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HYPERKÄHLER MANIFOLDS

by Nigel HITCHIN

Séminaire BOURBAKI

44eme annee, 1991-92, n° 748
Novembre 1991

1. INTRODUCTION

1.1. "I then and there felt the galvanic circuit close; and the sparks which
fell from it were the fundamental equations between i, j and k exactly as I
have used them ever since" [H].

Hamilton’s conviction that the quaternions should play as fundamental
a role as the complex numbers in mathematics and physics was never real-
ized in his day. There exists now, however, a rich theory of manifolds based
on the algebra of quaternions which goes some way towards vindicating his
belief. These manifolds moreover arise naturally within the context of the
equations of mathematical physics. They are the hyperkähler manifolds.

The "fundamental equations between i, j and k" which, on that Oct-
ober day in 1843, Hamilton carved with such enthusiasm on Brougham
Bridge were of course

A hyperkahler manifold is a manifold (necessarily of dimension a multiple
of four) which admits an action on tangent vectors of the same i, j and k
in a manner which is compatible with a metric. More precisely,

DEFINITION. A hyperkahler manifold is a Riemannian manifold with
three covariant constant orthogonal automorphisms I, J and K of the
tangent bundle which satisfy the quaternionic identities 12 = J2 = K2 =
IJK = -1

S. M. F.
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1.2. Recall that a Riemannian manifold which has just one such automor-
phism is called a Kähler manifold. The name "hyperkahler", which origi-
nated with E. Calabi [Ca], is a fair description - the metric is Kahlerian for
several complex stuctures - even though it does recall Grassmann’s "hyper-
complex numbers" rather than Hamilton’s quaternions. There is, however,
an essential difference between Kahler and hyperkahler manifolds. A Kahler
metric on a given complex manifold can be modified to another one sim-
ply by adding a hermitian form 88 f for an arbitrary sufficiently small C°°
function f. Thus the space of Kahler metrics is infinite dimensional. It is

moreover easy to find examples of Kahler manifolds. Any complex subman-
ifold of CP’~ inherits a Kahler metric and so simply writing down algebraic
equations for a projective variety gives a vast number of examples.

By contrast, hyperkähler metrics are much more rigid. On a compact
manifold, if one such metric exists, then up to isometry there is only a
finite dimensional space of them. Nor is it easy to find examples. Certainly
we will never find them as quaternionic submanifolds of the quaternionic
projective space HPn [Gr].

1.3. The concept of a hyperkahler manifold arose first in 1955 with
M. Berger’s classification of the holonomy groups of Riemannian manifolds.
On a hyperkahler manifold, parallel translation preserves I, J and K (since
they are covariant constant) and so the holonomy group is contained in

both the orthogonal group O(4n) and the group GL(n, H) of quaternionic
invertible matrices (i.e. those linear transformations which commute with

right multiplication by i, j and k). The maximal such intersection is Sp(n),
the group of n x n quaternionic unitary matrices. This group appeared in

Berger’s list.

1.4. The group Sp(n) is also an intersection of U(2n) and Sp(2n, C),
the linear transformations of c2n which preserve a non-degenerate skew
form. Thus a hyperkahler manifold is naturally a complex manifold with
a holomorphic symplectic form. One can see this explicitly by taking the
three Kahler two-forms



(748) HYPFRKAHLER MANIFOIDS

defined for the complex structures I, J and K. With respect to the complex
structure I, the complex form We = W2 +iW3 is non-degenerate and covariant

constant, hence closed and holomorphic.
This point of view provides guidance in the search for examples of

hyperkahler manifolds, and elucidates the sort of differential equation which
needs to be solved. In the first place the holomorphic volume form must

for a hyperkähler manifold give a covariant constant trivialization of the
canonical line bundle. The curvature of this bundle for any Kahler metric

is the Ricci form and so a hyperkahler metric has in particular vanishing
Ricci tensor. In the lowest dimension - four - this means that such metrics

satisfy the Riemannian version of the Einstein vacuum equations.
Given a compact Kahler manifold with holomorphically trivial canon-

ical bundle, the Calabi-Yau theorem [Y] provides the existence of a Kahler
metric with vanishing Ricci tensor. Furthermore, a much older theorem
due to S. Bochner [Bo] shows that any holomorphic form on a compact
Kahler manifold with zero Ricci tensor is covariant constant. Thus for

every compact Kahler manifold with a holomorphic symplectic form, an

application of these two theorems yields a hyperkahler metric on the same
manifold. This satisfactory state of affairs can be used to prove the exis-
tence of hyperkahler metrics on many examples of complex manifolds. The
most fundamental is the K3 surface - the only non-trivial example in 4
real dimensions. In higher dimensions, the Hilbert scheme of zero cycles
on a K3-surface or a 2-dimensional complex torus yields a natural class of

holomorphic symplectic manifolds and hence hyperkahler metrics [Bea].

1.5. In this exposition, however, we shall seek something more than ex-
istence. We should like to construct solutions in a more explicit manner,
in order to gain a better understanding of hyperkahler manifolds and to

experience the richness of their geometry. The ability to do this is a rela-

tively recent phenomenon. Indeed, twenty years ago it was hardly possible
to write down any non-trivial Riemannian metric with zero Ricci tensor.

