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ON THE DIFFERENTIABLE STRUCTURE OF

CERTAIN ALGEBRAIC SURFACES

par A. VAN DE VEN

Seminaire BOURBAKI

38eme annee, 1985-86, n° 667

Juin 1986

. The past decades have seen great progress in the classification of the diffe-

rentiable structures on a given topological manifold M , say compact, oriented

and simply-connected.

Already in the early fifties Moise showed that if dim(M) =s; 3 , then M

admits a unique differentiable structure. On the other hand, for higher-dimensional
manifolds it was known since Milnor (1956) that in some cases there may be more

than one differentiable structure, and since Kervaire (1960) that in other cases

there may be none at all. Nowadays a well-developed theory tells us that for

dim(M) >_ 5 the differentiable structures on P4 can be obtained from obstruction

theory. However, neither Moise’s methods nor the methods of obstruction theory
work in dimension 4, and until some years ago little was known for this case. But

during the last five years S. Donaldson has obtained a number of striking results.

These results are based on Yang - Mills theory, where analysis plays an essential

role.

In this talk I want to focus on one of these achievements, namely the cons-

truction of a new invariant for a certain class of differentiable 4-manifolds.

The invariant has a beautiful interpretation (again due to Donaldson) in the case

of algebraic surfaces. This interpretation makes it possible to apply the methods

of algebraic geometry to settle questions about the differentiable equivalence of

some algebraic surfaces, questions which had been open for many years. In this way
not only a counterexample to the h-cobordism conjecture in dimension 4 is obtained,
but also an example of a topological 4-fold with an infinity of inequivalent
differentiable structures. This contrasts with the fact that for dim(M) >_ 5 there

is only a finite number of differentiable manifolds M with given harotopy type
and Pontrjagin classes.

1. A PRJBLEM CONCERNING THE DIFFERENTIABLE STRUCTURE OF TWO ALGEBRAIC SURFACES

With Donaldson in [Do 3] and [Do 6] ] we start by comparing two algebraic sur-

faces (by which I shall mean here smooth, connected, 2-dimensional projective
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algebraic varieties) as differentiable manifolds.

Let = Pn ( ~ ~ : ... : En+i) be the n-dimensional complex projective

space with homogeneous coordinates (E) = (Ei : ... : ~n+~ ) . . Given any open set

U c with 0 E U , we can consider on U x ]pi (03BE1:03BE2) the submanifold V

given by z2E1 = 0 . If n : U x --~ U is the projection, then we can

identify V ~ rr ~ ( 0 ) with via n , whereas n-’ ( 0 ) ~ ~~ . We say that V is

obtained from U by up 0 ( [BPV] , p. 28) . In this way we can blctv up

any point of a complex surface ( 2-dimensional complex manifold) A . If A is an

algebraic surface, then so are all of its blow-ups ([BPV], p. 128). If you see A

as a differentiable manifold, then blowing up a point in A is nothing but taking

a connected sun A ~ lP2 , where JPs is 1P2 with orientation reversed.

Our first surface will be JP2, blown up in nine points. From the differentia-

ble point of view it does not matter how these points are chosen, so we choose them

in a way that suits our purposes, namely in the nine intersection points

X1 , ... , x9 of two general cubics Ki (E) = 0 , i = 1,2 . We define X to be the

algebraic surface obtained by blcwing up JP2 in x~ , ... , Xg .

Blowing up does not change the fundamental group, so ni (X) = ni = 1 .

Let QX be the integral cup form on H2(X,Z) . Since X is diffeomorphic to

P2 # IP(1)2 =#= ... # IP(9)2, we see that rk(Q ) = 1+9 = 10 , whereas the indexP2 # P(1)2 # ... . # , we see that rk ((?X) = 1 + 9 = 10 , , whereas the index

03C4 (Qx) = 1- 9 = - 8 . Obviously Qx is an odd form.

The rational function on IP2 yields a holcmorphic map

f ’ ~2 ~ ,U x. -’~1 ’ which, after blowing up, can be extended to~ i=1 ~- 

All but a finite number of the fibres of f are smooth elliptic curves ; thus f

is an elliptic fibration with base and X an elliptic surface.

