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1. INTRODUCTION

The study of the eigenvalue distribution of various classes of selfadjoint operators
is one of the oldest and most popular branches of the spectral theory. Recall,
for instance, the well-known problem of H. Weyl on the high energy asymptotic
behaviour of the counting function

of eigenvalues A, of a selfadjoint boundary value problem for an elliptic operator
A A in a compact domain A C R . According to H. Weyl, in the simplest but

important case of AA = -A,

where IAI is the volume of A and cd depends only on the dimensionality of the
space.

The study of the subsequent terms on this and similar asymptotic formu-
lae for various cases has produced a wide variety of beautiful and important
results and has revealed many deep interconnections of the spectral theory with
geometry, topology, ergodic theory, various analytic and asymptotic methods,
etc.

Let me remind now that one of the main Weyl’s motivations for studying
this problem was justification of Rayleigh and Jeans derivation of the formula
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for the spectral distribution of the black body radiation and of Debye derivation
of the formula for the specific heat of a crystal. These problems that played an

important role in the development of quantum mechanics, can be formulated as

problems of constructing of the thermodynamics of the ideal Bose gas. One of
the main mathematical physics concepts in statistical mechanics is the concept
of the thermodynamic limit, designed in order to study the bulk properties of

macroscopically large systems. From this point of view it is rather natural to

consider some sequence Ak of compact domains expanding into the whole R~ as
k - oo, to prove the existence for each A E R of the limit

to check the independence of this limit of a sequence for a sufficiently
broad family of sequences and after that to study the nondecreasing function

(3) for various ranges of À (in particular, for a -~ oo ) and other parameters.
In the case of the Laplacian and a sufficiently regular sequence of domains

this problem can be reduced to the problem of finding the high energy asymp-
totic of NA(À) for a fixed A. This is why H. Weyl was rather interested in the

proof of the independence of the leading term in (2) of the shape of a domain
and considered this result as one of his main achievements.

The problem of studying N~(~), known as the integrated density of states

(IDS), can also be formulated in the discrete case, i.e. for a sequence of n x n

matrices with n - oo. Here the analogue of (4) is

In the case when a matrix is the restriction to a finite set A C Z of the

Toeplitz operator the problem was considered by Grenander and Szego [1].
In this paper I am going to discuss three classes of random differential and

matrix operators for which the above formulated problem can be studied rather

completely. The first class includes differential and finite-difference operators
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with random coefficients. The second class includes random matrices with inde-

pendent and identically distributed entries. Thus, the main difference between

these two classes is that operators of the first class have nonzero entries only for

a finite and A-independent number of diagonals adjacent to the principal one,
while for operators (matrices) of the second class all entries have, roughly speak-

ing, the same order of magnitude. This difference turns out to be rather serious

and results in different forms of problems, answers and techniques. Therefore

it is somewhat surprising that there exists operators that are in a certain sense

interpolating between these two classes. This is our third class.

2. DIFFERENTIAL AND FINITE-DIFFERENCE OPERATORS

WITH RANDOM COEFFICIENTS

It is clear that if we are going to prove the existence of the limit (3), we
should impose certain conditions on the coefficients of the respective operators.

Indeed, consider, for instance, the Schrodinger operator HA defined in A by the

operation

and some (say Dirichlet) boundary conditions on 9A. Then it is easy to see that
if q(x) 2014~ oo as (x( - oo , then ~V(A) = 0 and if q(x) - 0 as (x( 2014~ oo then

N(À) = ~Vo(~) , where

is, according to (2), the integrated density of states of -A. Thus, to obtain a
nontrivial result (neither 0 nor No(a)) we should consider a nonzero potential
q(x) that does not grow and does not decay at infinity. Moreover, it is clear that

q(x) should behave rather "regularly" at infinity not to produce too irregular
oscillations of N~(a) for large A.

The simplest nontrivial case is that of a periodic potential. The respective
Schrodinger operator describes the electron motion in an ideal solid. A rather

general class of potentials for which there exists the limit (3) is given by real-
izations (sample functions) of metrically transitive (ergodic) random fields in
R~ which model disordered solids. This means that we consider not a single
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operator HA with some particular q(x) but rather a family of operators

corresponding to potentials of the form

where Q(w), is a measurable function on a probability space H in which
a group Tx, x E llgd, of measure-preserving and metrically transitive automor-
phisms acts. A simple example of (8) in the discrete case, i.e. for the finite-

difference analogue of (6)

is a family of independent identically distributed (i.i.d.) random variables. This
operator is a discretized model for electron motion in completely disordered

solids, as amorphous substances, disordered alloys, etc.
The existence of the limit (3) with probability 1 and its nonrandomness for

the Schrodinger operator with potentials having the form (8) and bounded below
was given by myself in early seventies. Later this problem was considered by
several authors and the results which are rather close to optimal were obtained

(see, e.g., books [2,3] and references therein). For example, in the case of the

operator (9) the IDS exists for any metrically transitive field (8) on Z which is
finite with probability 1.

