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ALGEBRAIC APPROXIMATION OF MANIFOLDS AND SPACES

by A. TOGNOLI
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Introduction

We can state the two following informal problems :
00

I - given a compact C manifold M is it possible to induce on M a real algebraic

structure M a such that the geometry of M a can be described by algebraic

elements ? (for example, such that any a £ H (M ,S~,) can be represented by

an algebraic cycle).

II - characterize the topological spaces that are homeomorphic to a singular real

algebraic variety.

The main progress in the study of these problems can be summarized as follows : Seifert

studied problem I in the case of the complete intersections (1936), Whitney showed

(in the analytic case) that problem I could be treated also in the general case

(1936), Nash gave a partial solution of the problem using the Whitney methods in the

real algebraic case (1952), Wallace demonstrated that any compact manifold, which is a
00

boundary, has an algebraic structure (1957), we proved that any compact C manifold

has algebraic structure (1973).

Now we have also some information about particular algebraic structures, in

which a part of the geometric invariants of M are algebraic (see remark 2, 3 of
a

section g), but a lot of questions are yet open in the area of problem I .

Problem II was studied by Kuiper who proved that any 8-dimensional, P.L.

manifold, has an algebraic structure (1968). Kuiper’s method was refined by Akbulut

(1977). Finally Akbulut and King gave a beautiful and complete characterisation of

the topology of the real algebraic isolated singularities (1978).

If the singularities are not isolated very little is known. All the results

contained in this exposition, except remark 1 of section g, appeared before (at least

as preprint).



a. Definitions and preliminary results

In the following by algebraic variety we shall mean : real, affine reduced algebraic

variety (V, $ ) in the sense of F.A.C.. The sheaf V is often omitted in the

notations because we consider only reduced structures.

The morphisms of algebraic varieties are called algebraic (or regular) maps.

An algebraic variety V of Rn is called regular in x if, near x , V is

described by polynomial equations f1 - ... = f - O , q = n - dim V , and

(df,) ... (df ) are linearly independent.

V is called regular (or a manifold) if it is regular at any point.

For any n,q E N we shall denote by G the Grassmann manifold of the
q-dimensional linear subspaces of Rn . Let us denote by

y n,q x Rn I a 3 b) -~ G n,q the tautological bundle.

G and y shall be considered with the usual projective (and hence affine)
structure.

Let now d’ : G x G 
~ R be a metric inducing the usual topology and d

the euclidean metric of Rn .

DEFINITION 1.- Let W be a closed C 
co 

submanifold of R , V a C submanifold

of Wand X a subset of V .
00

Given E > o , I we shall say that the C submanifold V’ of W is an

E-approximation of V, relative to X , I in W, if there is a diffeomorphism

h : V --~ V’ such that :

(i) d(x,h(x))  E, x ( V

(ii) d’(T , T , )  E , I x E V where T , T, are the tangent varieties
Vx Vh(x) Vx Vh(x)

to V , I V’ in x and h(x)

(iii) X = X’ and id . ..

DEFINITION 2.- In the above situation if we replace the condition (iii) by the

weaker one :

(iv) h : X -~ X’ is a homeomorphism

we shall say that the pair (V’,X’) is an £-approximation of (V,X) in W.

In the above definitions (V’,X’) shall be called a (regular) algebraic

£-approximation if V’, X’ are (regular) algebraic varieties.

We shall say that (V,X) has algebraic approximation if for any E > O it has

an E-approximation.

A similar terminology shall be used for approximation of maps.

DEFINITION 3.- An algebraic subvariety X of pn is called guasi-regular if

( i ) for any x £ X ,the ideal I x,x of the germs of analytic functions vanishing



DEFINITION 4.- Let V be a C manifold and (s L , a finite family of closed
i 1=1,...,q

submanifolds.