There are two main routes to constructing hyperkahler metrics: (a)
twistor theory, (b) hyperkahler quotients.

The twistor approach is based on R. Penrose’s original work in rela-
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tivity [P]. It provides an encoding of the data for such a metric in terms of
holomorphic geometry. One might say that the differential equations are
reduced to just one - the Cauchy-Riemann equation. Breaking that code
in order to write down the metric is sometimes a difficult task. Deriving
global properties of the metric such as completeness is almost impossible.
On the other hand, the quotient construction yields this sort of property
quite easily, even if it is not as general as the twistor method.

The hyperkahler quotient construction arose also out of questions of
mathematical physics [HKLR], in this case supersymmetry. In practical
terms there are two ways of using it. The first is a finite-dimensional con-

struction, whereby determining the actual metric involves solving algebraic
equations. The second involves the use of the method in infinite dimen-

sions, even though the quotient itself may be finite-dimensional. Here, one
needs to solve differential equations to find the metric. They are, however,

equations for which in many cases methods of solution are known so that

we have in principle more information than an existence theorem.

1.6. We shall illustrate these constructions by a representative collection
of examples which are chosen according to our guiding principle of seeking
complex symplectic manifolds. These hyperkahler manifolds are all a priori
complex manifolds with holomorphic symplectic forms:

(i) resolutions of rational surface singularities

(ii) coadjoint orbits of complex Lie groups

(iii) spaces of representations of a surface group in a complex Lie group

(iv) the space of based rational maps f : CP~ of degree k

(v) the space of based loops in a complex Lie group
The construction of hyperkahler metrics on these spaces is contained

in the work of P. B. Kronheimer, S. K. Donaldson, and others. What is per-

haps remarkable is that these diverse spaces nearly all inherit a hyperkahler
metric through special cases of solutions to the anti-self-dual Yang-Mills
equations in R~. Those physically motivated equations themselves are ulti-

mately based on the identification of R4 with the quaternions. Hamilton’s

ghost may yet rest content.
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2. THE TWISTOR CONSTRUCTION

2.1. A hyperkahler manifold M4n is, by definition, endowed with three

complex structures I, J and K. In fact, if u = (a, b, c) E R3 then

so that if II ull = 1 we have another covariant constant (and hence integrable)
- complex structure Iu. The hyperkähler metric is Kahlerian with respect to

all of these structures. The twistor space of M is the product Z = M x s2.
The tangent space to the 2-sphere 5’~ has a natural complex structure Io
(considering it as the Riemann sphere) and for X E TmM, Y E Tu82 we
put

which defines a complex structure on the tangent space TmM e Tu82 to
the twistor space Z. It is a theorem [HKLR],[S],[AHS] that this almost
complex structure is integrable and so Z is a complex manifold of complex
dimension 2n + 1.

2.2. The twistor space has the following features. Firstly, the projection
onto S2 ~’ Cpl is holomorphic. Secondly, the antipodal map u on the
unit sphere takes Iu to -Iu and Io to -Io, so we may consider Z as a real

complex manifold ( a complex manifold with an antiholomorphic involution
- like a projective variety defined by equations with real coefficients).

The triple of Kähler forms w2 and w3 on M is determined by the
choice of an orthonormal frame in R3. The complex two-form We can then
be defined for all complex structures Iu lifted to M x SO(3). When we
obtain S2 by dividing SO(3) by a circle. action, We is no longer a true
two-form, but is twisted by the tangent line bundle 0(2) of Cpl. It is

holomorphic.
Finally, each point m E M defines a section {m} x S2 of the projec-

tion p : Z = M x S2 -~ Cpl which is both holomorphic and real (i.e.
u-invariant). The normal bundle of this section is isomorphic as a holomor-
phic bundle to C2" 0 0(1). We then have the basic theorem [HKBR]
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THEOREM 1. Let M4n be a hyperkahler manifold and Z its twistor

space. Then

(1) Z is a holomorphic fibre bundle over the pro jective line

(2) the bundle admits a family of holomorphic sections, each with
normal bundle isomorphic to C2n 0 0(1)

(3) there exists a holomorphic section w of ® C~(2) defining a
symplectic form on each fibre

(4) Z has a real structure 7 compatible with ~I~, (2) and (3) and
inducing the antipodal map on Cpl.

Conversely, the parameter space of real sections of any com plex mani-
fold z2n+l satisfying (1) to (4 ) is a 4n-dimensional manifold with a hyper-
kähler metric for which Z is the twistor space.

(Here C~(k) denotes the pull-back by p of the corresponding line bundle
on CPl and T; the cotangent bundle along the fibres of p. From now on,
for a vector bundle E, E(k) will denote the tensor product E 0 O(k)).

The key to the converse is the fact that the tangent space to the space
of sections is

and the skew form w gives the first factor a symplectic form and the Wron-
skian the second, providing a symmetric form - a metric - on the tensor

product.