Let us discuss now some properties of the IDS, restricting ourselves mainly
to the case of the Schrodinger operators (6) and (9) (for the respective proofs
and references see, e.g., books [2,3]).

(i) Smoothness. In the discrete case (i.e. for (9)) and in the continuous one-
dimensional case (i.e. for (6) with d = 1) the IDS is always continuous. This can
be proved on the basis of simple ergodic arguments. A more refined technique
based on the notion of the Lyapunov exponent yields the log-Holder property
of the IDS:

There are counter examples showing that this estimate is optimal for the

whole class of metrically transitive potentials. However, if we consider the dis-

crete operator (9) with i.i.d. random potential whose distribution function is
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= sup  fo  oo, then, according to Wegner
gE~

(Here and below I denote by the same symbol N(.) the nondecreasing function
and the measure that are related in the obvious way.)

Further, assuming some smoothness of f (q), one can deduce much stronger
smoothness of /~(A), up to its Coo or real analyticity. On the other hand, it is
known that if for d = 1 an i.i.d. random potential takes two values, say 0 and

qo, then if qo is large enough the IDS has a singular continuos component [2,3].
Smoothness of the IDS, being of considerable interest in itself, plays an

important role in the proofs of the Anderson localization, i.e. of the presence of
a point component in the spectrum of operators (6) and (9).

It should be emphasized that most of the known results on the smoothness
of the IDS and other spectral properties of the random operator are proved for
the discrete case (9). The continuous case is much more technically difficult and
much less studied so far.

(ii) Explicit formulae. The IDS is found explicitly for the 1-dimensional con-
tinuous case with the Markov random potential taking two values and for the
multidimensional discrete case with the Cauchy-distributed or certain quasi pe-
riodic potential. In the latter cases the IDS is an analytic function in some strip

const. These formulae provide a considerable amount of quantitative
information on the behaviour of the IDS on various parts of the spectrum.

(iii) Asymptotic behaviour.

(a) High energies. Let the potential q(x) in (6) be a metrically transitive
field on ]Rd such that

where p is the smallest even number greater than d/2. Then

where No(À) is the IDS for -A and is given by (7). This is an analogue of the
Weyl asymptotic (2) containing the leading term only. The naive perturbation
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theory yields for the subsequent term in the one-dimensional case

Here we assume that = 0 and set = B(x). This formula
can be justified in many interesting cases. But the proof of the multidimensional

analogue of ( 11 ) is still absent.
However, the problem of its justification seems rather important, because it

is the simplest nontrivial case of the semi-classical asymptotics for the random

Schrodinger operator. In the last decade physicists have found a lot of beautiful
results by using various versions of the perturbation theory and the semi-classical

approximation. These results are known as the weak localization theory. Their
mathematical meaning is completely unexplored.

(b) Low energies. This is an asymptotic region that has no analogues in
the conventional spectral theory but turns out to be rather rich and interesting
for random operators. Let me mention here several typical results.

According to the quantum mechanical ideology, the low energy part of the

spectrum should depend strongly on the particular potential. Nevertheless there
are several rather well defined types of asymptotic behaviour of the IDS at low

energies.
The simplest one corresponds to the unbounded potential. Consider, for

instance, a potential whose probability distribution F(dq) is such that

Then for the operators (6) and (9) ,

In the discrete case, i.e. for (9), the proof of (13) is fairly simple and uses in
fact elementary variational arguments. In the continuous case, i.e. for (6), the

proof of (13) is more complicated, although it also can be carried out in the

variational terms. It was given by myself for the Gaussian random potential
and for the so-called Poisson potential
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where u(x) is a nonpositive function with a compact support and are the

Poisson random points in ? .
It is believed that the asymptotic relation (13) is valid in the continuous

case for a rather wide class of random potentials satisfying some sufficiently
weak continuity condition.