We shall say that the (s.) are in general position if for any subset i ,...,i
-L 

of 1,...,q we have that S. cuts transversally ~ S. and for any

p t o t 
" j=1 1 j "

x ~ ( ~ S. ) n ( ~~ S. ) the germ of ~ S. is transverse to the germ of

t 
j=O ~j 3=P+1 ~j j=0 ~j

~~ S. in the tangent space of the union.

j=p+1 1 

The definition 3 is justified by the following

THEOREM 1.- Let X be a compact, quasi-regular algebraic subset of the (Zariski) open

set U of P~ . ..
00

Let f : U ~ R be a C function such that fix is regular (polynomial).

Then f can be approximated, in the usual C topology, by regular (polynomial)

functions f. such that f.) 
= 

fix. . If X and fix are defined on the subfield

K of P then we can chose the f. defined on K.

Theorem 1 is proved in [16].

Remark 1.- It is easy to prove that X is quasi-regular if, and only if, it is

coherent and for any x ~ X the analytic complexification of X coincides with the

germ induced by the algebraic complexification of X .

From the above criterion we deduce that X is quasi-regular if and only if the

property is true for any irreducible component of X. It follows that any finite

union of regular algebraic varieties is quasi-regular.
00

Remark 2.- ByaresultofMalgrange and ideal of C (U) that is generated by analytic

functions is closed ; hence the hypothesis " X quasi-regular" is necessary to obtain

the result of theorem 1.

DEFINITION 5.- Let (V, Ov) be an algebraic variety and F ~ V an algebraic vector

bundle (where F is an abstract real algebraic variety). F is called strongly

algebraic if there exists a regular map 03C6 : V ~ G
n,q 

such that F = n,q ) ,
where y is the universal bundle.

n,q
In general a coherent sheaf of O 

V 
modules ~ is called A-coherent if there

exists an exact sequence

DEFINITION 6.- Let V be a C manifold (or an algebraic manifold) and F ~ V a

a~ ec

C (or strongly algebraic) vector bundle. A C (algebraic) submanifold S of V is
00

called a weak C (algebraic) complete intersection in V (respect to F ) if there

m

exists a C (algebraic) section 03B3 : V ~ F such that .



(i) S = {x ( v ( Y(x) = o) and 03B3 is transverse to the zero section.

If F is the trivial bundle S is a complete intersection.
oQ

Let V be a C manifold and a £ H (V,2Z.) ; it is known (see [15]) that there

exists a C compact manifold M and a C map 03C6 : M ~ V such that

(1) 03B1 = 03C6*(fundamental class of M ).

DEFINITION 7.- Let V be an algebraic variety, a E H P (V,?Z2) is called algebraic if

it is possible to find a regular connected algebraic variety M and a regular map

tp : M-V such that (1) holds.

If H P (V,~2) has algebraic generators then it is called algebraic. If any

H p(V,ZZ2) is algebraic we shall say that the homology of V is algebraic.

Let V be a C manifold, we shall denote by ~ (V) the q-bordism group of
q

the classes of non-oriented maps % : : M ~ V , q = dim M .

DEFINITION 8.- Let V be an algebraic variety, cY ~ ~ (V) shall be called algebraic

if the class cY has an algebraic representative $ : M 2014~ V (i.e. M is regular

algebraic and $ an algebraic map).

We shall use a similar terminology and ’~*(V) - q (V) .

b. Strongly algebraic vector bundles

Let us consider the polynomial tQ(x1 ... x ) = x~(x1 - 1)2+ .~ n xi n ~ 2 , it is easy
1 n 11 ~ i=2

to prove that tp is irreducible and {.cp= (o,...,o) U )~1,0,...,o) . Let
a = ~O, ... ,O~ , b -- ~ 1 ,O, ... ,Q~ , U, = U~ - R - b . °

In [16] it is proved that :

(i) the cocycle 1 03C6 : U1 n U2 ~ R defines a non-zero element of 

(ii) the line bundle F -+ Rn defined by 1 03C6 is not trivial (considered as algebraic

vector bundle) and it is not strongly algebraic

(iii) the global algebraic sections of F do not generate the fiber of F at any point.
To avoid the above pathologic examples we gave the notion of strongly algebraic

vector bundle. The results contained in this section shall be used in the next section

to reduce the approximation problem to a simpler one. The following proposition,

(see [5]), is useful to handle the definition of strongly algebraic vector bundle :