2.3. This is the "encoding" via the Penrose twistor space of a hyperkahler
metric. The differential equations are all contained in the non-linearity of
the geometrical construction of a suitable Z. Moreover, Z itself can be

considered as a natural object within the realm of holomorphic symplectic

geometry. Formally speaking, one may consider the projection p and the
structure of the form w as giving a symplectic manifold defined over the
field of rational functions in one variable. The sections are then rational

points on this variety. In particular examples, this "Diophantine" aspect is

evident, as finding the sections results in solving algebraic equations with

polynomials [H1],[H4].



(748) HYPFRKAHLER MANIFOLDS

2.4. Example. Let Z be the total space of the rank 2 vector bundle

E = C2 ( 1 ) over Cpl. This is the twistor space for the flat hyperkahler
structure on R4.

Now let s be a non-vanishing section of E, then s generates a trivial

sub-line bundle with quotient 0(2). Thus translation by a multiple of s
describes E as a principal C-bundle over the total space T of 0(2). Given
À E R we define a line bundle La over T by

where u E C acts euw

If z denotes the tautological section of the pull-back of C~(2) to its total

space T, then

defines a twistor space for a complete hyperkahler metric on R4. This is
the Taub-NUT metric. A derivation of the explicit metric from the twistor
construction can be found in [Be].

3. THE HYPERKAHLER QUOTIENT

3.1 The twistor construction for hyperkahler metrics has as its starting
point the complex structures I, J and K. In fact, it is natural to consider
such structures alone on manifolds, without the existence of a compatible
metric. This is the more general theory of hypercomplex manifolds and
the corresponding twistor theory simply involves deleting condition (3) in
Theorem 1.

The quotient construction, by contrast, emphasizes not the complex
structures but instead the corresponding Kähler forms WI, w2 and w3. In

this case, by contraction with the inverse forms on cotangent vectors, we
can recover I, J and K and the metric itself. Put another way, Sp(n) is
the stabilizer of 03C91, w2, W3 whereas GL(n, H) is the stabilizer of I, J, K.

A hyperkahler manifold can be characterized in a very straightforward
manner using these forms [HKLR] :
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THEOREM 2. Let be a manifold with 2-forms WI, w2, W3 whose

stabilizer in GL(4n, R) at each point m E M is conjugate to Sp(n). Then
the forms define a hyperkähler structure if and only if they are closed.

This theorem, which is a straightforward consequence of the Newlander-

Nirenberg theorem, places the theory of hyperkahler manifolds firmly within
the context of symplectic geometry.

3.2. The hyperkähler quotient is modelled on the Marsden-Weinstein quo-
tient construction in symplectic geometry.

Recall that if (M, w) is a symplectic manifold with a symplectic action
of a Lie group G, then under mild assumptions one can define an equivariant
moment M - g * taking values in the dual of the Lie algebra of
G: for each ~ E g the vector field X~ generated by the action satisfies

= The moment map is ambiguous up to the addition of a

constant ( E ~ C g* where ~ is the space of G-invariant elements of g * .
The symplectic quotient construction consists of choosing a regular

value 03B6 ~  for p and then the form w restricted to the submanifold (()
is invariant and degenerate in the directions of the G-orbits and hence
descends to a form w on the quotient manifold ~C-1 (~’)~G. The form lll is

symplectic.

3.3. Suppose now that M is a hyperkahler manifold, with a Lie group G

acting so as to preserve the three Kahler forms w2 and w3 . We obtain

three moment maps p2 and p3 or equivalently a vector-valued moment

map

We then have [HKLR]

THEOREM 3. If 03B6 ~ ~R3 is a regular value for the hyperkähler moment
map , then -1(03B6)/G is a hyperkähler manifold.

The proof, using Theorem 2, is direct. Each form Wi descends to a form

Wi just as in the symplectic case. What remains to be checked is that the

quaternionic algebraic relations between &#x26;1 , ~2 and W3 are still satisfied.
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Note that

3.4. The symplectic quotient itself has an important role to play in Kähler

geometry, for if M is a Kahler manifold and G preserves the complex struc-
ture as well as the symplectic form, then the symplectic quotient is again
Kahlerian [Ki],[HKLR]. The complex structure of the quotient is then iden-
tified with the complex quotient of a certain open set M9 of stable

points in M by a complex group action which holomorphically extends that
of G. A point is stable if its G~-orbit intersects ~c-1(~). This symplectic
point of view works very well for projective varieties and correlates effec-

tively with geometric invariant theory [Ki].

3.5. Example. A simple illustration of the Kahler symplectic quotient
is the following. Take M = C’~ with its standard hermitian structure and
the action of the circle G = S1 by scalar multiplication. The moment map

and ~c-1(i) = S2"-1. The symplectic quotient is therefore

so that = and inherits a natural Kahler metric - the

Fubini-Study metric.

3.6. In the hyperkähler situation, since the forms w2 and w3 define I,
J and K then if an action of G preserves the symplectic forms, it auto-

matically preserves the complex structures. Fixing attention on one such

complex structure I, the function c = p2 + i 3 is actually holomorphic. It

is the moment map with respect to the holomorphic symplectic form Wc of
the action of the complex group G~. Thus ~C-1 (~) can be rewritten in the
form

for some a ~  and 03B1 ~  ~ C.



