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Séminaire BOURBAKI

33e année, 1980/81, n° 567 Février 1981

STOCHASTIC METHODS

AND DIFFERENTIAL GEOMETRY

by K. David ELWORTHY

1. Introduction

Stochastic methods, or "path integral techniques", have been used over the past
30 years, especially by mathematical physicists, to study differential operators
of the form Af + A.Vf + Vf in Euclidean spaces. These uses have varied from

the heuristic, as in Feynman path integration [10], to the discussion of rather det-

ailed problems, as for example in recent work by Carmona and Simon [5] or as descri-

bed in Simon’s monograph [25]. The techniques have often been particularly attractive

giving a direct link between intuition and analysis.
These methods centre on the relationship between Brownian motion on 7Rn and the

Euclidean Laplacian. An analogous set up for the Laplace-Beltrami operator on a Riem-

annian manifold gives similar intuition and insight into certain areas of differential

geometry. This had lead [27] to an interaction between probability theory and diffe-

rential geometry which can be stimulating to both disciplines as well as being very

pretty mathematically. Here we are going to give examples to illustrate some oj these

points.

It will only be possible to touch on a few aspects : a more general view of the

interaction can be obtained from the conference proceedings [12], [16], [27] ; see

also [18], [22], and [24].

2. Conventions

The notation x is used for maps x(t,w) and then we often write f(x)
instead of f 0 Xt to denote a composition. Throughout, d( , ) denotes the relevant

Riemannian distance.

Many equalities have to be taken in the sense that they hold outside a set of

measure zero.



3. Brownian motion and the Laplace-Beltrami operator

3.1. Let M be a COO Riemannian manifold and A its Laplace-Beltrami operator.
Let B(M) denote the space of bounded measurable functions on M . Then [3] there

is a unique family of bounded linear operators P : B (M) -> B(M) such that

for all f E B(M) , all positive s and t , and all x E M :

(i) is measurable in t ;

(ii) (positivity) Ptf > 0 when f > 0 ;

(iii) (semigroup) PsPtf = Ps+tf ;
(iv) ;

(v) if f is C2 with compact support then

(vi) (minimality) if (Q.) t>0 
is another family satisfying (i) to (v) then

Ptf ~ Qtf wherever f ~ 0 .

For this family {P,.}_~ there is a kernel p(t,x,y) smooth in
t t~u

(t,x,y) ~IR(>0) x M x M such that

the integration being with respect to the usual Riemannian density of M . Also Ptf
is a classical solution of the heat equation

In general Ptf can be obtained as the least upper bound of the classical solutions

of the heat equation on the interiors of an increasing family of bounded domains of

M with zero boundary values.

3.2. Let M+ = M U M be the one point compactification of M . Define

for x and y in M .

By a Brownian motion x on M starting at a point x o of M we mean a map

x : [0,oo) x ~ -> M+

for a measurable space (~,~‘) , together with a probability measure P on 

such that

(i) x(0,(j) == xo



(ii) each x = x(t,-) is measurable

(iii) each sample path x(-,w) : [0,~) ~ M+ is continuous

(iv) for all Borel sets A~,...,Am in M+ and times 0  ...  t :

P{03C9 ~ 03A9 : x(tj,03C9) ~ Aj for 1 _ j Sm) - 

where we have extended the measure on M to one on M+ by giving {00} unit mass.

Also A.t = tj+1 - tj with to = 0 .

The canonical example is with 03A9 the space of continuous paths a : [0,~) ~ M+

satisfying a(0) = xo and with x : 03A9 ~ M+ the evaluation at t . The a-algebra

F is that generated by and the measure P is then determined by (iv).

3.3. Let 03BE : 03A9 ~ IR U {00} be the lifetime or explosion time of x :

= inf {t : .

Then if t >_ ~ (W) . or equivalently if Pt 1 = 1 for all

t > 0 we will say-that M is stochastically complete. Since Brownian motions never

hit submanifolds of codimension at least two ([11], vol. 2, Chapter 11), such manifolds

can be removed without upsetting stochastic completeness. Thus it does not imply com-

pleteness. Conversely it is not implied by completeness [3]. However there is the fol-

lowing result, proved analytically by S.-T. Yau ([31], [8]). It is discussed more in

§ 8 below.

