
Astérisque

MILES REID
La correspondance de McKay

Astérisque, tome 276 (2002), Séminaire Bourbaki, exp. no 867, p. 53-72
<http://www.numdam.org/item?id=SB_1999-2000__42__53_0>

© Société mathématique de France, 2002, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SB_1999-2000__42__53_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


LA CORRESPONDANCE DE McKAY

by Miles REID

Seminaire BOURBAKI
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1. COMMENT C’EST

1.1. Model case: the binary dihedral group BD4n

For G C SL(2,C) a finite group, the quotient variety X = CC2/G is called a Klein
quotient singularity. I draw the quotient map (C2 -~ X and the minimal resolution
of singularities Y -~ X together in the diagram:

This situation has been well studied, since Klein around 1870 and Coxeter and Du Val
in the 1930s: the subgroup G is classified as cyclic, binary dihedral or a binary group
corresponding to one of the Platonic solids; the quotient singularity is a hypersurface
X C C~ with defining equation one of a list of simple functions. The resolution Y is
a surface with Ky = and the exceptional locus ~p-1(0) C Y of the resolution
consists of a bunch of -2-curves Ei (that is, and Ei has self-intersection

E2 = -2), and the intersection EiEj is given by one of the Dynkin diagrams An, Dn,
E6, E7, Eg. To avoid writing out lists, let us simply discuss the binary dihedral group

where ~ = exp 2~ . If u, v are coordinates on t~2, the G-invariant polynomials are
y, ~]/(~ - yx2 + where x = u2n + v2n, y = u2v2, Z = uv( u2n - v2n);

thus the quotient variety is the singularity X : (z2 = yx2 - C C~ of type
Dr~+2, and the quotient morphism (u, v) H (x, y, z). The resolution of singularities
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X has exceptional locus consisting of -2-curves Ei,..., En+2 forming the Dn+2
configuration:

The classical McKay correspondence begins in the late 1970s with the observation
that the same graph arises in connection with the representation theory of G. For a

group G and a given representation Q, the McKay graph (or McKay quiver) has a
node for each irreducible representation, and an edge V - V’ whenever V’ is a direct
summand of V (g) Q. In our case, BD4n has the 2-dimensional representations

This is irreducible for 0  i  n, and splits into 2 eigenlines when i = 0 or n. The
inclusion G C SL(2,C) provides the given representation Q = Vl. It is a simple
exercise [Homework] to write down the action of G on a basis {ei 0 of Q 0 Vi to

get Vi ~ Q = 0 Y2+1 for 0  i  n, so that the McKay graph of BD4n is the
extended Dynkin diagram Dn+2:

Here 1 is the trivial 1-dimensional representation.
This example, and the other SL(2, C) cases observed by McKay, suggest that there

is a one-to-one correspondence between the components of the exceptional locus of
Y -~ X in (1.1) and the nontrivial irreducible representations of G C SL(2, C) in

(1.2). This talk explains this coincidence in several different ways, and discusses

higher dimensional generalisations.

1.2. General assumption

I use the following diagram throughout:



Here M is a quasiprojective algebraic manifold with KM = 0 and G a finite auto-

mor phism group of M that acts trivially on a global basis s M e HO(KM). The object
of study is the quotient variety X = M/G and its resolutions Y - X, sometimes
assumed to have Ky = 0. An important motivating case is a finite subgroup G C

SL(3,C) acting on M = C~.

1.3. Definition-Reassurance

The quotient varieties X = M/G occuring here are singular. The theory of minimal
models of higher dimensional algebraic varieties (Mori theory) has a whole battery
of definitions that deal systematically with singular varieties; here I only need one
small item: the orbifolds X here have trivial canonical class Kx = 0 (or trivial Serre-
Grothendieck dualising sheaf 03C9X = Ox). In concrete terms, this means the following:
X is a complex n-fold (algebraic or analytic variety), nonsingular in codimension 1,
and its nonsingular locus NonSing X has an everywhere nondegenerate holomorphic n-
form 8 x (deduced from sM). So 8 X is a complex volume element at every nonsingular
point of X, or in other words, it is a global basis of nNonSing x. A resolution of
singularities p: Y -~ X is crepant if Ky = p*Kx or cJy = p*cJx, which simply
means that Y is a nonsingular n-fold with Ky = 0 or cJy = Oy . sy, where

sy = More generally, an arbitrary proper birational map p : V - X has a

discrepancy divisor 039403C6 = 03A3 aiEi defined by Kv = + 03A3 aiEi with ai ~ 0; a
divisor Ei is crepant if ai = 0. The discrepancy ~~ is the divisor of zeros on V of the
basic n-form sx on X, generalising the divisor of zeros of the Jacobian determinant;
in Mori theory, it measures how far V is from minimal.

1.4. Summary and slogan
I start with a preview of different approaches to the McKay correspondence, which

are treated in more detail in later sections. Each of these approaches gives a result in
the case of a finite subgroup G c SL(3, C) acting on M = C~.

(1) Gonzalez-Sprinberg and Verdier sheaves: the first direct link from the repre-
sentation theory of G to the geometry of the resolution Y - X was the work of
Gonzalez-Sprinberg and Verdier [GSpV] : for a Kleinian subgroup G c SL(2,C), they
constructed sheaves 0p on Y, indexed by the irreducible representations of G, whose
first Chern classes base the cohomology of Y.