N. HITCHIN

From this point of view, the hyperkahler quotient is the symplectic
quotient of the Kahler manifold It follows, that when due account
is taken of stability, the induced complex structure I on the hyperkahler
quotient is simply that of ~c~-1 (a)~G~ _ the holomorphic version of the
symplectic quotient.

3.7. As the complex structure I varies (equivalently as we look at the dif-
ferent fibres of the twistor space p : Z - CPl) the twistor space of the
hyperkähler quotient is now essentially the fibre-wise symplectic quotient of
Z by the holomorphic action of G~. For each complex structure, the com-

plex moment map pc is the restriction of a holomorphic section p of gC(2),
incorporating the twist of the form w of Theorem 1. The twistor space of
the quotient is then for ( E g 0 R3 C 0" 0 0(2)) C

°

In the context of (2.3) it is just the symplectic quotient over the field
of rational functions.

3.8. In practice it is remarkable that one may obtain interesting examples
by starting with the flat hyperkahler manifold M4n = H’~ and taking a

quotient by a linear action of a group. The closest analogue of the projective
space construction in (3.5) is the following example.

Let V be an n-dimensional hermitian vector space and V* its dual.

Then

is a flat hyperkahler manifold. Let G = 51 and let u E 51 act on M by

This action preserves the hyperkahler 2-forms and using the complex and
real moment maps as in (3.6) one finds

Thus if ( = (i, 0, 0) E g* ® R3 then
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The second condition determines the set of stable points M~ as the set
where x =I- 0 and then ~I~f ~~C* is the cotangent bundle of P(V) = 

This, however, is only one of the 2-sphere of complex structures on this

hyperkahler manifold. Because of the symmetries in this example, the
others can be identified with the quotients ~c~ 1 (~)~C* for 0 which are

affine bundles over with group of translations the cotangent bundle.
Note that complex cotangent bundles are naturally complex symplectic
manifolds.

This particular metric for n = 2 is the Eguchi-Hanson metric [EH].
The generic complex structure is that of an affine quadric in C3. The

higher-dimensional examples were first found by E. Calabi [Ca].

3.9. One general class of hyperkahler moment maps we shall encounter is
based on the following example.

Let G be a Lie group with a bi-invariant metric, and put

where g is the Lie algebra. This is a flat hyperkahler manifold, and the

adjoint action of G preserves the symplectic forms. The three hyperkähler
moment maps are then

where A E g 0 H is defined by A = Ao + A1 i + A2 j + A3 k. Note that the

complex moment map is given by

and putting a = Ao + iAi and f3 = A2 + iA3 the three moment maps can
be written as a complex and real moment map
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It is worth pointing out here that replacing the A; by covariant derivatives

Vi yields the anti-self dual Yang-Mills equations as the single equation
p = 0. We shall see versions of this result in the examples which follow.

4. RATIONAL DOUBLE POINTS

4.1. In the study of surface singularities, the rational double points are
characterized by the property that their minimal resolution has trivial

canonical bundle - these are thus, locally, 2-dimensional complex manifolds
with holomorphic symplectic forms. The basic model for such a singularity
is the space where r is a finite subgroup of SU(2). We shall describe
here the construction of Kronheimer [K1],[K2] for a hyperkahler metric on
the minimal resolution. We have in (3.8) already encountered such a metric
- the Eguchi-Hanson metric. This was defined on the cotangent bundle of

but the zero section of this has self-intersection -2 and so can be

blown down to a singularity - the ordinary double point C2/ ± 1. Kron-

heimer’s construction proceeds (as in (3.8)) by using hyperkahler quotients.

4.2. Let r be a finite subgroup of SU(2) and let V = L2(h) be the finite-
dimensional Hilbert space of functions on F, U(V ) the unitary group of V
and u(V) its Lie algebra. Then, as in (3.9), u(V) 0 H is a flat hyperkahler
manifold - a quaternionic vector space with a compatible inner product.

Now; since SU(2) is isomorphic to the unit quaternions, F acts on
the left on both the quaternions and L2(f) = V and so has an action on
u(V) 0 H commuting with right multiplication by quaternions. Thus

the space of invariant elements, is also a flat hyperkahler manifold.
The projective group PU( V) acts by conjugation on tt(V)0H preserv-

ing the hyperkahler structure and so G = acts on M in the same

way. This is the context in which we may take the hyperkahler quotient.
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4.3. To gain more information, we decompose V into irreducible represen-
tations. Now

where the sum is over the irreducible representations of F under left and

right action, and vo is the trivial representation. Thus

Hence if dim ViR = dim ViL = ni, then

We can also see clearly the centre of G from this decomposition, and from
that the subspace J E g* of invariant elements. We have

4.4. The structure of the irreducible representations of r is conveniently
encoded through the McKay correspondence [McK]. To each subgroup r
(cyclic, or binary dihedral, tetrahedral, octahedral or icosahedral) there
corresponds a Dynkin diagram of type AI, Dj, E6, E7, E8 respectively. Each
vertex of the diagram corresponds to a non-trivial irreducible representation
of r.