THEOREM.- Every complete Riemannian manifold with Ricci curvature bounded below is

stochastically complete.

3.4. When M =1R we will consider only Brownian motions starting at the origin 0. It

will be convenient to choose one of them, z say, once and for all. This then fixes an

increasing family {Ft}t~0 of sub a-algebras of $’ : we let Ft be the smallest

a-algebra which contains all the sets of P-measure zero in F and with respect to

which the maps z s : Q are measurable for 0  s _ t .

With respect to this family a map x : IR( ? 0) X S~ -~ M+ is adapted (is an adap-
ted process) if x is 3’-measurable for each t > 0 . When M it is a

martingale (strictly speaking an F*-martingale) if xt is integrable for each t

and

IE{xt |Fs} = xs s _ t . °

Here

IE{- ~} : : 

denotes the conditional expectation operator with respect to a sub 03C3-algebra Q of

? : t it is the unique continuous linear map which restricts to the orthogonal proje-
ction of onto When ~ = Q we obtain the expectation :

--- 1E (f ) ; i . e. it reduces to the integral over Q .



A map ~ : S2 -; [0,oo] is a stopping time if for each t > 0 we have

{w E S2 : t  ~ (w) ) E ~‘t .
When an adapted process x has continuous sample paths it is easy to see that the

first exit time T(U)(w) of x(-,w) from an open set U is a stopping time. In

particular the lifetime § of an adapted Brownian motion x is a stopping time and

if we set

j o ~ ~ ) x s~ = E [ 4 , °°) X S~ : t t 

we can consider x as a map with values in M :

x : [0,~) X Q-M .

These two ways of looking at x will be used interchangeably and without comment.

3.5. A typical partition n of an interval [O,t] will be denoted by

0 = to  ...  tm = t , and then we will set mesh n = max 0394jt and

Ajz = ztj+1 - zt.. With this notation Lévy’s characterization of a 1-dimensional

Brownian motion z starting from 0 is essentially ([16] page xii, or [28])

(i) zo = 0

(ii) z has continuous sample paths

(iii) zt is square integrable for each t

(iv) z is a martingale
m-1

(v) lim S = t

mesh n 0 j=0
where the limit is taken in L~ and over all partitions n of [O,t] .

For n-dimensional Brownian motion z the components z1,...,zn are indepen-

dent 1-dimensional Brownian motions. The analogous formula to (v) is
m-1

(v)’ lim S diag t
mesh 03C0 ~ 0 j=0

where diag t = t , ~ ei for the standard basis ei, ... , en of 
i=1

3.6. Next we give a characterization of Brownian motion on M along the lines of

the Stroock-Varadhan approach [28] : Suppose § is a stopping time and

x : [0, ~) X S2 ~ M with x(O,w) = xo E M has continuous sample paths, is adapted,
and is maximal i.e. x(t,w) -~ oa as t --~ ~(c,,~) whenever ~(w)  oo . Then x is a

Brownian motion iff 
_

is a martingale whenever f : M is .C~ with compact support (so we set

f(co) = 0 = Af(co) ).

To relate this to our definition define



4. Stochastic integrals and stochastic differential equations

4.1. Let z be our Brownian motion on TR and for some a ? 0 consider an adapted
map G : x Q the values being in the space of linear maps of TR
into ~Rm furnished with the norm IIAII = trace A*A . The stochastic integral

can be defined by approximating G by adapted simple functions, provided
-

If G lies in L ~ for each s , is continuous in s into L ~ almost everywhere

on [a,t] , and if is bounded for a ~ s ~ t then the integral is .an L

limit of Riemann sums using partitions H of [a,t] :

Here it is important that the evaluation, Gt. J of G is taken at the initial point

tj of the interval [t~,t~+1] , [19]. The integral is only defined up to equivalence.
. However it is possible to choose a version for each t so that as t varies we ob-

tain an adapted process with continuous sample paths. This will always be done in

what follows. The need for a special definition of these integrals is because for

almost all the sample paths of z are not of bounded variation in any inter-

val of IR ( >_ 0) , cf. (v) above.