PROPOSITION 1.- Let V be an algebraic vatiety and F -3 V an algebraic vector

bundle of rank k , where F is an algebraic abstract variety. The following

conditions are equivalent :

(i) F is stongly algebraic

(ii) there exists a regular embedding of fiber bundles F -~ V x Rn n > dim V + k

(iii) the sheaf 37 of algebraic sections of F is A-coherent

(iv) the abstract variety F is affine



(v) F is an algebraic subbundle of V x P and F has a strongly algebraic

complement F

Proof.- (i) =~ (iv) . Let g : V 2014~G be the regular map such that F = g*(Y ) .
2014201420142014 n,k n,k

By construction we have g*CY ) = t(x,y) C V x Y { g(x) = o)(y)j hence g*(V )
n,k n,k n,k

is an affine variety.

(iii) =~ (it) . By hypothesis we have an exact sequence of sheaves :

Using the duality of Grauert-Grothendieck the sequence (1) gives an exact sequence

of bundles :

this proves the thesis.

(iv) ~ (iii) is proved in [11].
(ii) =~ (v) . The embedding j : F 2014~V x defines two maps : g : 

g’ : V given  ’ -1 (x)) , g’(x) = 
° 

~’

= g*CY , ) , F = g’*CY , ) , hence it is enough to prove and

g’ are regular maps.

To verify that g and g’ are regular it is enough to remember the following

facts :

(1) the problem is local, hence F can be considered trivial

(2) the embedding F 2014~ V x P is algebraic

(3) we go from g to g’ using the Gramm-Schmidt process and this is algebraic.

(v) =~ (i) . It is clear from the construction given in (ii) ~ (v) .

The proposition is now proved.

PROPOSITION 2.- Let V be a compact algebraic variety and F 2014~ V a strongly algebraic
~ 

CO

vector bundle. Let X C V be a quasi-regular algebraic set and y : V 2014~ C

section such that Y! is algebraic. 
00

In these hypotheses Y can be approximated, in the usual C topology, by

algebraic sections 03B303BB : V ~ F such that : Y, Ix 
= 

03B3| X .

Proof.- From the condition (v) of proposition 1 we know that F has n algebraic

sections Y.,...,Y such that y~(x),.../Y (x) generate the fiber for any x ~ V .

Let J~ be the sheaf of the germs of algebraic sections of F, we have that ~ is

A-coherent and hence there is an exact sequence ~ F ~o .

The functor F of the global sections is exact ([16] pag. 43), hence we have :

Y(x) = S ~.(x)Y.(x) , x ~ X , where a. are regular functions on X .
i i i i

Again from the exactness of F we may suppose there exists P. E 0393(Ov) such that

P . = y..

~ !x ~



Let us consider the section P = Y - L P.Y..
i i i

To prove the proposition it is enough to approximate P by ~~ algebraic such that

P~ 
!x ’ 

~ 0 . 

00

Locally we can write ~ - ~ 6.y. , where ~, are C functions, such that 6. = 0 .

By a partition of unity we may suppose to have globally p = E 6.y..
We can now apply theorem 1 to approximate the 6. by regular functions 6. such

that : 5. = o .

Clearly ~~ - ~ ~ i Y, i approximates P and proves the proposition.

COROLLARY 1 . - Let V be a compact algebraic variety and let F . ~ V , i - 1 , 2

a couple of strongly algebraic vector bundles. If F1 is topologically isomorphic

to F then there exists an algebraic isomorphism of vector bundles ~ . F1---3 F .
Proof.- It is enough to verify that we can apply the result of proposition 2 to the

vector bundle Hom(F1,F2) d~f H . From the condition (iii), of proposition 1, it

follows that H is a strongly algebraic vector bundle and hence the corollary is

proved.

Remark 1.- The category of strongly algebraic vector bundles on X is dual to the

category of locally free A-coherent sheaves. We recall that the category of the

A-coherent sheaves on V is isomorphic to the category of coherent sheaves on

Spec r ( (see [16]).

c. A reduction of the approximation problem

Let V’ M ~ X where V is an algebraic compact subvariety of Rn , M a

m

closed C submanifold of V and X a closed set. We have

Problem 1.- When has M algebraic approximation in V , relatively to X ?