Let n n ~ 2 , and let 0394 ~ (t) be the unit disk. Suppose we have a

proper, connected surjective holomorphic map

where A is a complex surface. Let us further assume that g is everywhere of

maximal rank and that its fibres are elliptic curves. Then there exists another

complex surface B and a proper, surjective holomorphic map h : B --~ A , such

that A ~ c~ ~ (0) is isanorphic to B ’ h- (0) in a fibre-preserving way, whereas

h-1 (0) , though set-theoretically still a smooth elliptic curve,has multiplicity n

( i . e. f*(dt) vanishes exactly to the order n -1 on h~(0) , , and 

is homologous to a general fibre). Given any elliptic fibration S ---~ C we can

construct by this procedure another one S’ ---~ C , which is isomorphic to the

first, but for the fact that a smooth fibre has been replaced by one of multipli-

city n . This procedure is called a a ~ ondeA n along



the fibre in question. Contrary to blowing up, a logarithmic transformation on an

algebraic surface is an analytic, not an algebraic procedure. It can change an al-

gebraic surface into a non-algebraic one. For details I have to refer to [BPV],

p. 164 or [GH], p. 566.

This said, we apply two logarithmic transformations, one of order 2 and one

of order 3 to two (different) smooth fibres of f. Let Y be the resulting

complex surface, and g : Y -~ ~~ the elliptic fibration inherited fran f . The

structure of Y does not depend on the choice of the smooth fibres

which are replaced by multiple ones, so as long as we are interested in the diffe-

rential structure we can speak of the surface Y .

A theorem of Dolgacev ([Dg], Ch. II) asserts that ni (Y) = 1 . (N.B. In gene-

the fundamental group changes if a logarithmic transfonnation is applied). It

can also be proved that Y is again algebraic. What about Clearly we have

for the Euler - Poincare characteristic e (Y) = e (X) = 12 , so rank (QJ = 10 .
Furthermore, the canonical bundle formula for elliptic fibrations ([BPV], p. 161)

implies in our case :

where fi E is dual to the homology class of the fibre Fi with multipli-

city i. So c~ (Y) - 0 , and the index formula of Than - Hirzebruch ( [BPV] , p. 18)

yields

Finally we observe that QY is odd, because of a theorem of Rohlin ([FU],

p. 23), saying in particular that the index of a simply connected smooth 4-fold

V is divisible by 16 if QV is even.

Hence QX and Qy have the same rank, index and parity. Both being unimodu-

lar (and indefinite) , it follows from number theory that they are isomorphic over

ZS ([Se], V, §2). In other words, X and Y have the same cohomology ring. Are

they homeomorphic ? If so, are they diffeomorphic ?
These problems were first raised by Kodaira around 1965. At the time they

could not be answered. The only thing which could be said was that, according to

a theorem of J.H.C. Whitehead, X and Y have the same homotopy type. It would

take fifteen years before the first question was answered by Freedman (see [Fr] ) .
But his deep and admirable methods, though settling the topological problem in full

generality for the simply-connected case, don’t give any information about diffe-

rentiable equivalence. As I have mentioned before, the question is of much inte-

rest also from a more general point of view.



2 . THE DONALDSON INVARIANT

Let M be a (compact, connected) smooth 4-manifold, oriented, with
1 and Qr~ equivalent to +1> EB -1>. ®... ® -1> 

If g is any Riemannian metric on M, then its staroperator induces an invo-
lution

with a 1-dimensional space of invariant classes. Identifying H2 (11, R) with the

space of hanmnic 2-fonns, we shall denote the *-invariant forms by (D . Clearly
we have wg A w g > 0 for 

g

We also need the follcwing facts. In H2 (M,R) the cone is defined by

CM consists of two nents . For any a E H2 (M, ~ ) , a2 = -1 we define the

a-wall in C M by

The connected components of ( a as above) are the in "

New we are ready to describe the Donaldson invariant ([Do 3], [Do 6]).