A straightforward reference for stochastic integration is [2] ; and [IS]

have more material ; parts of [19] may be found helpful and also the reviews [16],
[28] ; the standard reference [20] develops the general theory.

4.2. The main properties for our purposes are as follows : The Euclidean norm is

used on . 

t . t

(i) (Estimates). If E J f then J f Gsdzs is in LZ and satisfies
a .. , a

and (by (ii) below and the martingale inequality) if 6 > 0 and T > a

(ii) (Martingale property) . If lE oo then

(iii) (Ito formula).



where x : ~ is 3~-measurable and H : [a,co) x ~ is adapted with
a a

n

where by the trace term we mean E D28(x )(G e.,G e.) . 
’

i=1 s s 1 S 1

Of these (ii) looks plausible by considering the corresponding Riemann sums.

For the Ito formula : given a partition n of [a,t] J we have

The approximation A.x ~ + can be substituted in. Terms involvingj J " J -

A.t and (A_t)~ converge to zero while those involving A.z give the
j j j j j

trace term in the formula using 3.5 (v)’ above.

4.3. When T : ~ -~ [a,oo] is a stopping time we set

is the characteristic function of [a,T) 

4.4. Closely related to Lévy’s characterization of Brownian motion in 3.5 is the fact

that when m = 1 and a = 0 there is a Brownian motion B on TR , (depending on

G ) with

where

4.5. If X : Rm ~ IL(IRn;IRm) and are globally Lipschitz then for each

xo there is a unique adapted process xt with continuous sample paths

satisfying the stochastic integral equation
- -

Using the Ito formula one can obtain an invariant definition of stochastic differen-
tial equations on a C2 manifold N, [15], [18], [12] : given a C~ vector field

Y on N and a C2 vector bundle map X : TM over the identity, where TR



denotes the trivial En bundle over N , for each xo in N there is a unique

adapted process with continuous sample paths

x : [C, ~) 

for some stopping time § , which is maximal and such that for all C2 maps

f : we have

is given by L2X(f) = iE1 Xi (Xi (f)) for the vector fields Xi - X(-)e. on M . Such

x will be called a (maximal) solution of the stochastic differential equation

dx = X O dz + Yd s .

If N were TR this would correspond to the integral equation

The trace term is the so called "Stratanovich" term needed to get an invariant definition.

Our differential equation is a "Stratanovich" equation which is why we have used

X O dz rather than Xdz. The existence of the solution x is obtained by solving

equations like (2) obtained from charts of N .

The "Ito formula" (1) has other forms. When N has an affine connection it can

be written

Letting S.(r,yo) denote the integral curve at time r of X. , starting at yo ,

we have

From 3.6 and 4.2 (ii) we see that when N is a Riemannian manifold x will be a

Brownian motion if X(y) : 1Rn --~ T~I is an orthogonal projection at each point and

Y + 2 2 0 . °

4.6. If our stochastic differential equation, z was replaced by another Brownian

motion z on 7Rn using a probability space then the corresponding solution

x to dX - X O dz + Ydt would have the same distributions as x ; i.e. for all

0  ...  tm and Borel sets Ai,...,A~ in N we have



P{ ~ : x(t.,D) E A. for j = I to m) = P{(D E Q : x(t.,cj) E A. for j = 1 to m) .

5. The stochastic development

5.1. For our Riemannian manifold M there is no canonical choice of coefficients

X , Y to give a stochastic differential equation whose solutions are Brownian motions

on M . However if we consider the orthonormal frame bundle 7 : 0(M) -> M there is a

suitable X : TO(M) determined by the Levi-Civita connection, namely

X(v)e = h v(e) v E 0(M) , e ~ Rn

where h : T03C0(v)M ~ Tv0(M) is the horizontal lift and v is considered as an iso-

metry v : Given xo E M choose uo E Let u : [0,03BE) x 

be the maximal solution to du = X O dz with u(O,c~) - uo . Set Using
4.5 (4) and the fact that is a geodesic in M we see that xt is

a Brownian motion. For convenience we will use this model of Brownian motion, and in

particular this notation, from now on.