Problem 1 seems very difficult and we are able to give some answers only in the

case : M is a weak complete intersection and X is a quasi-regular algebraic set.

Some results are contained in remark 4 of section g.

We may consider the simpler

Problem 2.- When has M algebraic approximation in Rn , relatively to X ?

We shall see that, in general, problem 2 has not a positive answer, also in the

case X is a regular algebraic subvariety. But we shall prove that the ir (M,X)

has algebraic approximation in Fn if n > 2 dim M and X is a finite union of C
submanifolds in general position.

In the remaining of this section, following ~~~, we shall study a reduction of

problem 1.

We consider the above situation V ; M -~ X, v = dim V, m = dim M .



00

Let map such that : TV , where

x x

T , T are the tangent varieties to V, M.
V M
x x

Let P 
v 

: U be a retraction of a tubular neighbourhood of V in Rn

onto V and : ) = ((x.y.z) C M x G x I cp (x) = y , z ~ y) . TheM n,v-m n,v-m 
’ M

map p’ : n,v-m ) defined by p’(x,y,z) = x+y gives, by the implicit

function theorem, a C isomorphism q = P o p’ : U ~ U between a neighbourhoodV Z M
o

U of the zero section Z of ) and a neighbourhood U of M in V .
Z o M n,v-m M
o

The vector bundle Y 2014> G has a strongly algebraic structure, hence there
n,v-m n,v-m

exists a strongly algebraic vector bundle F’ such that y ~ x P
n,v-m n,v-m

where the isomorphism is algebraic.

It follows that we have two algebraic maps : y 20142014~ G y
n,v-m n,v-m n,v-m

such that poi = id and i and p respect the fibers.

We can summarize the situation in the following commutative diagram :

where n , , n’ are the natural projections and y = n o i . 03C6*M o q ,

Y’ = n’ o i o o q .

Now we ramark that :

a) q-1 is a diffeomorphism, a bundle map, hence - - u M 
is a map transverse to the zero section Z of y and we have M = o (Z)

n,v-m

b) is a strongly algebraic vector bundle, hence if we approximate the map
Q by a regular map 03C3o , shall be an algebraic approximation of M in U .

c) If 03C3o : UVM ~ 03B3n,v-m is an algebraic approximation of a such 03C3|X
then the approximation M = o (Z) is relative to X .

d) To approximate o it is enough to approximate i . o (if P approximates

i ~ o then p o p approximates e ). To approximate i o c is equivalent to

the problem of the approximation of ’-~ : U M , ’Y* : . -~-~ ~n . If we

wish an approximation relative to X it is enough to approximate B , -:’ by

Y , ~~!’ such that 0 .



e) Y’ is a scalar function, hence, by theorem 1, can be approximated if X is

quasi-regular.

So the main problem is to approximate Y.

DEFINITION 9.- In the above situation Y and Y’ are called the equations of M

in U .

The above definition is justified by the relation :

M = (x E I = o) , where Y(x) ^ is the linear projection of R n onto

Y(x) .

So we have obtained the following :

THEOREM 2.- Let us consider V ~ M ~ X where V is a compact algebraic

subvariety of F , M is a C submanifold of V and X a subset of M .

A sufficient condition to have algebraic approximation of M, relatively to X in

an open neighbourhood UM of M in V , is the possibility of approximating a pair

of C equations Y , 03B3’ by algebraic equations y , Y’ such that O .

Remark 2.- Theorem 2 proves that problem 1, in the category of real analytic

manifolds or compact Nash manifolds can always be solved if X is a coherent

subset (see [6]).

d. Some examples

From the reduction theorem of section c we are induced to study the following problem :

let tp : V -i W be a C map where V and Ware algebraic varieties. When can 03C6

be approximated by algebraic maps ?

A very important particular case of the above question is W = G .To study
some examples of maps tp : V ~ W that have no algebraic approximation it is useful

to state :

PROPOSITION 3.- Let V be a regular algebraic variety and 03C6 : V ~ Rt an algebraic

map such that : cp : V c Rt is an analytic isomorphism.