(2) String theory: the first hint of a McKay correspondence in higher dimensions
comes from work of the string theorists Dixon, Harvey, Vafa and Witten [DHVW]
around 1985: if G C SL(3,C) and Y -~ X = C31G is a crepant resolution of the
quotient C3IG, the Euler number of Y equals the number of conjugacy classes of G
(or the number of its irreducible representations).

(3) Explicit methods: the finite subgroups G c SL(3, C) are classified, and work
in the early 1990s of Roan, Ito, Markushevich and others proved case-by-case the



existence of crepant resolutions, and the validity of the formula of [DHVW] for the
Betti numbers of Y.

(4) Valuation theory: for a finite subgroup G c SL(n, C), the paper [IR] shows that
G has a grading by age, analogous to the weight grading in Hodge theory, and proves
that the conjugacy classes of junior elements g E G (elements of age l~ correspond
one-to-one with the crepant divisors of a resolution (more precisely, their discrete
valuations). This result holds for any G C SL(n, C) and is intrinsic, classification-
free ; but for n > 4 it only gives a small part of a McKay correspondence (so far).

(5) Nakamura’s G-Hilbert scheme: a resolution of singularities Y --~ X, even if
it is a Mori minimal model theory, is not at all unique. Moreover, if X = M/G,
the construction of a resolution Y need not have much to do with G. In 1995.
Nakamura made the revolutionary suggestion that in many interesting cases, the G-
Hilbert scheme is a preferred resolution Y of X (see [IN2], [N], [R]). When this holds,
Y is a "very good" moduli space over M, and the general yoga of moduli suggests
that there should be a "tautological" treatment of the geometry of Y (comparable to
the cohomology of Grassmann varieties).

(6) Fourier-Mukai transform: the derived category D(V) of coherent sheaves on a
variety V (considered up to isomorphism of triangulated categories) can be used as a
geometric characteristic of V, in place of K theory or cohomology. The Fourier-Mukai
transform is a general method for constructing isomorphisms of derived categories (see
[Mu], [0], [B01], [Br], [BrM]). Bridgeland and others [BKR] have recently used this
technique to prove that, if Y = G-HilbM is a crepant resolution, then 
D(Y). This implies the corresponding result in K theory.

(7) Motivic integration: the motivic integration of Batyrev, Denef and Loeser, and
Kontsevich is a rigorous and comparatively simple mathematical trick that mimics
some aspects of the path integrals of QFT. Very roughly, if p : Y -~ X is a resolution
of singularities, possibly far from minimal, with discrepancy divisor Ky - =

03A3 aiEi, the calculation amounts to defining the stringy homology of X by picking
only 1 ai+1th of the homology of E2. Quite remarkably, this is well defined, agrees with
the predictions of [DHVW] mentioned in (2) above, and provides an exact f orm of the
homological McKay correspondence for finite subgroups G c SL(n, (~).

(8) Explicit methods (bis): for a finite group G C SL(3,C), the results of (6)
(maybe also (7) ) imply that Gonzalez-Sprinberg-Verdier sheaves 0p base the K theory
of the resolution Y -~ X, so that their Chern classes or Chern characters base the
cohomology. Reworking this in explicit terms presents a treasure chest of delightful
computational problems - already the Abelian cases lead to lovely pictures (compare
[R], [CR], [C2]).

I believe that many other approaches to the McKay correspondence remain to be
discovered, and many interrelations between the different approaches; this problem
area is recommended to afficionados of noncommutative geometry, perverse sheaves.



Gromov-Witten invariants, elliptic cohomology, Chow groups, etc. Here is an attempt
to describe the subject in a single statement:

PRINCIPLE 1.1. - Let M be an algebraic manif old, G a group of automorphisms of
M, and Y -~ X a resolution of singularities of X. Then the answer to any well posed
question about the geometry of Y is the G-equivariant geometry of M.

I give two illustrations
I. If G C SL(n, C) acts on cn and the quotient X = cn /G has a crepant resolution

Y --~ X, the homology or K theory of Y is expected (or known) to be independent
of Y. In this case, the principle says that the homology or K theory of Y is the
representation theory of G (equal to the G-equivariant geometry of C~ because cn is
contractible) .

II. Let M be a Calabi-Yau n-fold and G a group of automorphisms of M that
acts trivially on The stringy homology of X = M/G (see Sections 3 and 4) is

well defined by [DL1]. The principle says that it must agree with the G-equivariant
homology of M. (I expand on what this means in Section 4.)

Viewed as an orbifold or stack, X = M/G contains M and the G action, and you
can of course derive tautological question-and-answer pairs from this (this is often
popular as a source of questions after the talk). The content of my slogan is that
the equivariant geometry of M already knows about the crepant resolution Y -~ X.
Minimal models exist for surfaces by classical work, and for 3-folds by Mori theory (or
by explicit methods). Minimal models of orbifolds by finite subgroups G c SL(3,C)
provide infinitely many examples of local models of Calabi-Yau 3-folds; calculating
their Betti numbers or K theory in a priori terms is in no sense a tautology. If

you prefer to think of the singular X as the fundamental object, and not resolve it
(a perfectly sensible alternative), the content is that X has invariants that can be
described from the orbifold M/G, but are birationally invariant under appropriate
conventions about resolutions.