In Lie algebra theory, each vertex corresponds to a simple root Of,. The

highest root is expressed in terms of the simple roots by

From McKay the integer ni is the dimension of the representation
space corresponding to the ith vertex. The whole situation is simplified by
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introducing the extended Dynkin diagram incorporating the highest root.
The relation

with no = 1 and ao the negative of the highest root then puts the trivial

representation on the same footing as the others.

4.5. To find the dimension of M in (4.2) requires a knowledge of the
relationship between the tensor product of the defining 2-dimensional rep-
resentation of r C SU(2) and the other representations Vi. This again is

provided by the McKay correspondence:

where ai j = 1 if the vertices of the extended Dynkin diagram are adjacent
and zero otherwise.

As a complex vector space, M = (Hom(V, V) 0 C2)r and so

But now applying the Cartan form to the relation in (4.4) gives
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Thus, provided G is shown to act freely, we have a hyperkahler quotient
of dimension dim M - 4 dim G = 4. Note that since 3 is l-dimensional there

is a choice in moment map, which must be suitably exercised to obtain a

free action.

4.6. The relationship with the resolution of C2 If may be seen by consid-

ering ( = ((i,0,0). Since we are essentially in the situation of (3.9), the

hyperkahler moment map equations can be written as equations for a pair
of complex matrices

but where a,(3 E Hom(V, V) define a r-invariant element of Hom(V, 
This invariance means that if e E V is a common eigenvector of a and

/~ (which exists since they commute) with eigenvalues a, b then (a,,~)e =

(a, b)e and

where (a, b) t2014~ (a, is the defining action of F on C2.

Since r acts freely on C21~0~ = H1~0} (multiplication by a non-zero
quaternion) if one eigenvalue pair is non-zero then we have Irl = dim V
distinct eigenvalue pairs. In particular, the r-orbit of one such pair (a, b)
is well-defined by (a, ~). This provides a map p, holomorphic with respect
to I, to If (i is chosen appropriately, the quotient is non-singular,
so that once one proves tha,t p is biholomorphic outside the origin in C2 If
the map is a resolution.

The four-dimensional metrics produced this way are not only complete

hyperkahler manifolds, but they are also asymptotically locally Euclidean

~ALE~ mea,ning that they approach rapidly the Euclidean metric on R 4 If
a,t infinity.

5. COADJOINT ORBITS

5.1. For any Lie group, an orbit in the dual of the Lie algebra is a symplectic
manifold. This is the canonical Kostant-Kirillov symplectic structure. If



N. HITCHIN

the group G is compact, then the orbits are Kahler manifolds. This fact

may be exploited to obtain all the irreducible representations of G within
the context of geometric quantization (the Borel-Weil theorem).

The existence of a symplectic structure is completely general. In partic-
ular, a coadjoint orbit of a complex Lie group G~ is a holomorphic symplec-
tic manifold. These manifolds in many cases possess natural hyperkähler
metrics due to the work of Kronheimer [K3]. The Eguchi-Hanson metric
already provides us with one example - the affine quadric in C3 (which is
the generic complex structure) is the orbit under SL(2, C) of a semi-simple
element in g = g*. We shall give here the general construction for a regular
semisimple orbit - one of the form GC jTC where Ge is a complex semisimple
Lie group and T~ a maximal complex torus. The compact analogue of this
is the flag manifold G/T, the orbit type which features prominently in the
Borel-Weil theorem.

5.2. The metric is produced by an application of the hyperkahler quotient
construction to an infinite-dimensional flat hyperkahler manifold. The set-

ting is that of a special case of the anti-self-dual Yang-Mills equations. We
consider a compact semisimple group G and a trivial principal G-bundle
P over R4 ~.{0~, and the space of connections on P. This is an infinite-

dimensional affine space modelled on the vector space S~1(R~1{0~; adP) of
1-forms with values in the Lie algebra bundle. This is itself a quaternionic
vector space, inheriting its structure from the identification of R4 with

H. The left action of the unit quaternions Sp(1) commutes with the right
action and it follows that the space of Sp(1)-invariant connections is also

quaternionic. The invariant automorphisms or gauge transformations act

on this space.

To define a metric requires a closer attention to boundary conditions,
but having done that, one may consider the hyperkahler quotient of this

affine space by the group of gauge transformations to obtain a hyperkahler

quotient.

5.3. The Sp( 1 )-invariance condition above throws the emphasis onto a
radial variable s E (-oo, 0~. The moment map equations can then be
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transformed to the following non-linear system of equations

for functions with values in the Lie algebra g. Note how these equa-
tions compare with those in (3.9) putting Ao = d/ds + Bo and Ai = Bi for
i>0.

The boundary conditions which give rise to this moment map are de-

fined by comparison with a particular configuration given by Bo = 0 and

Bi = Ti where Ti , ~2, T3 lie in a fixed Cartan subalgebra !). They are to be
chosen such that their common centralizer is !) itself. This is clearly a solu-
tion to the equations. The space of operators d/ds + Bo, Bl, B2, B3 which
are close to this model configuration in some exponentially-weighted C~

norm [K3] then admits a well-defined inner product. (In the 4-dimensional

interpretation above this is simply the L2 inner product).
The adjoint action of the group of smooth functions g(s) with values

in G on the four operators d/ds + Bo , Bl, B2, B3 then gives a hyperkähler
group action. (This is the group of invariant gauge transformations in the
4-dimensional formalism).