Another type of asymptotic behaviour takes place for a random potential
bounded from below, in particular for (14) with nonnegative u(x). Here the

spectrum is R and

where cd depends only on d and n is the concentration of the Poisson points.
This asymptotic was suggested by I. Lifshitz and was proved by several

authors including myself. The proof is based on the Wiener integral technique
and an important ingredient of the proof are the deep results by Donsker and
Varadhan on the large deviations for the Wiener process, or, in other words, on
the infinite dimensional Laplace method.

It is natural to study the subsequent terms in the asymptotic formulae

(13) and (15), in particular, the preexponential factor. This factor was found

rigorously only in some one-dimensional cases.
Let me mention one more type of the asymptotic behaviour of the IDS.

Consider the elliptic operator

where are random fields of the form (8). The spectrum of this operator is
also R~ and we are interested in the behaviour of N(À) for À - 0+ . The change
of the variables À = g2, Xi = and = v(g) reduces our problem to
the study of (16) in which are replaced by the fastly oscillating coefficients

This problem is the objective of the homogenization theory which has
been developed in the last decades.

A rather general result which is suitable for the spectral theory has been

proved by S. Kozlov. By using this result, one can prove that for the random
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operator (16) (cf. (7) and (10))

where c(a) is a rather complicated functional of aij’s. Its explicit form is known
in the 1-dimensional case and some 2-dimensional examples.

3. RANDOM MATRICES

Let us consider the symmetric n x n random matrices with the entries

where Wi j are independent (except the symmetry condition Wi j = Wji ) random
variables such that

The simplest and best known case of such corresponds to the Gaussian
ones where their joint distribution can be written as

where Zn is the normalization constant. This matrix ensemble was introduced

by Wigner to describe some properties of the spectra of the energy levels of

heavy nuclei.
There are many beautiful results for this matrix ensemble (see e.g. books

[4,5] and references therein). In particular, if .À 1, ... an are eigenvalues of the

respective random matrix and N(a) is specified by (5), then with probability 1,
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This is the well known Wigner or semicircle law. Wigner and several other
authors have extended these results to more general cases. The optimal result

proved by myself [6] is that if we replace in (20) convergence with probability
1 by convergence in probability, then (20) and (21) are valid under conditions
that for i  j are identically distributed and satisfy (18).

A somewhat more general form of this condition which is an analogue of
the Lindeberg condition well known in the probability theory turns out to be

necessary and sufficient [5,6]. Thus, the semicircle law (20) and (21) is as uni-
versal a form of the limiting eigenvalue distribution of random matrices with

independent entries as the normal distribution is universal for the normalized
sums of independent variables.

The latter results were obtained by constructing certain recursion relations
in n for n-1 z)-1, 0 and by studying their asymptotic be-
haviour for n - oo. This technique allow us to consider the more general
matrix ensemble

with the same Wij’S and hz’s admitting the existence of the limit

for each À which is a continuity point of No(À). This limit may be called the

unperturbed integrated density of states. Consider the Stieltjes transform

of According to [6], if

then the limit r(~) = lim exists in probability for all Im ~ ~ 0 and can

be found as a unique solution of the functional equation
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in the class of functions, which are analytic for all 0 and such that

Im r( z ) . Im z > 0, Im z ~ 0.
The IDS that corresponds to (24) is known as the deformed semicircle

law. By using Eq. (24) one can prove the existence of the density of states, its
boundedness, the location of the support of p(a), its asymptotic behaviour near
end points of the support etc.

It is noteworthy that the above results for the ensemble (22) can be regarded
as a limiting case of more general result obtained by Marchenko and myself (see
f6l). Indeed, consider the following ensemble of n x n matrices

where is an arbitrary matrix having the limiting IDS No(dÀ), Ti and qi

are independent identically distributed random variables and unit vectors in Rn

respectively and the distribution of the latter is "close enough" to the uniform
distribution. Then, if n - oo , m - oo , there exists the

limiting IDS N(dÀ) of the ensemble (25) and the Stieltjes transforms r(z) and

ro(z) of N(dÀ) and No(dÀ) are related as

where a(dT) is the distribution of Ti. It is easy to see that if we redenote in

(26) z + by z and after that perform the limiting transition c - oo,
- 0, c IE{T2 ~ --~ v2 , then we arrive at (24).

One can regard (24) and (26) as a complete solution of the eigenvalue
problem for the ensembles (22), (25) and (27).