2. AGE AND DISCREPANCY

Let G C SL(n, C) be a finite group; any element g E G has finite order r, say. For
any such r, I choose at the outset a primitive rth root of 1, say exp 2;i. A choice of
eigenbasis diagonalises the action of g E G on M = giving 

(2.1) g = with 0  ai  r.

I an), possibly depending on the choices made. Now £ ai ~ 0
mod r because 9 E SL(n, C). Following [IR], define the age of g by age g = r 
As we will see, this is an analog of weight in Hodge theory; Denef and Loeser [DL2]
refer to it by the long-winded but not inappropriate term valuation theoretic weight.



Clearly, age g is an integer in the range [0, ... , n - l~, and only the identity has age 0.
The elements of age 1 are junior.

Junior elements of G give rise to crepant divisors of a resolution V - M/G by
the following toric mechanism (for more details, and a picture, see [IR], 2.6-7). For
g E G (not the identity), consider the ai of (2.1), and suppose (al, ... , an) E ~n is
primitive. The coordinate subspace corresponding to the Xi with ai = 0 is the fixed
locus Fix g; it splits off as a direct product, and I assume that all ai > 0 to short-cut
some simple arguments. A useful example to bear in mind is when all the ai = 1
(compare Example 4.1 ) .

I view the integers (al, ... , an) as weights. They define the grading wt xi = ai
on the coordinate ring ..., or equivalently, the action xi H 03BBaixi of C* on
M = ccn that defines the weighted projective space

We obtain the weighted blowup Bg -~ M as the closed graph of the quotient map
M ~ P(a1,

..., an ) ; it has the exceptional divisor Bg ~ Eg = ... , an ) . Obvi-

ously g acts on Bg, and fixes Eg pointwise (because g acts on M as E E C*). Therefore
Bg -~ Bg/ (g) is totally ramified along Eg.

THEOREM 2.1 ([IR], 2.6-7). - Suppose that V - X is any resolution of singulari-
ties of the quotient X = M/G. Then V contains a divisor Fg rationally dominated
by Eg under the rational map Bg ~ M --~ V. The discrepancy of Fg is given by
a Fg = and in particular

Every crepant divisor of any resolution V occurs thus.

Discussion of proof. - Write Xg = M/ (g) for the partial quotient. Then

(g) -~ Xg is a partial resolution, with the single exceptional divisor Eg. An easy
toric calculation gives the discrepancy of Eg C Bg or Eg C Bg / (g) (compare [YPG].
4.8): the standard basis of OM is sM = For choose a Laurent

monomial yi = xm of weight 1 (recall that the ai were coprime). Then yi is the

defining equation of Eg C Bg at a general point of Eg (away from all the coordinate
hyperplanes), and that of Eg C Bg/ (g). Choosing Laurent monomials y2, ... , yn
forming a basis of the lattice of monomials of weight 0, we get that

is the required basis. The discrepancy is the exponent a in sM = (unit) . Yl 8 Bg ,
and is determined by weighty considerations: sM has weight and 8Bg weight
1, so a = ~ ai - 1. On the quotient BgI (g) we only have gi, so we get the stated
discrepancy r ( ~ ai -1- (r -1 ) ) = age g -1.



The quotient morphism M - X is a Galois cover with group G; a cyclic subgroup
(g) corresponds to an intermediate cover M -~ M/ (g) = X. The reduction to

a cyclic group is in terms of ramification theory; see [IR], 2.6-7. Roughly, over the

general point of any exceptional divisor F of V - X, the Galois extension of function
fields k(X ) c k(M) forms a tower, starting with a cyclic ramified cover. For a crepant
exceptional divisor, the cyclic ramification can be chased back up to a conjugacy class
of junior elements g E G.

Remark 2. 2. - This argument works in all dimensions, but it only identifies the divi-
sors of a crepant resolution Y, and thus only gives a basis of H2 (Y, Q) or H2n-2 (Y, Z)
corresponding in McKay style to junior conjugacy classes of G. In 3 dimensions, we
used Poincare duality to bootstrap ourselves up to a basis of H* (Y, ~) in [IR]. His-

torically, this was the first intrinsic proof of the conjectured formula of [DHVW] for
the Betti numbers of a crepant resolution.

As Brylinski [B] remarks (following Mumford), if V - X is any resolution, the
group G can be viewed as the fundamental group of V minus the branch locus, so
that an exceptional divisor F of a resolution V corresponds directly to a conjugacy
class of G as a little anticlockwise loop around F; for crepant divisors, this is of course
the same relation as in [IR]. But I don’t know how to use this idea to get a well defined
relation between, say, codimension 2 cycles of Y and age 2 conjugacy classes of G.

3. L’INNOMMABLE

This section is mainly for sociological and historical interest, but some harmless hi-

larity may derive from my garrulous display of incompetence and ignorance in physics.
A theoretical prediction of string theory: Fermionic strings propagate in 10-

dimensional space-time. Indeed, a universe of any other dimension would have

particles moving faster than the speed of light. Since this prediction, on the face of it,
contradicts the empirically observed 4-dimensions of space-time, string theorists want
6 of the dimensions to be filled up with tiny Calabi-Yau 3-folds. (This means (i) a
6-dimensional Riemannian manifold with SU(3) holonomy, or (ii) a complex manifold
V with a Ricci flat Kahler metric and Hl (V, R) = 0, or (iii) an algebraic manifold Y
with Kv = 0 and Ov) = 0. It seems that the holonomy or Kahler conditions
on V, together with some finite volume, are required by the physics, whereas making
V nonsingular, compact, and a constant fibre over macroscopic space-time are just
convenient choices when you try to guess a model.)