It is easy to see in this case that the quotient is finite-dimensional,
since by a gauge transformation the operator d/ds + Bo can be transformed
to d/ ds leaving an ordinary differential equation in Bl, B2 and B3 with

equivalence under the finite-dimensional group G.

5.4. Identifying the complex structures on the quotient involves an extra
theorem. Here one chooses the complex structure and rewrites the moment

map equations as in (3.9) with a real and complex part
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where a = (Bo + iBl)(s) (B2 + 
One then shows that if the boundary conditions are satisfied, the map

identifies the space of equvalence classes of solutions to the above equations
with the adjoint orbit of T2 + i03C43. For Gc semisimple this is isomorphic to
the coadjoint orbit. The proof itself is modelled on a theorem of Donaldson

[D1].

5.5. Notice that there is a choice in the moment map reflected this time in

the boundary conditions. Part of that choice involves T2 ~i~r3, the particular
coadjoint orbit, but the extra choice of Tl in the Cartan subalgebra gives a

family of hyperkahler metrics.
We may remark also that although finding the metric explicitly in-

volves solving the non-linear equations in (5.3), they are a form of Nahm’s

equations, the general solution of which can be described in terms of the

geometry of the Jacobian of an algebraic curve [H3]. There is clearly much
more than an existence theorem involved here.

6. REPRESENTATIONS OF SURFACE GROUPS

6.1. If E is a compact oriented surface, its fundamental group has an in-

trinsically symplectic nature [G]. In particular, for any Lie group G with
an invariant inner product on its Lie algebra, the moduli space of irre-

ducible representations of 03C01 (E) is a symplectic manifold. This is the space
(?)/(? where G acts by conjugation. The tangent space a,t a

representation can be identified with the cohomology group H1 (~r1 (~); g)
and the bilinear form on g gives a skew pairing to .H~(7Ti(E)) which is

generated by a fundamental class.
When G is a compact group, a choice of complex structure on E makes

the moduli space into a Kahler manifold, its holomorphic structure being
that of the space of stable holomorphic bundles on the Riemann surface E.

This is the theorem of Narasimhan and Seshadri [NS].
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For a complex semi-simple group G~, the moduli space

is naturally a complex symplectic manifold and has in fact a natural hyper-
kahler metric, also determined by a choice of complex structure on E.

6.2. The context for this metric is again an infinite-dimensional hyper-
kahler quotient construction.

Let Ac be the affine space of all Gc-connections on a principal Gc-
bundle over E which we assume has a fixed reduction to the maximal com-

pact group G. This provides a metric on any associated vector bundle,
and a conjugation operation on the bundle adP associated to the adjoint

representation of G. Each tangent vector to AC may be considered as a

1-form a E S~1 ~E; adP 0 C) and if Tr(AB) denotes the inner product on g,
we have a complex symplectic form defined by

Given a complex structure on E, we may decompose a = + aO,l into

forms of different type and then there is a real symplectic form - the Kahler
form of the metric

This makes AC into an infinite-dimensional hyperkahler manifold. The

group 9 of gauge transformations acts on AC preserving this structure.

6.3. The moment maps for this hyperkahler action are expressed in terms
of curvature. This is a consequence of a fundamental observation of Atiyah
and Bott [AB]. If we write them in terms of a real and cornplex moment
map we obtain
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where F’ and F" are the curvatures of the unique G-connections ’‘7’ and

~7" such that

is the space of flat connections on the principal G~-bundle.
A theorem of Donaldson [D2] and Corlette [Co] shows that each irre-

ducible ~~-orbit contains a solution to ~Cr = 0, which is unique modulo Q,
so that the complex structure of the hyperkahler quotient can be identi-
fied with the space of flat irreducible connections modulo complex gauge
equivalence. But the holonomy identifies this with the moduli space of

representations GC)jGC.

6.4. The proof of Donaldson and Corlette’s theorem involves a reinterpreta-
tion of the moment map equations. The set-up for the quotient construction

above involves a fixed metric on a principal bundle and an ’equivalence class
of flat connections. Alternatively, we can consider a fixed flat connection
and then solve for a metric satisfying F’ = F". A metric, compatible with
the G-structure, is a section of the associated flat G~~G-bundle and then
the equations to be satisfied are equivalent to the statement that the sec-

tion is harmonic. The non-positivity of the curvature of G~~G then yields,
via the Eells-Sampson theorem [ES], the existence result.

The analysis required to rigorously produce the moduli space with its

metric involves Sobolev spaces for compact manifolds and is quite standard

(see [H5]).

6.5. This hyperkähler manifold, of dimension 4(g-1) dim G, where g is the

genus of E, shares a number of properties with the simple Eguchi-Hanson
metric. The complex structure of the moduli space of representations con-

structed above is that of an affine variety, like the affine quadric. On the

other hand there is one complex structure (and its conjugate) out of the

2-sphere generated by I, J and K which is not affine but which instead
contains as a dense open set the cotangent bundle of the moduli space of

stable G~-bundles. This is the analogue of the cotangent bundle of CP~ for

the Eguchi-Hanson metric. With this complex structure, the hyperkahler
manifold can be identified as the moduli space of stable Higgs bundles (or
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stable pairs) on E [H5]. In this case the compactness of the surface im-

poses boundary conditions on the moment map equations which have as

yet defied explicit solution.