THEOREM 2.1.- Let M be a compact, connected an,i,en,ted -6mooth 4-fold, with
ni(M) = 1 and QM equivalent to +1> ® -1> ® ... ® -1> over IR . Then there

uniquely defined map

the following conditions :

(ii) if N the same conditions ab M, and f : M ~ N is an

orientation-preserving diffeomorphism, then 03C1N(f* (j) ) - f* ;

(iii) if hl,h2 E CM’ U a aAe contained in :the..6a.me. component of M , then

~.e ~5um .~s a,~.~ HZ (r4,~) , ai = -1 , w,i,~, and~

> 0 ; In particular pM is constant on every chamben ;

(iv) if h = g , where g is a generic Riemannian metric an M , then

= d (g ~ g) ~

The first thing to do is to explain what is meant by a "generic metric" and

by d (g, g) . Let us for a short moment return to the earliest work of Donaldson
in this direction, I mean



THEOREM 2.2.- If M is a (compact, connected) oriented -6mooth 4- with

03C01 (M) = 1 and QM definite, then QM is equivalent -to +1> ® ... ® +1>

Donaldson has recently been able to drop the condition Hi (M) = 1 comple-

tely, see Theorem 4.3 belcw.

The proof of Theorem 2.2 can be found in [Do 1] and is also extensively treated

in an important book by Freed and Uhlenbeck ([FU]). Since the construction of Do-

naldson’s new invariant plays on the same stage, I recall the proof in two words.

let 0 be a smooth SU ( 2 ) -bundle on M with c,~ ( ~ ) = -1 , and let H be

the affine space of all SU( 2)-connections on 0 . For technical reasons it is

important not to take only smooth connections, but L -connections for seme large
enough p . Similarly, one has to consider Ck-metrics for some k ~ 3 . The

technical reason is simply that in the last case certain sets, occurring in the

proof, have a Banach structure, which makes it possible to apply the implicit
function-theorem and the Sard - Smale theorem. I shall take the liberty to ignore
this type of technical points.

The group of bundle automorphisms I of 0 (the "group of gauge transfonna-

tions") operates on H . Let B = H/I . A connection is reducible if it is the

direct sum of connections on two U(1)-bundles £ i and ~2 , with £ 1 = 0 .

If 2m is the number of elements a E H~(M,3S) with a2 = 1 , then the subset

of B coming from reducible connections consists of m (infinite-dimensional)
m

components R1,...,Rm , and B* = B , U Ri is a Banach manifold.

Each connection A E H has a curvature form FA E 03A92(ad()) (i.e. a 2-form

on M with coefficients in the adjoint bundle of 0). Any Riemannian metric g

on M induces a *-operator on with ** = id . The connection A is

called (anti-self-dual) if *FA = FA (*FA = -FA) . Self-dual connections
are transformd by I into self-dual connections and thus we obtain a moduli set

Sg c B of (equivalence classes of) self-dual connections. Using the Sard - Smle

theorem as well as the index theorem for elliptic complexes. Donaldson shows that,
if g is general enough, then S n B* is a 5-dimensional oriented smooth mani-

fold, whereas Sg n ~ consists of one point p. , i = 1 , ... , m . In the

neighbourhood of each of these points Sg is modelled after a cone over ]Pz (T) .

Then Donaldson proves that there is a component of S , containing, say,
p1,... , pk , , whose unique end is modelled after M x (0,6) . The essential tool

here is the Taubes-construction, by which self-dual connections on M are ob-

tained first locally, by perturbing a transplanted self-dual connection fron 84 ,
and then extending it to all of M . In this way an oriented cobordism is obtained

between M and the disjoint union of copies of UPs or F2 , together k in



number. Finally, application of the following proposition completes the proof.

PROPOSITION 2.3.- Let Q be a integral quadratic form
06 k . 162m -L6 the number of integral solutions to Q (x, x) = 1, :then.

m _ k wdh equality if and if Q is equlvdent to +1> ® . , , Q9 +1> over ZZ .

New we consider a similar situation for our case, i.e. the case where M is

as in Theorem 2.1 above. Instead of V we take the SU(2)-bundle m with

c2(~U) - 1 . We give B the same meaning as before, and denote again by B

the space of irreducible 
, 

connections. For any metric g on M we write A g for

the moduli space of antl-self-dual connections.

PROPQSITION 2.4.- If g L6 a general Riemannian metric, then A g is

a 2-dimensional orientable differentiable manifold, contained in B* .

N.B. Ag need not be connected, and its components may or may not be compact.

