Approximation Algorithms, LNCS, vol. 1367, Springer Verlag, 1998.

[26] C.H. PAPADIMITRIOU 2014 Computational Complexity, Addison Wesley, 1994.

36

[27] R. RAZ 2014 A parallel repetition theorem, SIAM J. Comput. 27 (1998), p. 763-803.
[28] R. RUBINFELD & M. SUDAN - Self-testing polynomial functions efficiently and

over rational Domains, in Proc. 3rd Annual ACM/SIAM Symp. Discrete Algo-
rithms, 1992, p. 23-32.

[29] _, Robust characterizations of polynomials with applications to program
testing, SIAM J. Comput. 25 (1996), p. 252-271.

[30] A. SHAMIR 2014 IP = PSPACE, J. ACM 39 (1992), p. 869-877.
[31] M. SIPSER 2014 Introduction to the Theory of Computation, PWS Publishing, 1997.
[32] M. SUDAN - Efficient Checking of Polynomials and Proofs and the Hardness of

Approximation Problems, in ACM Distinguished Dissertation Series for 1993,
Springer, 1996.

[33] L. TREVISAN, G.B. SORKIN, M. SUDAN & D.P. WILLIAMSON 2014 Gadgets, Ap-
proximation, and Linear Programming, SIAM J. Comput. 29 (2000), p. 2074-
2097.

Bernard CHAZELLE

Princeton University
Department of Computer Science
Princeton, NJ 08544
USA
E-mail : chazelle@cs.princeton.edu