7. RATIONAL MAPS

7.1. The quotient constructions offered as examples in Sections 5,6 and
7 are based on equations in 0,1 and 2 dimensions. There is a system of

equations in R~ which again yields moduli spaces which are hyperkahlerian.
These are the Bogomolny equations for magnetic monopoles.

We consider here a trivial principal G-bundle P over R3 where G is a

compact Lie group, and the space A of connections on P. We put

A point of M thus consists of a pair (A, ~~ where A is a connection and ~
a section of the adjoint bundle - the Higgs field.

The tangent space at a point is identified with the set of pairs

and this has an obvious quaternionic structure by writing a tangent vector
as

There is an action of the group of gauge transformations 9 on M.
If we impose suitable boundary conditions (essentially comparison with

a model as in Section 5) on (..4, ~) and g, then the L2 inner product defines
a hyperkahler metric on M and the action of 9 preserves it. We may then
take a hyperkahler quotient.

7.2. If we write ~z i for the directional covariant derivative defined by the
connection A, the moment map equations become (cf 3.9)
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or more compactly, using the Hodge star operator,

which are the Bogomolny equations.
In the simplest case G = SU(2), the boundary conditions on § one

usually takes imply that ~~~~~ - 1 as r - oo. This yields an integer k, the
degree of the map from a large sphere in R~ to the unit sphere R3.

This is called the charge of the solution.

7.3. The moduli space here can be identified by a supplementary theorem

(due to Donaldson [D1] ) with the space of based rational maps f : 
Cpl of degree k. The actual identification involves choosing a direction
u and studying a scattering problem for the ordinary differential equation
(Vu + i4»s = 0.

We may write such a rational map in the form

where the base-point oo is mapped to 0. Here, for f to be of degree k,

p(z) and q(z) have no common factor. The space of such maps is clearly a
complex manifold of real dimension 4k. As a hyperkahler manifold it has
a complex symplectic form. This is obtained as follows.

First factorize q(z) = (z - ,Q~) ... (z - Since p and q have no
common factor p(,Qz ) fl 0. Then the form

extends to a holomorphic symplectic form on the space of rational maps.
It is covariant constant with respect to’ the hyperkahler metric.

7.4. The rigorous construction of these metrics requires some analysis
which was produced by C. H. Taubes. An account may be found in [AH]
of the use of these results and properties of the metrics. There is one par-
ticular feature which distinguishes this family from the previous ones. The
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identification with the space of rational maps involves a choice of direc-

tion in R3. On the other hand the Bogomolny equations themselves are

SO(3)-invariant. Thus SO(3) acts transitively on the 2-sphere of complex
structures on the moduli space which are therefore all equivalent. This is

also true of the Taub-NUT metric, whose twistor space as described in (2.4)
clearly inherits the action of SU(2) on 

These monopole metrics are known insofar as their twistor spaces can
be described exactly (see [AH]). In the case of k = 1 and 2 they have also
been computed explicitly- in the first case it is the flat metric on S1 x R3,
and in the second a metric whose description involves elliptic integrals [AH].

8. LOOP GROUPS

8.1. If G is a compact Lie group, and LG = denotes the

space of smooth maps from the circle to G then the quotient LG/G by
the subgroup G of constant maps is well-known to have the structure of an
infinite-dimensional symplectic manifold [PS]. Indeed it also has a natural
Kahler metric. The symplectic form is obtained by translation from the

identity of the skew form

Clearly this definition holds when G is replaced by a complex semi-

simple group G~, so that the complex manifold has a natural holo-

morphic symplectic form. Donaldson [D3] has shown how to give this space
a natural hyperkahler metric.

8.2. The approach is to consider a trivial principal G-bundle over the unit
disc D ~ C and the space AC of connections on the associated Gc-bundle

Pe which are smooth up to the boundary. The setting is therefore similar
to that in Section 6, but now we have a non-trivial boundary, the circle S1.

However, if we consider the group of gauge transformations 9 which restrict
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to the identity on the boundary, then the hyperkähler moment maps are
the same as in (6.2)

8.3. To solve the moment map equations, the harmonic map formulation
is used again. In this case all flat connections are trivial, since the disc is

simply-connected, so the problem concerns harmonic maps f : D - G~~G.
Results of R. Hamilton [Ha] show that the Dirichlet problem can be solved
in this case. Thus, given a map on the boundary circle, there is a unique
harmonic map extending it to the disc.

In the formulation of connections, this means that given the bound-

ary value of a flat G~-connection on D, there is a unique solution of the

hyperkahler moment map equations, modulo gauge transformations which

preserve the boundary value. But since all such connections on the cir-

cle are gauge-equivalent to the trivial connection, which has automorphism
group G~, the hyperkahler quotient we are considering is

8.4. The holomorphic form w of Section 6 restricts to the space of flat

connections ~c~ 1 (o) to give

But, to be tangential at A to a flat connection, a and ~i must satisfy
a = d A ’P and /3 = d A ’ljJ for some ’P, ’ljJ E S~°(D; adP~) and hence
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which is clearly the skew form defined above on boundary values of maps
/:D-~G~.