This construction goes back to the beginnings of differential geometry. When a

is a piecewise C1 path in M and vt(a) is the solution of

dt X(vt(a»u01 dt vo(6) - uo

is the Cartan development of 6 . Physically it is the track left on

M by the point of contact of M with its tangent plane TX o M as it "rolls without

slipping" on TxoM along the path a. The stochastic version was formulated this .
way by Eells and Elworthy following earlier work by Gangolli (see [12] for references,

related details are in [15], [18]).

In this classical case vt (Q) is the horizontal lift of ’rrvt(6) . Thus in the
stochastic situation we have not only obtained a Brownian motion on M but also its

"horizontal lift" u . We will use this to look at the heat flow on differential

forms, treating only 1-forms for simplicity.

6. The heat flow on differential forms

For co E Q and Vo E T M define a vector field along by

insisting that V(0,03C9) = Vo and that satisfies

~ (u(t,G))-~V(t,(j)) = - y 
where Ric denotes the Ricci tensor and corresponds to

°

Let § be a C2 1-form on M . We can lift ~ and 0(M) - 

and 0(M) so that Applying the Ito

formula together with the Weitzenbock formula



A(~ = trace o2c~ - Ric (-, ~#)

(note our sign convention for the Laplace-Beltrami operator on forms : A= - (d6+6d) )
we obtain

Observe that

Consequently if Ric is bounded below on M and (}) is bounded we can set

In fact 03BE ~ ~ by Yau’s theorem, 3.3, and if also 039403C6 is bounded we have

This follows immediatly from 6.1 (1) and 4.2 (ii) when V(~ is bounded : if it is not

we can nevertheless take the limit n of integrations over sets (cj : t  

where Tn is the first exit time of x from {y : d(xo,y)  n) , n = 1,2,...

If we allow Vo (and xo ) to vary Pt determines a semi-group on the space of

bounded measurable one-forms with 2 A as differential generator. In fact

THEOREM.- Suppose that lJJt is a C2 1-form on M for 0 _ t S T which satis-

fies the heat equation a~t - 1 Assume that M is complete and the Rieei

curvature of M is bounded below. Then if 03C8t is bounded on M for 0 _ t _ T we

have

lJJt = Pt03C8o 0  t  T .

In particular such a solution is uniquely determined by its initial value 

Proof.- It suffices to show that 03C8T = PTlJJo . For this take Vo E T M and Vt as

above. Set 03C6t = 03C8t-T for 0  t  T . Then ~03C6t ~t = - 1 and formula (1), modi-

fied to take into account the time dependence of 03C6t , yields

The result follows on integrating over ~ as in the proof of (3).

The uniqueness of bounded solutions to the heat equation on differential forms

under the conditions of the theorem was proved by Dodziuk [8] using analytical methods.

See also [26]. The approach we have used to discuss Pt~ was given by Airault [1]

following work by Ito, Dynkin, Eells-Malliavin, and Malliavin ; see [13]. Equation

(2) shows very clearly the role that can be played by positive Ricci curvature.



7. A comparison theorem : Harmonic manifolds 
.

7.1. Comparison theorems for solutions of stochastic differential equations have been

used effectively, especially by Malliavin and Debiard, Gaveau and Mazet ; see [18],

[7]. The following is a very simple special case of one taken from Malliavin [18].

See also [14].

THEOREM.- Let x be a Brownian motion on M. Suppose p : M -~IR(>_ 0) satisfies

(i) p is C2 ~on p-~ C (o,~) ]

(ii) p(xt) ~ 0 for t >_ 0 , almost surely

(iii) for t >_ 0 , almost surely.