As I have mentioned above, the initial physical motivation for these prob-
lems was provided by nuclear physics. In the last decades the random matrix

ensembles have been used in many other branches of quantum physics. In par-

ticular, the problem of the study of the quantum kicked rotator that is an

archetype model in quantum chaology is related to the study of the eigenvalues
distribution of random matrices
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Here bn - oo as r~ -~ oo and ~~t) _ ~(-t) E R is a piecewise continuous and
bounded function with a compact support and

In particular, if ljJ(t) = 1 and 2bn + 1= n, we obtain (17) and if ljJ(t) is the indi-
cator of the interval (-1,1), then (27), (28) defines the so-called band matrices
that have nonzero i.i.d. entries only inside the "band" of a width 2bn + 1 around
the principal diagonal of 

The IDS of this matrix ensemble have been found recently by several groups
of authors [8-10]. The most general result was proved in [10]. It asserts that

the IDS of (27) is given by the semicircle law (20), (21) if lim bnn-l equals

0 or 1/2. If, however, 0  lim bnn-l  1/2, then the limiting eigenvalue
distribution exists but it is not the semicircle law. Its Stieltjes transform can be
found as a unique solution of some non-linear integral equation. The situation
can be "corrected" in a sense that the semicircle law can still be obtained if we

consider a certain periodic function ~(t) in (27):
The proof of these results is based on a certain new approach. It consists in

deriving an infinite system of linear equations for the moments of the diagonal
matrix elements of the resolvent (V{’~’a~ -z)-1 and in asymptotic solution of this
system for b~,, n -~ oo. This method proves to be rather efficient and general
and allows us to consider a wide variety of related problems (see review [11]).
In particular it can be proved that the deformed semicircle law (24) is valid for
any not necessarily diagonal "unperturbed" matrix = in (22) for
which the IDS exists, i.e. if ~cl, ... , are the eigenvalues of h~n~, then we only
need to assume that the limit (5) exists.

In the next section we consider other problems that can be solved by the
same approach.

I have discussed matrix ensembles that share with the Gaussian ensemble

(19) the property of statistical independence of all functionally independent
entries. All these ensembles have the same IDS described by the semicircle law

(21). There is another generalization of (19) which is defined by the probability



distribution of the form

where V(t) is a real-valued function that grows at infinity faster than a log It I
V a > 0. The Gaussian ensemble (19) corresponds obviously to V(t) = t2/4a2.
Polynomials of an even degree p > 2 appear in quantum field theory, statisti-
cal mechanics of random surfaces, combinatorics, etc. (see [7] and references
therein).

The IDS of these ensembles differs from the semicircle law. Generically
its support consists of p/2 intervals with square root zeros of the density of
states at each endpoint. However, by varying V (t) (e.g. the coefficients in a

polynomial V(t)), one can obtain a variety of degenerated cases with smaller
number of intervals and other behaviour of p(À) at their end points. For instance,
if V(t) = Itla, a > 1, then

There is a beautiful approach to the study of the ensembles (29). It is based

on the possibility of expressing the expectation of any unitary invariant of a
random matrix belonging to the ensemble (29) via polynomials orthogonal on ?
with respect to the weight [4,7]. Physicists have found a lot of very
interesting properties of the eigenvalue distribution of the ensemble (29) by using
this approach. However, rigorous proofs are not numerous here (see however

paper [15] in which the rigorous derivation of the form of the density of states
for some class of even polynomials in (29) is given). One of the reasons is that

rigorous study should be based on precise asymptotic formulae for the respective
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orthogonal polynomials. The best recent result is for the case of V(t) = Itla
only [13]. The corresponding asymptotic formulae allow us to obtain rigorously
the form (30), (31) of the density of states of the ensemble (29) with the same

. V(t) [14]. However, these formulae are not precise enough to calculate other

quite important characteristics of random matrices. Besides, almost nothing is
known rigorously in case of a nonmonomial V (t), especially for a nonconvex one,
e.g. for V(t) = at2 + bt4 with a  0 and b > 0. The corresponding sufficiently
precise asymptotic formulae for the orthogonal polynomials, which should be in

many respect analogous to semiclassical formulae of quantum mechanics, would
be of great use and importance in spectral theory.

In the last three years a new wave of activity in this field has been ini-
tiated by the progress in the study of models of two-dimensional gravity and
the string theory [12]. This progress being translated into the random matrix

theory language consists in establishment of the form of the behaviour of the
n

mean prelimit density of states pn(A) = ~(A2014A,)} of the ensemble (29)
1

with the special polynomials V(A) for n - oo and A tending simultaneously to
an end point of the support of the limiting density of states /9(A) = lim pn(A).
These studies revealed many beautiful connections of the random matrix theory
with the theory of integrable systems, the spectral theory of Jacobi matrices,
the theory of orthogonal polynomials and have raised a lot of problems that are
of great interest for both mathematical and theoretical physics.