If Ag is compact and can be given some canonical orientation, then we can

take the image h E of the fundamental class of A , and try to use it
to find an invariant for M . In fact, on M x B* there is a universal U(2)-

bundle for the connections on ? . l-bre precisely, there is a U (2 ) -bundle U on

M x B* with a partial connection P in the M-direction, such that UIM x b is

isomorphic to W for every b E B* and P I M x b is a connection in the equiva-
lence class represented by b. So on M x B* we have the Chern class c~ (U) ,
and us ing the product ( see [ Sp ] , p. 351 )

we could try as an invariant h B c2 ( U ) E H2 (X, ~ ) .

Of course, in this primitive fom the idea can’t possibly work, since g is

in general not capact. Nevertheless, the basic thought is right and I shall now

explain how it can be made to work. What we are going to do is to construct a kind

of "compactifying tail", though only homologically and not for A , but for 2A .

be the cotangent bundle of M. Then = ® O _ a y , where the g

3-bundles ~. and ~_ correspond to the eigen values +1 and -1 of the induced

operator * : --~ A~~~ . " If v~e w g section of A.f. , 2 the following

proposition becomes plausible .

PROPOSITION 2.5.- If g genead, then g (~ 0) vanishes trans-

versally an a smooth curve Cg eM.
N.B. Cg need not be connected, and it may be empty.

We now fix a sufficiently general metric g, and choose 03C9g ~ 0 . (The choice

of g is not important, but its direction Starting from this choice of g , ,



Donaldson provides 8+ with a specific orientation, and also associates to this

choice of w an orientation of A (such that the choice of - w corresponds
g g g

to the reverse orientation of A ) . In particular ce obtain an orientation for C .
g g

Outside of C the bundle 8+ has a trivial subbundle £ of rank 1 . Let
g 2

E E H2 (M B C %) be the Euler - Poincaré class of the quotient bundle A+ / £ . ’!he
g g _ 

_ , ,

Lefschetz dual e ~ H2 (M,Cg; Z) of  has the property that it maps to times

the fundamental class of Hi (C %) . This 2 comes from the following. If you take
g . 2

a tubular neighbourhood of C in and restrict A+ / £ to its boundary, then
g

this restriction is the tangent bundle to the fibres. But these fibres are 2-sphe-

res with Euler - Poincaré number 2 .

There is a nep f : M x (0,6) - B* , mapping C x (0,6) diffeomorphically
g

onto an open subset of A , such that A B f (C x (0 ,6) ) is compact. In other
g g g

words, f models the ends of A after c x (0 ,6) , The map f is a small
g g

perturbation of the Taubes map.
Let 0  60  6 , let A = A ~ f (c x (0 ,60 ) ) and let

g g
c E H2 (A,f (c x 60) ) ;%) be the fundamental class. If ce set f03B4 = f|M x 60 , then

g o

it follows from the exact homology sequence

0 - Hz (B* %) - Hz (B* f (c x 60 ) ; %) - Hi (f (c x 60 ) ; §11) - ...
g g

and the choice of orientations that 2c - f03B4o* (e) ’ uniquely determines an element

e E H2 (B* ,%) . This element is independent of 60 and of the way the Taubes map

has been perturbed. Of course, e still depends on g and w . .
g

Finally, denoting by W : H2 (B* % ) - H2 (X, %) the homomorphism

we put .

Starting from d (g,w ) for a fixed general metric g we can define p on

all chambers in a formal way. Then (i) is a consequence of the fact that if we use

- 

w instead of w , the associated orientation of A becomes the opposite one.

Property (ii) follows from the construction, and a moment of reflexion shows that

to obtain properties (iii) and (iv) it suffices to prove the following claim.

PROPOSITION 2.6.- Let go,g1 be on M with corresponding hammo-

forms 03C90,03C91 contained in ;the..6 ame. component of C . Then

~he ~5 um .v~ ave~c a,~ ai E ai = -1 , ai [w~ ]  0  ai [wl ] ’
[ i ] the cohomology class of wi .

For the proof I have to refer to [ Do 6] , p. 17.

If Cg is empty, i.e. if 03C9g nowhere vanishes, then g is compact, and



d (g,w ) consists of two distinct contributions, namely 2~r (c) (dual

class of c1 (Q)) , where Q is the quotient of A+ by the trivial rank-1 sub-

bundle, given by wg . . This quotient is an SO(2)-bundle, i.e. a U(1)-bundle in a

natural way. It turns out that 03C8of03B4o* is nothing but Poincare duality. If U’

is the restriction of U to M x and n : M x A --a M the projection, it

follows that

This situation arises in particular if M is a cmplex surface V and g

a Kahler metric. In this case it is easy to see that = Ci (V) .