Consider locally Lipschitz maps a+ : (0,~) and a’ : (0,~) satisfying

Then ther is a real valued Brownian B on (03A9,F,P) such that

the solutions 03BE+ and 03BE- to

03BE±t = P(xo) + j f + B 
L

in (0,~) satisfy

~-(O(t,(j),(j) ~ ~+(J(t:,0)),(J)

during the lifetimes oy the processes.
To believe this take x and u as given by the stochastic development. By Itô’s

t

and as mentioned in 4.4 the stochastic integral r dp(u dz ) can be written as

B03C3t for B as required. 
0 

s s

7.2. A similar argument but for a simpler case was used by Dominique Michel [21]

when she proved that compact simply connected globally harmonic manifolds are strongly

harmonic : at that time an open problem in differential geometry, (see [4] for defi-

nitions and discussion). Here is her main step :

THEOREM.- Assume that M is complete and stochastically complete, and that mo E M

satisfies : ,

(i) the cut locus C(mo) of mo has capacity zero (e. g. C(mo) has codimension

at least two)



(li) there zs a function f : (U,~) --> 1R such that if r (m) denotes the distance of
m from m o then

f(r(m)) m E M - C (mo) , m ~ mo .

Then p (t,m,mo) depends only on r (m) t~hen m E M - C (mo) .

Proof .- Take Brownian motions xt and yt on M with r(xo) = r(Yo) > 0 . The

assumption (i) on CmO> implies that xt and yt never hit C (mo) , and so can be

considered as non explosive precesses on M - [C(mo) U ~mo~] , , assuming dim M > 1 .

Applying the Ito formula to r restricted to the complement of C(mo) U {mo~
.we obtain 

_ 

Since 1 we have 1 and the stochastic integral is just a one dimensio-
nal Brownian motion B ~ say. satisf ies

Similarly there is a one dimensional Brownian motion By such that ~t ~ r(y )
satisfies

Since r(xo) = r(yo) it follows from 4.6 that n and ~ have the same distributions :

in particular if 6 > 0

 E ~ - E Q : ’n ( t , U)  E ~
i. e.

E Q : r(x(t,w))  E~ - P{(J E Q : r(y(t,w))  E~ .

But this proves the theorem since

8. A criterion for Pt = 1 : Yau’ s theorem

As in the last paragraph set r(m) = d(m,mo) . If the Ricci tensor of M is

bounded below then for given e > 0 the Laplacian Ar is bounded above on the set

of points m in M - C(mo) with r(m) > e , [30]. If we could ignore C(mo) as in

the proof of 7.2 the comparison theorem would easily yield Yau’s non-explosion result

3.3. In any case we have

Lemma.- Suppose a : M -~ 1R( >_ 0) Zs C2 and satisfies

(i) a (y) -~ as as in M

( i i) if An = {y : a(y)  n) then



Then M is stochastically complete.

Proof.- Set k(n) = sup(Aa(y) : Let T be the first exit time of our

Brownian motion x from A(n) and set (w : t  Tn (w)) . By Ito’ s formula

and the result follows by the maximality of x .

From the lemma we can immediately deduce Yau’s result if we are willing to use

the smoothing theory of Greene and Wu to obtain a C exhaustion function a on M

with Aa bounded above, given that the Ricci tensor is bounded below (see theorem 4

of [29]). Their function a would even be Lipschitz.
For an alternative probabilistic approach, with strengthened conclusions, see

[13] part II, § 3.

9. Zero one laws and harmonic maps

9.1. Let Z denote the space of continuous paths a : [O.oo) -~ M+ and Q the

a-algebra of subsets of Z generated by the evaluation maps {ev : Z ~ M+)t>0 ’ For
h ~ 0 define

6. : Z -~ Z
by

eh(~) (t) - a(t + h)
and set

~ = {A E Q : 8h(A) = A for all h > 0~ .