The two papers [DHVW] were concerned with trying to calculate string theory on
examples of Calabi-Yau varieties obtained by dividing a 3-dimensional complex torus
M by a finite group G preserving a basic holomorphic 3-form, so that the stabiliser
subgroup at any point is a subgroup of SL(3, C). A closed string on the quotient may



lift either to a closed string on the cover, or to a path that goes from x to 9 . x. The
latter are called twisted sectors. The physicists need to take care of these in order
to relate J x to G-equivariant f M, and they are the key to the form of the McKay
correspondence in Theorem 4.4, (4).

Taking limits is a tradition in physics, where the old is frequently the limit of
the new: Newtonian mechanics is the limit of special relativity as c --~ oo, classical
mechanics the limit of quantum physics 0, groups and their Hopf algebras the
limit of quantum groups as q --~ 1. In string theory, if the scale (or radius of curvature)
of the tiny Calabi-Yau tends to zero, the theory should approximate ordinary Lorentz
4-dimensional space-time, whereas letting it tend to macroscopic proportions would

approximate flat Lorentz 10-dimensional space-time. In this context, the twisted

sector near a point x E MH plays the role of strings that are topologically nontrivial,
but are allowed to remain of finite length (and so contribute to path integrals) as
the scale becomes large. To calculate something called the 1-loop partition function,
DHVW considered mapping the elliptic curve Sl x Sl (with parameters cr and T
along the copies of into X, or the a, T square into M with equivariant boundary
conditions depending on g, h. Thinking about twisted sectors and limits led DHVW

(I confess that their logic eludes me somewhat) to the formula

Here e(M, G) on the left-hand side is the G-equivariant Euler number of M; on the

right-hand side, the sum runs over all commuting pairs of elements of G, (g, h) is

the Abelian group they generate, its fixed locus in M, and e is the usual

Euler number. The formula is a replacement for the Euler number of the singular
orbifold X. The papers [DHVW] contain more-or-less explicitly the conjecture that
this number is the Euler number of a minimal resolution of singularities.

It is not hard (see [HH], [Roan] and [Homework]) to rearrange the sums in (3.1) to

give

where (i) the first sum runs over conjugacy classes of subgroups H C G; (ii) the
stratum X H is the set of x E X such that Stab y is conjugate to H for any point

y E 111 over x; (iii) the second factor is the number of conjugacy classes in H. This
means that X H C X contributes to e(M, G) with multiplicity the representation
theory of H.

Remark 3.1. - The physicists want to do path integrals, that is, they want to inte-

grate some "Action Man functional" over the space of all paths or loops ~y : [0,1] - Y.
This impossibly large integral is one of the major schisms between math and fizz.



The physicists learn a number of computations in finite terms that approximate their

path integrals, and when sufficiently skilled and imaginative, can use these to derive
marvellous consequences; whereas the mathematicians give up on making sense of
the space of paths, and not infrequently derive satisfaction or a misplaced sense of

superiority from pointing out that the physicists’ calculations can equally well be used

(or abused!) to prove 0=1. Maybe it’s time some of us also evolved some skill and
imagination. The motivic integration treated in the next section builds a miniature
model of the physicists’ path integral, by restricting first to germs of holomorphic
paths ~y : U - Y, where 0 E U C C is a neighbourhood of 0, then to formal power
series ~y: Spec CC[z] j Y.

4. MOTIVIC INTEGRATION

The material in this section is due to Batyrev [Bal], [Ba2], Denef and Loeser [DL1],
[DL2] and Kontsevich [K]. I recommend Craw as a readable first introduction to

these ideas.

Rather than trying to restrict to crepant resolutions, take an arbitrary normal cross-
ing resolution Y - X, marked by the discrepancy divisor D = A~ == aiDi
(here I is the indexing set of the components Di). The normal crossing divisor D
defines a stratification of Y, with

for J c I (including, of course, Y = D~ and Y B D = D~).
Motivic integration is discussed and defined below, but it is convenient to start

from the answer: the stringy motive of (Y, D), or of X itself, turns out to be

Here L = ~~~~ _ [C] is the Tate motive, and the formula takes place in a certain ring of
motives with formal power series in IL-1 adjoined. We will worry about the coefficient
ring later, but in lucky cases it will happen that the cyclotomic polynomials in the
denominators cancel out, leaving an integral motive (see Example 4.1 and [Homework]
for examples). It follows from Theorem 4.4, (2) and (3) that h(Y, D) is independent
of the choice of the normal crossing resolution Y, so depends only on X. In the case
when D = aE has a single component with discrepancy a, it boils down to



Example l~.l. - Let n = ab, and consider the n-fold quotient singularity X of type
b (l, ... ,1), that is, the quotient with the diagonal action of ~ = exp 203C0i b.
It is the cone over the bth Veronese embedding of so that its resolution Y -~ X
has exceptional divisor E = with = Opn -1 (-b). The discrepancy is 
to fit the adjunction formula, with KY = (a -1)E, and KE = OE (aE) = Opn-1 (-n).
Now whereas Y is homotopy equivalent to P"’B so has n homology classes, one

in each dimension 0, 2, ... , 2(n - 1), the effect of dividing by in (4.3) is to

throw away most of these, leaving only the b stringy homology classes in dimension
0, 2a, 4a, 2a(~ 2014 1). This is exactly what we need for the McKay correspondence: the
b elements of Zlb have age 0, a, 2a,..., a(~ - 1) and correspond to the stringy classes
in dimension 2ia.