PRDPOSITICN 2.7.- Let V be a compact, simply-connected complex surface with

d = +1> ~ -1> ® ... Q3 -1> If g is a Kähler metric on V, which is

sufficiently general as a Riemannian metric, then

where U’ is the of a universal connection bundle to V x and

n : V x A g --~ V the 

At first sight it might appear that Donaldson’s construction is

rather arbitrary. Hcwever, the construction is only possible if you provide (a

multiple of) Sg with a compact tail in some universal way, otherwise it is diffi-

cult to obtain "deformation invariance". This leaves few choices. Then the depen-

dence on the metric forces you to consider an invariant of Donaldson’s type.

3. AN INTERPRETATION OF DONALDSON’ S INVARIANT FOR ALGEBRAIC SURFACES AND THE SO-

LUTION OF OUR PROBLEM

We shall need the concept of a stable vector bundle (in the sense of Mumford

and Takemoto), but only for the special case of a rank-2 bundle on a surface. In

this case the general definition simplifies to the one belcw.

If is an embedded algebraic surface, then we shall call the restric-

tion of the natural generator of the hyperplane class. It is of course

Poincare-dual to the homology class of a hyperplane section. Furthermore, by the

Hadge metric on V we mean the restriction to V of the standard Fubini-Study

metric on 3P .

DEFINITION.- be an embedded and h ~.~5 

vecton bundle V on V is h-stable if for every line

bundle (nanh-1 algebraic veeon N on V wh.i.ch admits a 

homomorphism into V , the inequality c1(M)h  2 c1(V)h holds.

A direct sum of two line bundles is never stable, but the tangent

bundle to ~2 is stable with respect to any hyperplane class.



Stable vector bundles have been studied intensively during the last decade,

in particular on P3 , where some of them appear as instanton bundles.

One of the main features of stable bundles is that, contrary to vector bundles

in general, they have good moduli spaces. Again, we shall only need a very special

result, namely the following (see esp. p. 598 ff). The h-stable rank-2 vec-

tor bundles on an algebraic surface X with fixed Chern classes have a moduli

scheme T . Furthermore, if x(X) = c1 (X) + c2(X) = 1 , then there exists a univer-
sal family on X x T . The condition x(X) =1 is satisfied in our case and in

the other cases we are going to consider.

We cone to the link between anti-self-dual connections and stable bundles.

This will allow us to solve the problem of section 1.

THEOREM 3.1 (Donaldson, see [Do 2]).- Let b e an emb edded algebraic sur-

6ac.e. wlth hyperplane class h, I and be a -6moot:h SU(2) rank-2 vector

bundle on. V. Suppose, thVLe. ane no reducible anti-self-dual connections with

respect to the. Hodge. an V. Then there is a natural 1- 1 correspondence
between the equivalence classes of anti-self-dual connections on M (with respect
to the. Hodge an V / and the. isomorphism classes of h-stable rank-2 vector

bundles on V , I equivalent to I whlch have. algebraically trivial

We consider again the case where M is as in Theorem 2.1, and c2(~) - 1 .

Let us assume that h ~ U a , and dim H2(£ndo(£)) - 0 (traceless endamorphisms)
for all stable bundle structures £ on JD . This last condition implies that T

is a smooth algebraic curve. Under these circumstances it can be proved that the

correspondence of Theorem 3.1 is an orientation-preserving diffeomorphism between

Ag and T . Also, a universal bundle on V x Ag corresponds to a universal bundle

on V x T .

We return to the surfaces X and Y from section 1. Let p : X 2014~ P2 be

the projection, g’ the natural generator of and g = p*(g’) .

Furthermore, let ei E be dual to the exceptional curve Ei = p-1 (xi) , ,
i = 1 , ... , 9 . Then ... , is a base for and it is easily
verified that ei is the hyperplane class of a (unique) embedding of X,

provided n is large enough. We fix such an n , thus fixing at the same time

h1 E H2(X,~) . " Obviously hl E C . "
Next it is shown that

(i) hi is not contained in any wall ;

( ii ) there are no hi-stable rank-2 vector bundles ? on X with ci (JD) = 0 ,

1 .