We will say that M satisfies the zero one law on  if for any Brownian mo-

tion x on M and any A E 1 we have x(-,c,~) E A) equal either to

zero or to one. This is equivalent to the constancy of all bounded harmonic functions

f : M -~ 7R ; (see [17] ] final paragraphs). In fact for A in ~ define f A : M 
by

where XA is the characteristicfunction of A. For h > 0 , because 0,(x(-,(J))
is a Brownian motion on M , starting at (the random point) xh



by the invariance of A . Thus f is harmonic. Furthermore because it is harmonic

fA(xt) is a bounded martingale and the martingale convergence theorem implies that

converges almost surely to as t -~ ~ . Consequently if all

bounded harmonic functions on M are constant we must have

XA (x, (-,c~) ) - fA(x(t,w» = 0 , or 1 , almost surely ,

and the 0-1 law holds.

9.2. If M is complete with non-negative Ricci curvature all bounded harmonic func-

tions on M are constant : see [7] for a probabilistic proof, and so are all posi-
tive harmonic functions [30]. A special class of manifolds with the 0-1 law on
are those with recurrent Brownian motions or equivalently with no non-constant posi-

tive superharmonic functions [3], [13]. These include all complete manifolds with

finite volume : see [6].

9.3. Now let (M,g) and (N,h) be C~ Riemannian manifolds and f : M ~ N a

C map. Then f is harmonic if in local coordinates

where i , j refer to coordinates in M and a , ~ , y refer to coordinates in N ,

with r the Christoff el symbol of N and A the Laplacian of M . For p E M let

... ? ar (p) >_ 0 be the eigenvalues of the first fundamental form {Tpf ) *h
on TPM using an orthonormal base with respect to g , and repeated according to

multiplicity. Then f has dilatation bounded by K if

03BB1(p) 03BB2(p)  K

at all points p of M with T P f ~ 0 . Using the 0-1 law W. Kendall [27] has

proved the following :

THEOREM.- Assume that M and N are complete and that for some positive A , B

and C

(i) - B  A

(ii) - C _ Ric~
(iii) N is simply connected

(iv) all bounded real valued harmonic functions on M are constant.

Then every harmonic map f : M - N of bounded dilatation Zs constant.

This should be compared with an earlier result of Yau : he showed that the same

holds for complete manifolds M and N provided M has non-negative Ricci curva-

ture and N satisfies  0 ; see [9] section 5.9.



9.4. Kendall’s proof is based on work by Prat [23], [22] concerning the behaviour of

Brownian motion on simply connected manifolds N satisfying (i). Suppose dim M > 1

and dim N > 1 and that N satisfies (i) and (iii), both manifolds being complete.
Take normal coordinates about a point no of N so that N is identified with

TnoN . Set r(p) = d(p,no) for p E N . Then Prat showed that for Brownian motions

yt on N with yo # no the angular component

. S~. ~ S
where S is the unit sphere in T N , converges almost surely as t tends to infi-

no

nity. To do this he used upper and lower estimates on Ar to show that r(y ) tends

to infinity at a linear rate in t while sup {d (y ,y ) : n  t  n + 1) grows sub-

linearly with n . He can then apply the lemma :

Lerrnna.- Under the conditions on N there are positive constants a , ~ such that

for p ,, q in N if

d (p, q)  

then the geodesic distance in the unit sphere S between r (p)-’’ .p and 

is dominated by
d (p, q) 

In his proof Kendall examines the behaviour of 8t when y = f(x ) for x

a Brownian motion on M and f harmonic and of bounded dilatation. He shows that

8t converges to a limit 6 : S~ ~ S given (i), (ii) and (iii), and that if f were

non-constant then 8~ would also be not almost surely constant. However for any

Borel set U of S

{0 ~ C([0,-);M) : lim U}

lies in $ , , and so this would contradict the 0-1 law. In outline he follows Prat’s

steps. By Ito’s formula, since f is harmonic

r(yt) = r(f(xo)) + trace °

If trace Vdr(T f , T , m E M were bounded it would be possible to use
m m m

a comparison theorem. However this need not be, so the necessary estimates have to be

proved ad hoc. Because of the bounded dilatation condition a convenient time scale

turns out to be where 

(t) = 

t 

03BB1(xs)ds .(t) = 
o 

9.4. I would like to thank W. Kendall for an early version of his manuscript, and

W. Darling and L.C.G.R. Rogers as well as him for some very helpful conversations.
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