8.5. Finally note that the moment map equations for this example can be

put in the more familiar form of (3.9) by means of some substitutions. If

we set

where § = 03C61dx1 + 03C62dx2, then the equations may be written as

9. CONCLUSIONS

9.1. The quotient construction yields a vast number of hyperkahler mani-

folds, in fact such a large number that a secondary task now presents itself
to instil some order amongst them. This is particularly important because
even those exemplified here have interrelationships - hyperkahler metrics

may appear on the same space through different constructions.
Kronheimer’s coadjoint orbits provide an example. The construction

in Section 6 is given as an infinite-dimensional quotient based on ordi-

nary differential equations. On the other hand D. Burns [Bu] has given an
algebraic twistor construction (characteristically manifesting difficulty in
showing completeness) for metrics on the same spaces. It is also true that

Donaldson’s complex loop group metric in Section 8 contains the same coad-

joint orbits as fixed point sets of circle actions. Also, some of these spaces
(as the Eguchi-Hanson metric shows) can be obtained as finite-dimensional
quotients. Proving these to be isometric is not always easy.

Another class of examples are the monopole moduli spaces, which ac-

quired a hyperkahler metric through an infinite-dimensional quotient based
on the Bogomolny equations in 3 dimensions. There is however, through the
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Nahm transform, a way of defining a hyperkähler metric through Nahm’s

equations in 1 dimension. Results such as those of Nakajima [N] have
shown that these particular metrics coincide. A similar situation holds for
instanton moduli spaces where results [BvB], [Ma] show the coincidence of
metrics defined by two methods.

9.2. There are also quotient constructions for a class of manifolds related to
the quaternions in a slightly more general manner than hyperkahler man-
ifolds. We have already encountered hypercomplex manifolds, but there
is also the class of quaternionic Kaiser manifolds, which are Riemannian
manifolds with holonomy group Sp( n ).Sp(l) like HPn and quaternionic
manifolds, which admit a torsion-free GL(n, H).Sp(1) connection [S]. For
all of these [GL],[J] there are quotient constructions, but so far with a lesser

range of examples than the hyperkahler quotient.

9.3. One final question concerns the compact examples like the K3 surface

where we still rely entirely on existence theorems. Could they be obtained

by the quotient construction? In particular, through a finite-dimensional

quotient of a vector space?
The answer is no. Compact examples of finite-dimensional Kahler quo-

tients, like the projective space in (3.5), may exist but the special curvature
of a hyperkahler manifold prevents this from happening in the hyperkahler
context. Perhaps the easiest way to see this is in the 4-dimensional case.

Suppose that a compact hyperkahler manifold M4 is obtained by a

quotient of a linear hyperkahler action of G on H" Then if JL is the hy-

perkahler moment map, -1(03B6) is a principal G-bundle P over M. The

flat metric on H’~ induces a G-invariant metric on P and the orthogonal
complements to the orbit directions define a connection on P. Now for

each complex structure on H’~ (and hence M), the associated principal
G~-bundle is (a) which is holomorphic. This implies that the connec-
tion is compatible with all three complex structures I, J and !{ and hence

(see [AHS] ) is a solution to the anti-self dual Yang-Mills equations on M.

According to the Atiyah-Ward construction, this corresponds to a holomor-

phic principal bundle on the twistor space Z of M which is, not surprisingly,
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The connection has a further property, for we have an embedding
of ~c-1(~) in the twistor space c2n(1) corresponding to the embedding
P = ~c-1 (~) C H’~. This embedding defines an equivariant section of

C2n(1) on the principal G~-bundle over Z and this (see [H2]) has an in-
terpretation via the Penrose transform as the solution ~ of a differential

equation on M - the twistor equation coupled to the anti-self-dual Yang-
Mills connection. Now for such an object there is a Weitzenböck formula

which gives a vanishing theorem on a compact manifold. In our case, since

the Ricci tensor of a hyperkahler manifold vanishes, then in particular so

does the scalar curvature, and the corresponding vanishing theorem [H2]
implies covariant constancy This in turn means that the map P C H’~

is constant in horizontal directions which is a contradiction to it being an

embedding.

9.4. As for infinite-dimensional quotients, there remains a hope. Instanton

moduli spaces on hyperkahler manifolds have induced hyperkahler metrics

through the moment map interpretation of the anti-self-dual Yang-Mills
equations, but they tend to be either non-compact or have singularities
corresponding to reducible connections. However, introducing singularities
into the connections themselves may yet induce more regularity into the
moduli space. Ultimately, it is possible that the K3 surface may be brought
into the fold of hyperkahler quotients. It does not necessarily mean that we
can write down the metric (a glance at [AH] will show that explicitness is
not gained easily) but that we shall have in any case a deeper understanding
of the pervasiveness of the geometry which has arisen from the quaternions.
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