Let us prove (ii). First a remark. It follows from the Dolbeault isomorphism



and the exact exponential cohomology sequence ([BPV], p. 21) that on the surfaces X

and Y every continuous line bundle carries exactly one algebraic structure. Now

let V be an algebraic rank-2 vector bundle with c~ = 0 , c2 = 1 . We set

dim = and denote the canonical line bundle by . Applying
Riemann - Roch and Serre duality yields

But 0 for every rank-2 bundle, so D* s D , since
2

c~ (M*) = -Ci (D) = 0 , and we have

It is easy to see that h~ (K*) ~ 0 , and we conclude that in any case h° (~) ~ 0 .

This implies that P can’t be stable, since ho(V) ~ 0 means that there is a

non-trivial homomorphism frcm the trivial line bundle into

N.B. There are many non-stable bundles ~ with c~ = 0 , c~ = 1 , e.g. ~i ® ~i ’
where cl (JC.) = ei ..

If we consider X as an oriented smooth manifold, then it follows from Theo-

rem 2.7, Theorem 3.1, (i) and (ii), that

We turn to the surface Y . Again we choose a. suitable embedding Y y JP M ’
namely one with hyperplane class

where is the hyperplane class of seme embedding, and n large. Again it is

easy to verify that U W . However, in this case there aAe h2-stable rank-2

vector bundles with c~ = 0 , C2 = 1 . Denoting as before the unique fibre of

g : Y ---~ ~~ of multiplicity 2 by F2 , we find

PROPOSITION 3.2.- The vector bundles an Y with c1 = 0 ,

c2 = 1 hauc a .i~ F2 .

Sketch a~ Let u be a stable, rank-2 vector bundle on Y with c~ = 0 ,

c2 = 1 . Exactly like in the case of X we find that h~ (~ ~ 1 . Let

s E H°(Y,u ~ Ky) , s ~ 0 . There is a divisor D on Y , effective or 0 , such

that D !S D* has a section, vanishing at a finite number of points. Here D

is the line bundle with ci (D) dual to the homology class of D . In other words,

there is a non-trivial homomorphism D ~ K*Y ~ V . Using the canonical bundle for-
mula and the stability of )) it is not difficult to show that D = 0 . Since

C2 KY) = 1 , ws see that s vanishes transversally in exactly one point

p E Y . We claim : p E F2 . In fact, let (Y,E) be obtained from (Y,p) by



blowing up p, and let g : Y ~ Y be the projection. On Y we have an exact

sequence of bundles :
_ _ _

with = E . So there is an extension of E* 0 g* ~®--2) by E , which,

restricted to E , yields the trivial bundle of rank 2 . Now deg(£~E) - -1 ,
hence hl(£®2~E) - 1 . It follows that

must be surjective. Consequently,

is injective, or, by Serre duality, since Ky = g*(KV) ~ E , the homomorphism

must be surjective. On Y this means that every section of Ky vanishes at p .

But the canonical bundle formula readily yields c. (K®3) - f~ , hence p E F2 .

Thus we associate to s a point of F2 . Next it is shown that h~ ()? 8) Ky) = 1 ,

so we can associate to V a point of F2 . The proof is ocmpleted by re-

versing the above procedure.

A universal bundle can be constructed on X x F2 , and its Chern class cal-

culated. Using again Theorem 3.1, Theorem 2.7 and also the canonical bundle for-

mula for elliptic fibrations, we find :

Suppose, there was a diffecmorphism o : X --~ Y . Then, in general,
and would be in different chambers, and there is little we

can conclude. Concerning X, however, there is a theorem of Wall, saying that

given any two chambers in Cx B U , there is an orientation-preserving diffeo-

morphism from X, onto itself, carrying the first chamber into t the second one

( [Wa] ). Thus we may assune that hi and o* (h2 ) are in the same or opposite
chambers. By properties (ii) and (i) of Donaldson’s invariant, we have

p (h ) = t o’~(pY(h2) ) . But the first class is primitive, whereas the second is not.
We conclude that X and Y are not diffeomorphic.