Example .~. ~. - Consider the blowup a : Yl ~ Y of a subvariety C C Y that inter-
sects all the strata of D transversally, and set Di = a* D + (c -1 ) E, where E = 
is the exceptional divisor of the blowup and c = codim C. The coefficient is the

discrepancy of E, so that K Y1 - Di = ~* (KY - D). It is an exercise to see that

(This is rather trivial if C U D = 0 in view of Grothendieck’s f ormule clef for the
motive of a blowup; see [Homework] for more hints.) This is good evidence for the
birational invariance of h(Y, D).

I now describe briefly the mechanics of motivic integration, following [Cl]. Start
from the Grothendieck ring Ko (V) of classes of varieties under the equivalence relation
[V] = ~Y B W ~ + [W]. Addition and multiplication are quite harmless. The Tate motive
is L = [A1C] = [C]. We formally adjoin IL-1 to Ko(V), and make a fairly mild (IL-1)-
adic completion to give the value ring R = This value ring is the really
clever thing about the whole construction. (Exercise: (ILa -1)-1 can be written as a
formal power series in IL-1, so all the terms on the right-hand side of (4.2) are in R.)

Motivic integration takes place over the infinite jet space J 00 Y, which coincides
with the set Y(C[z]) of points of Y with values in the formal power series ring
CC[z]. An element, E is a point ~/ = ~y(o) E Y together with a formal arc
~y : Spec (~~z~ ~ Y starting at y; if convergent, , is the Taylor series of a holomorphic
germ;::;: (C,0) -~ Y. The infinite jet space JooY is the profinite limit JkY of
the finite jet spaces JkY; recall that JOY = Y, J1Y is the total space of the tangent
bundle Ty, and Jk+i - Jk is a CCn-fibre bundle.

The projection maps J~Y --~ Jk of the profinite limit allow us to define a
cylinder set in JCX) Y to be (Bk) for a constructible set Bk C Jk. The measure on



JooY is initially defined on these, by setting(l)

It is straightforward to see that this is independent of k, and is a "finitely additive
measure".

As our measurable functions, consider an effective divisor D on Y, and define a
function FD : JcoY ---+ by FD (q) = D ~ ~y (intersection number). In other words,
suppose ~y(o) = P E Y and let gD be the local defining equation of D at P; then
FD (q) is the order of q* (gD) E (~ Qz~ . Since the first s coefficients of clearly
only depend on E Js, it is obvious that is a cylinder set.

The grand definition is now: for Y a nonsingular variety and D a normal crossing
divisor, the motivic integral is

Remark 4. ~. - I omit some tricky details on convergence required to get a genuine
measure (involving the completion). To tell the truth, I don’t know if

they are at all essential. A basic point for applications is that the measure of F-1D (s)
tends to 0 as s 2014~ oo; this is plausible enough (because arcs, .with , . D > shave
codimension > s in J(X)Y), and is an intuitive reason behind birational invariance:
the arcs in a Zariski closed subset of Y have measure zero.

THEOREM 4.4. - h(Y, D) of (l~.l) has the following properties:
(1) If D = 0 then h(Y, D) = ~Y~.
(2) h(Y, D) is calculated by the right-hand side of (,~.1~.
(3) Birational invariance: let Y’, D’ and Y, D be pairs, and p : Y’ ~ Y a birational

morphism such that Ky, - D’ = cp* (KY - D); then

(4) If X = M/G is as in Assumption 1.2, Y -~ X a normal crossing resolution,
and D the discrepancy, then

where the range of summation is as in (3.2), and the second sum is over conjugacy
classes in H.

(l)The papers and have the exponent This is just a normalising convention,
giving h(Y, D) = ~Y~ ~ IL-n in Theorem 4.4, (1), and making the motive of YO-dimensional. I prefer
my version.



Discussion of proof. - I give some indications, leaving most of the proof as ref-
erences to [DL1] and [DL2]. Alternatively, do them as exercises (see [Homework] for
more hints). The key point of the proof is that, whatever its substance, (4.4) has the
formal properties of an integral, and is subject to the same kind of change of variables
formula. In the words of the Master:

"La theorie consiste pour l’essentiel dans des questions de variance"

([H], Introduction). Note first that the condition in (3) says that D’ - D = div(Jac c~)
is the divisor of zeros of the Jacobian determinant of cp (I omit p* from now on).
Composition defines a map J 00 Y, and, unless it falls entirely in the
locus of indeterminacy of ~p-l, an arc in Y has a birational transform as an arc in Y’;
in other words, away from subsets of measure zero, j~ is a bijection on the infinite jet
spaces. For (3), it remains only to stratify the finite jet spaces JkY’ and JkY so that
the corresponding morphism jk : JkY’ - JkY is a Ct-bundle on each stratum with

FD1-D(,) = = t (see [DL1], Lemma 3.4 and [Homework]).
(2) is proved in [DL1], Proposition 6.3.2, [Ba2], Theorem 6.28, and worked out in

detail in [Cl], Theorem 1.16. The proof of (4) consists of two steps, relating to the
two morphisms 7r: M - X and cp : Y -~ X of Assumption 1.2.