4. "INTERPOLATING" FAMILIES OF RANDOM OPERATORS

The two classes of random operators that were considered in preceding sec-
tions have different origin and have been studied independently and by rather
different techniques. Therefore it seems rather natural to look for interconnec-
tions between these classes. In the present section we are going to consider
three families of random operators belonging to the first class. However, these
families depend on certain parameters (we call them the interaction radius, the
dimensionality of space and the number of components, respectively) in such a
way that the limits of the IDS of the corresponding random operators for infinite
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values of these parameters coincide with the deformed semicircle law which is

typical for the second class.
Our first family consists of the operators ~H~R~ = h + V(R) acting in l2(Zd)

and defined by the matrices

where h(-x) = h(x), h(x) E 1I(Zd), R  oo, ~(~), ~ E is a piecewise con-
tinuous function with compact support and W (x, y) are independent (except
the symmetry condition W (x, y) = W (y, x)) and identically distributed random
variables such that (cf. (18))

The matrix (32) defines the d-dimensional finite difference operator. In partic-
ular, if h(x) = 0, 1, R = 1 and = 0 for It I > 1, .then this operator is
of the second order. However, it differs from the discrete Schrodinger operator
(6) in that it has random off-diagonal entries.

The random operator H(R), defined by (32), is a metrically transitive op-
erator in the terminology of book [3]. In particular, it admits the nonrandom

IDS defined by (3) and (4) in which is a restriction of to a

finite "box" A E We have proved recently [16] that there exists the limit
lim and that its Stieltjes transform satisfies equation (24), where ro(z)
R--~oo 

’

is the same transform of the IDS of the Toeplitz operator h(x - y) and can be

easily expressed via the symbol of this operator [1,3]. Thus, lim coin-
R-+oo

cides with the deformed semicircle law. In particular, if the nonrandom part of

(32) is absent (i.e. 0), then this limit coincides with the semicircle law

(20),(21).
Our second family H(d) of random operators acts also in [2(Zd) and is

defined by the random matrix
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hl (x) E 11(Z) and the random variables W (x, y) are the same as in (33). This

operator also belongs to the class of metrically transitive operators, in particular
it admits the IDS ~V~d~(~). Now, sending d to infinity, we again obtain the

limiting eigenvalue distribution coinciding with the deformed semicircle law.
The form (35) of the unperturbed part of (34) is more special than that in (32).
This special form is needed to guarantee the existence of the d = oo limit for
the unperturbed IDS which in this case turns out to be of the Gaussian form.

The third family of operators H(n) acts in t2(7~d) ® ~~ and is defined by
the random "block" matrix

where a, /3 = 1, ... , n, x, y E Zd, h(x) is the same as in (32) and Wa,(x)
are independent (except the symmetry condition Wap(x) = Wpa(x)) identically
distributed random variables such that (cf. (18) and (32))

The IDS N(n)(À) of is defined as the limit of where

NA,n( À) is the counting function of the eigenvalues of the restriction of

(36) to the finite domain A E Z~.
Here we send to infinity the order n of the blocks. The resulting IDS is

again the deformed semicircle law.

Operators H(n) were introduced by Wegner [17], who obtained the latter
result at the theoretical physics level of rigour by using the perturbation theory
with respect to the random part of (36).

Thus we see once again that the deformed semicircle law is a rather general
and universal form of the limiting eigenvalue distribution.

The results formulated in this section were proved [16] by using the general
approach that was briefly outlined in the previous section. The main tech-

nical result here is the statement that in the limit R, d, n - oo the moments
I I

IE~ ~ G(xi, yi; take the form ~ y; ; for any fixed l > 1, xa, yz E
i=1 i=1 

Zd and r~, i = 1, ... , l with sufficiently large yy. Here G(x, y; z) -
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for a = n.

We prove this result by constructing a certain infinite system of equations
for this family of moments and by proving that this system admits a unique
solution that can be written in the factorized form in the limits R, d, n = oo.
The function ~(.r 2014 y; z) = lim y; z)} that determinates this form

R,d,n-oo

can be found as a unique solution of a certain nonlinear integral equation. Its

solubility condition yields (24).
The reader familiar with statistical mechanics will find a close analogy

of the results described above with the limit of the infinite interaction radius

or the limit of the infinite dimensionality of space which are widely used in
statistical mechanics giving a rigorous form of the mean field approximation.
Thus, our limiting results can be regarded as analogues of the respective results
in statistical mechanics.
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