4. FURTHER DEVELOPMENTS

If, more generally, we replace on X two smooth fibres by fibres of any mul-

tiplicity p and q , with p  q and G.C.D. (p,q) = 1 , then Dolgaoev’s result

is still valid, and exactly as before it follows that the surface X p,q thus

obtained is homeomorphic to X. Are all of these surfaces mutually distinct from

the differentiable point of view ? This question has not yet been completely



answered, since for p ~ 2 the moduli space of stable bundles (with respect to a

suitable embedding) is not defaced. It is possible to determine the (smooth) re-

duction, but not the multiplicities of the different conponents . Even if these are

known, Donaldson’s method can’t be applied without modification. However, the mo-

duli space .i~ reduced and smooth if p = 2 . In fact, if h2 is as before, we have

PROPOSITION 4.1.- The moduli of h2-stable nanf2-2 vector bundles on X2
with c1 = 0, c2 = 1 is smooth and of q-1 2 copies of F2 . 

2,q

This result was proved independently by Friedman and Morgan ([FM]) on the one

hand and Okonek and myself on the other ([OV]). Once you have this proposition, you
can find exactly as in the case of Y = X2~3 . It follows that none of

the is diffeomorohic to X. However it can not be concluded in the same

way as in the case 
,q 

and X2,q, with q ~ q’ are dis-

tinct as smooth 4-folds, for tiall’s theorem does not apply to these surfaces.

Friedman and Morgan overcome this difficulty by studying extensively the group of

diffeomorphisms from a surface X p,q onto itself. Their method (yielding the 

proof of Theorem 4.2 below) is no doubt the most beautiful and most general one,

but if you want only a proof for the fact that X2 and X2 ’ , are not diffeo-

morphic for q 1 q’ , I can recommend our proof. In fact we observe that, as a

consequence of Proposition 4.1 and property (iii) of the Donaldson invariant,

given any diffeomorphism between X2 ,q and X2 , , the element 
and the pull-back of the corresponding element on X2,q, are in the same chamber,

provided n is large enough. After this we can proceed as in the case of X and

Y , though the divisibility argument becomes slightly more complicated.

THEOREM 4.2.- The X2 and an.d ..

q = q’ .

So there are infinitely many differentiable structures on the topological

4-fold X top = ~ 2 # P 2 ( 1) ~ ... ~ ~ 2 (9) . ° In all dimensions but 4 there is only a

number of smooth manifolds with given homotopy type and Pontrjagin classes.

Friedman and Morgan show that and X2~q, , both up in k points, are

not diffecmorphic, so we also obtain an infinity of differentiable structures on

2 2 2 k> 10 .
It is expected that the remaining X p,q will yield still more differentiable

structures on Xt op . And there are yet other algebraic surfaces, homeomorphic to
X, namely the Barlow surfaces, blown up in one point ([Bl]). It does not seem to

be easy to describe the stable rank-2 vector bundles with c~ = 0 , C2 = 1 on

these surfaces.

’Ib the best of my knowledge there is not a single example of algebraic

surfaces, which are diffeomorphic, but have different Kodaira dimension.



To finish I would like to mention sane of Ibnaldson’s most recent results.

First of all, he has extended Theorem 2.1 to the case of arbitrary fundamental

group.

THEOREM 4.3.- If M is a ( compact, connected) oriented differentiable 4-fold with

QM positive definite, then QM ~ +1> ®... ® +1> over Z; .

Donaldson has also shown

THEOREM 4.4.- If M (compact, 4-fold with

no ~,n H’ (M, Z) , even QM , and QM .to 

+1> ~ -1> e ... 0 -1> OIL +1> ® +1> ® :-1> ® ... 0 -1> , QM is equi-

ro 11 OIL o 1 ® 0 1 over Z; .

The proof of the preceding two results can be found in [Do 4 ] . And finally

there is

THEOREM 4.5.- Let X be a connected 16 X is diffeo-

morphic to a connected sum M1 # M;z , .the.n. either QM1 OIL Q i..6 equivalent .to

-1> ®... ® -1> over Z; .

Even the case of quintics in P3 wasn’t known before, though it has been

considered for a long time.

Combining Theorem 4.5 with the fact that a complex surface is a deformation

of an algebraic one if and only if the first Betti number is even (see [Mi]), we.

obtain the solution of another old problem :

COROLLARY 4.6.- The differentiable 4-fold

~. ~~ and ~~ k = 1 .
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