Step I. - We translate the twisted sectors of [DHVW] into the language of formal
arcs, obtaining the stratification (4.6) below.

Let y E 111 H be a point with Stab y = H and x = E X H. As at the start

of Section 2, suppose that r is an integer divisible by the order of each g E H, and
choose an rth root E of 1 and an rth root ( = zljr of the parameter used for formal

arc, so that a formal arc, at x E X parametrised by z lifts to a formal arc at y E ~~

parametrised by (. Unless, falls entirely in the branch locus of 1f: M - X, there
is a unique conjugacy class 9 E H defined by "/(~() = g~y(~). Here g is the twisted

sector, the conjugacy class of 03B3 in the local fundamental group H (where, is viewed
as a little loop in X minus the branch locus).

This argument shows that, after we delete the subset of arcs falling entirely in the

branch locus (which has infinite codimension, so measure zero) the infinite jet space
J(X)X is a disjoint union

where H, g are as in (3.2), and is the set of arcs with ~y(o) E X H in the twisted
sector g.

Step II. - Using change of variables as in the proof of (3), one calculates that
contributes XH . 

1 

to h(Y, D) ([DL2], Lemma 4.3). The difference in

appearance of the formulas here and in [DL2] is explained by two trivial shifts of

notation: as explained in the footnote on page 63, my measure is JLn times theirs; and

they diagonalise g as Eei with 1  r, defining w(g) = r ~ ei = n - 



Rernark 4.5. - Statement (4) is an exact analogue of the [DHVW] formula (3.2),
saying that the stratum X H appears in the stringy homology of Y multiplied by the
set of conjugacy classes in H.

As discussed in Definition 1.3, the discrepancy D = div Sx is the divisor of zeros

of .sx, the global basis of In the normal course of events, integrating
functions on Y requires a volume form; here we take s x as a holomorphic volume

form, viewing its zeros on D as scaling down the contribution from neighbourhood
of the discrepant exceptional divisors. This is what produces a birationally invariant
answer.

5. HILBERT SCHEMES OF G-ORBITS

This section explains the definition of the G-orbit Hilbert scheme G-Hilb M, and
Nakamura’s idea of using it to resolve certain quotient singularities. We know by
general results (especially Hironaka’s theorems) that the singularities of a quotient
variety X = M/G can be resolved somehow-or-other, but the construction of an
actual resolution is messy, involves lots of choices, and will probably have almost
nothing to do with the group action. Around 1995, Ito and Nakamura observed that
in the case of G C SL(2,C), the Hilbert scheme G-Hilb ~2 of G-clusters is a crepant
resolution of the quotient Nakamura conjectured that this continues to hold
for G C SL(3, C), and this has since been confirmed and extended to some other cases
by work of Bridgeland and others (see [BKR] and Theorem 6.1).

First, a cluster in a variety M (say, quasiprojective and nonsingular) is a 0-

dimensional subscheme Z C M, defined by an ideal Iz c OM, so that the cokernel
Oz = OM /Iz is a finite dimensional C-vector space. The degree of Z is the dimension
of O z . Like the intersection of two plane curves in Bezout’s theorem, a cluster Z may
consist of reduced points Z = Pi + ... + PN, or may have a nonreduced structure;
in the latter case, we keep track of the ideal Iz C OM, as a way of using algebraic
equations to keep information about the relative positions when some of the points
Pi come together. For example,

are clusters of degree 3 supported at 0 E C2.

LEMMA 5.1. - All clusters Z C M of given degree N in Mare parametrised by a
quasiprojective scheme HilbN M, which is a fine moduli space.

Proof. - The assertion is quite elementary. M is quasiprojective; choose an embed-
ding M C ps. Every ideal Iz COM of codimension N defines and is defined by a
codimension N vector subspace



the forms of degree N vanishing on Z (same N). Subspaces of given codimension are
parametrised by a Grassmann variety, and the condition that a space of forms defines
a cluster of degree N in M is a locally closed condition. (It can be written in terms
of rank of a matrix = N.) 0

Remark 5. 2. - The map HilbN M - SNM to the symmetric product, defined at the
level of sets by Z H Supp Z, is a morphism of schemes, the Hilbert-Chow morphism
(see [GIT], Chapter 5, §4). For a curve, HilbN C is just the symmetric product 
which is itself already nonsingular. For a surface, the symmetric product SN S is

singular at the diagonals, and HilbN S - SN S is a crepant resolution, in fact, a

symplectic resolution; see [IN2], §6. But HilbN M is singular as soon as dim M > 3
and N = deg Z > 4, and usually even has components of excess dimension.

PROPOSITION-DEFINITION 5.3 (Ito and Nakamura). - Let G be a finite group of
order N acting faithfully on an algebraic manifold M; consider the action of G on
HilbN M and its fixed locus (HilbN This has a unique irreducible component
that contains a general orbit G. y of G on M. This component is defined to be the G-Hilbert scheme, and denoted by G-Hilb M. The composite G-Hilb M  HilbN M -
SNM induces a Hilbert-Chow morphism G-Hilb M/G which is proper and

birational.

A cluster Z E G-Hilb is G- invariant, and is called a G-cluster; its defining ideal

Iz is G-invariant, and as a representation of G, the quotient Oz = OM/Iz is the

regular representation 
See also [CR], 4.1 for a rival definition and a comparison between the two.

Proof - The general orbit G . y consists of N points permuted simply transitively by
G, so is a G-invariant cluster in (HilbN M)C. These orbits fill out an irreducible open
set in (HilbN M) G, because a small G-invariant deformation of G.y is clearly still a set
of N distinct points permuted by G and disjoint from any fixed locus. The closure of

this component is G-Hilb M by definition. The composite G-Hilb HilbN 
SN M is a morphism; by definition, a dense open set of G-Hilb M consists of general
orbits G ~ y, and these maps to orbits in SNM, that is, to Af/G.

Finally, the quotient sheaves Oz for Z E G-Hilb M fit together as a locally free

sheaf 0 z over G-Hilb M, with a G-action that makes it the regular representation
on a dense open set. Its isotypical decomposition under the idempotents of C[G]
is a direct sum, so each component must also vary as a locally free sheaf, therefore

for every Z E G-Hilb M (since G-Hilb M is defined to be irreducible). 0

The G-Hilbert scheme is a crepant resolution for finite groups G C SL(3,C). The

general case of this is proved by Bridgeland and others [BKR] using derived category
methods and a homological characterisation of regularity. For a diagonal Abelian

group, A-Hilb C~ is a completely explicit construction of Nakamura (see [N] and [CR]):



the monomial xyz is A-invariant, and every G-cluster Z is defined by 7 (possibly
redundant) equations of the form

for appropriate exponents a, ..., i and coefficients a, ... , fl satisfying ~i~ _ qv =

~. The monomial basis of Oz forms a tripod shaped Newton polygon in the plane
lattice Z2 of Laurent monomials modulo xyz ; this lattice is naturally the universal
cover of the McKay quiver and the tripod is a choice of fundamental domain for the

covering group (see [N] and [R] for pictures). The explicit calculations remain an

interesting challenge in the non-Abelian cases, e.g., in the trihedral case.

Example 5.4. - These results are known to fail for finite G c SL(4, C). In the first
place, most quotient singularities X = C4 I G do not have any crepant resolution. For
example, the series of cyclic quotient singularities C4 I (Z I r) of type  (1, r 2014 1, i, r - i)
have no junior elements, so are terminal; compare Example 4.1. These examples
motivated the initial exploration of stringy homology in [BD].

Next, even when a crepant resolution exists, the G-Hilbert scheme may be singular
or discrepant or both. A simple example is the quotient singularity C4 I G by the
maximal diagonal subgroup (~/2)®3 c SL(4,C) of exponent 2. The junior simplex
A has all the midpoints of the edges -(1,1,0,0) etc., as lattice points. This has

several subdivisions into basic simplexes, giving crepant resolutions, but none that is

symmetric under permuting the coordinates - the only symmetric thing you can do
is chop off the 4 basic simplexes at the corners, leaving a terminal simplex of volume
2. On the other hand, G-Hilb C4 is obviously symmetric.

6. COHERENT DERIVED CATEGORY

Grothendieck and Verdier introduced the derived category D(X) of coherent

sheaves on a variety X in the 1960s as a technical convenience in homological
algebra; it has enjoyed an unfortunate reputation for technicality and abstraction
ever since then. Recently, however, it has been increasingly used as a geometric
characteristic of X similar to K theory: whereas K theory works with the group of
bundles or sheaves modulo the relation F = F’ + F" for every short exact sequence
0 --~ F’ - F - F" - 0, the derived category D(X) consists of complexes F8 modulo
the relation of quasi-isomorphism (defined at the start of the theory, and thank-
fully never referred to again). Following Mukai’s pioneering work [Mu] for Abelian
varieties, Orlov and Bondal [O], [B01] have advocated the idea of considering the
derived category D(X) (up to isomorphism of triangulated categories) as a geometric



characteristic of X. From this point of view, D(X) behaves like an enriched version
of K theory.
A variety X with IKx ample can be reconstructed from its derived category

D(X) (as a triangulated category) [B01], but if Kx = 0 (notably for an Abelian
variety or a K3 surface), the same triangulated category may occur as D(X) for
different X, or there may be infinitely many symmetries of D(X) not arising from
automorphisms of X. Isomorphisms D(X) ~ D(Y) arise as Fourier-Mukai transforms
~X ,Y corresponding to a sheaf ,~’ on X x Y, defined as the composite of the functors

and qy * (more precisely, their derived functors); for an up-to-date treatment,
see [Br] and the references given there. In practice, Y is most frequently a moduli

space of coherent sheaves on X and :F the universal sheaf over X x Y, so that Y

parametrises sheaves Fy on X ; in very good cases, the apparatus of moduli functors,
stable bundles, and deformation theory gives essentially for free that the Fy have
orthonormality properties under Ext functors (formally analogous to those of trig
functions in the theory of Fourier transform).

Let M be a nonsingular quasiprojective n-fold with KM = 0, and G a finite group
acting on M, with trivial action on KM. Set Y = G-Hilb M. Since Y is a fine moduli

space for G-clusters Z C M, there is a universal G-cluster Z C Y x M, fitting in a

diagram

Bridgeland and others [BKR] prove the following theorem.

THEOREM 6.1. - Suppose that the inverse image of the diagonal (p x c~)-1 (~.k )
has dimension ~ n + 1 (automatic for n = 3 ). Then Y is a crepant resolution of X

and the Fourier-Mukai functor 03A6 = o p* : D(Y) - is an equivalence of

categories.

Once we know that Y is a crepant resolution, is trivial as a G-sheaf and cvY-

is trivial, so that both the derived categories DG(M) and D(Y) have Serre duality
functors; the remainder of the proof is then standard Fourier-Mukai technology. How-

ever, the surprising thing here is Bridgeland’s derivation of the nonsingularity of Y

from the famous theorem of commutative algebra known for a long time as Serre’s

"Intersection conjecture".

7. FIN DE PARTIE

Samuel Beckett’s play of the same title has the wonderful line:
"Personne au monde n’a jamais pense aussi tordu que nous."



This seems to reflect a truth about math research: progress beyond the obvious takes

really twisted thinking. In this spirit, let me raise all the open questions I can think
of.

There are two basic flavours of McKay correspondence:

(1) conjugacy classes of G ~ homology of Y (or stringy homology); and
(2) representations of G H derived category D(Y) or K theory of Y.

Is there a "bivariant" version of the correspondence containing both (1) and (2) at the
same time? For example, in some contexts, D-modules or perverse sheaves manage
to accommodate both coherent and topological cohomology. Note that (1) and (2)
achieve a well posed question in completely different ways: (1) takes accounts of
discrepancy systematically, whereas (2) currently only works under the very strict
condition that Y = G-Hilb is a crepant resolution.

The representation theory of finite groups has two ingredients, conjugacy classes
and irreducible representations, and a character table, which is a nonsingular matrix

making them "dual" (I apologise to group theorists for this gratuitous vulgarity).
Although in substance very different, the homology and K theory of a variety Y could
be described in similar terms. In cases when McKay holds, is there any direct relation?

All the different approaches to McKay described here have one thing in common:
none of them seems to say anything very useful about multiplicative structures. The

following questions seem most likely to be approachable: can tensor product of G-
modules and tensor product in K theory of Y be related? Can you reconstruct the
McKay quiver in D(Y) or KoY?

Motivic integration takes a fraction of the homology of a discrepant exceptional
divisor, say, half the homology of the exceptional p3 for the quotient singularity
(C4 / (7~/ 2 ) (the cone on the second Veronese embedding v2 (I~3 ) ) . In contrast, half
of a derived category is something no-one has ever seen. In the case of v2(1~3), the
Gonzalez-Sprinberg-Verdier sheaves corresponding to the characters ±1 are Oy and
Oy(l). Breaking up the derived category D(Y) into two bits, one of which will
correspond to the representations of Z/2, doesn’t seem to make any sense. On the
other hand, in this case we can extend the action of Z/2 to the of

Z/4, whose quotient does have a crepant resolution. 
Another general problem area: resolutions of Gorenstein quotient singularities give

a collection of examples of Calabi-Yau 3-folds with very nice properties: the homology
of the resolution is well defined (independent of the choice of resolution), and the
homology and K theory are closely related by something like a duality. Do these

properties hold for Calabi-Yau 3-folds more generally? It seems very likely that
birational Calabi-Yau 3-folds have isomorphic derived categories, but so far this only
seems to be established when they are related by classic flops [B02].

Part of motivic integration is the simple idea of using as the volume form, even
though it vanishes along the discrepancy divisor D (compare Remark 4.5). Maybe this



idea can be used with differentials on X itself (not passing to J~X) to get birationally
invariant de Rham and Hodge cohomology?

Elliptic cohomology is another area of geometry with an alleged stringy interpre-
tation - as the index of the Dirac operator on the space of loops. Could part of
this theory have a rigorous treatment in terms of spaces of formal arcs, like motivic
integration in Section 4? If we believe that the elliptic cohomology of M/G has a well
defined answer (see Totaro [T] for some evidence) then Principle 1.1 predicts what
the answer must look like in a whole pile of substantial cases.

Which Gorenstein quotient singularities admit crepant resolutions? Since 4-fold
singularities usually do not have crepant resolutions, those that do are of particular
interest; see [DHZ] for examples. How does this relate to complex symplectic geome-
try ? The papers of Verbitsky [Vb] and Kaledin [Kal], [Ka2] study crepant resolutions
and related issues for symplectic quotient singularities. When crepant resolutions
exist they are symplectic [Vb], therefore "semismall", giving a complete and elegant
solution to the homological form (1) of the McKay correspondence [Ka2]. Is it possible
that there is a "special" geometry in 3 complex dimensions (such as complexified imag-
inary quaternions), like symplectic or hyper-Kahler geometry for complex surfaces or
4-folds, that explain why crepant resolutions exist for 3-folds?
How should we interpret Nakamura’s results and conjectures on G-Hilb? If a

crepant resolution exists, it would be exceedingly convenient to be able to describe it
as a fine moduli space of something; G- clusters have no especially privileged role, but
the requirement that the space be birational to M/G seems to impose some relation
with the moduli space of group orbits. Nakamura and Nakajima have raised the
question of whether the other crepant resolutions (after a flop) can also be interpreted
as moduli, for example as Quot schemes; a single convincing example of this would
add weight to their suggestion. Do the crepant resolutions in Example 5.4 have
interpretations as moduli?
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