Under these hypotheses there exists an algebraic subvariety V of Rt such that :

V - is contained in the singular set of V .

If 03C6 : V ~ W is a regular, surjective map between two algebraic, regular,

irreducible varieties of the same dimension, then the degree, modulo 2 , of cp is

constant.

For the proof see ~5). In ~4~, [5] are contained the following examples :

Example 1.- Let V,~ - E I y2t - x3 + xt2 - O ~ be the projective cubic

considered as affine variety ( Pn(R) is isomorphic to a closed algebraic subvariety of

RN ([16])). Let us denote by V1 = V’1 U V1 the topological decomposition of V1 in



00

connected components and by V the unitary circle. Let 03C6 : V2 ~ V1 a C map

such that c.p : V ~ V’1 is a diffeomorphism. 

From proposition 3 we deduce that on V , considered as C manifold, doesn’t
a

exist an algebraic structure V , such that cp can be approximated by a regular map

t = Va2 ~ V1 ."
00

Example 2.- Let V = V’ U V" as before and let cp : V 2014> V be a C map such

that deg cp! , 
= 1 , deg 03C6|V"1 

= 0 . From proposition 3 we deduce that on V ,
considered as a C manifold, doesn’t exists an algebraic irreducible structure V.
such that there is a regular map ~ : V 2014~ v~ homotopic to cp . .

00

Example 3.- Let V = V’ U v" be as before and cp : : V 2014~V a C map such that

V 
I 

and c.p : V* 
I 
2014~V’ 

I 
is a diffeomorphism.

Again from proposition 3 it is clear that the graph F C v x V of cp has no

algebraic approximation in V x V .
00

Example 4.- Let F V~ be as in example 3 and let F 2014~V. x V, the C

line bundle associated to the divisor F . From propositions 2 and 3 it follows

that F 
c.p 

has no strongly algebraic structure.

The examples show that a C map c.p : v ~ W between algebraic, compact,

regular varieties has, in general, no algebraic approximation, even if we change the

algebraic stucture on V or W = G .

n,q

In the next section we shall prove that, given c.p : V 2014~ W , if the bordism

class of cp is algebraic, then V has an algebraic structure V such that

03C6 : V 2014> W has algebraic approximation.

For this reason it is important to know when ~(W) is algebraic. The following

two lemmes can be useful in this direction.

Lemma 1.- Let V be a compact algebraic variety and let us denote by the

unoriented q-bordism group.

If H (V,!Z ) is algebraic then ~ (V) is algebraic.2014 

q 2 2014201420142014201420142014201420142014201420142014 

q 
2014201420142014a20142014201420142014

Lemma 2.- Let G be the Grassmann manifold with the usual algebraic structure,
2014201420142014 20142014 

n,p 
2014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014a20142014201420142014201420142014201420142014201420142014

then for H, (G ,ZZ.) is algebraic.

To prove lemma 1 it is enough to remember the geometrical interpretation of the

isomorphism  : ~q (V) ~ H (V,z1 ) defined in [9]. To prove lemma 2 it is enough to

remark that Schubert’s cycles are algebraic.

The details are in [4] and [5].



e. The approximation theorem

The results of this section are contained in [6].
We wish to prove the following :

THEOREM 3. - Let M be a compact C submanifold of R , n ~ 2m + 1 , m= dim M

and X C M a quasi-regular algebraic subset Let

q 
~

t9 : M 2014~ G = n G x H be a C map of M into a product of Grassmann
1=1 ., 

manifolds multiplied by a regular compact algebraic variety H such that 

is algebraic. Let us suppose (pt X is algebraic. Let (p : X ~ G 
n,n-m 

be the map

cp (x) = linear variety orthogonal to the tangent space T 
M 

, and let us suppose 03C6
o

x

has algebraic approximation. In these hypotheses, for any E > o , there exists an

algebraic E-approximation h : M 2014> M’ of M such that :

(i) M’ is a regular algebraic subvariety of P

(ii) M’ ~ X and there is a regular map  : M’ ~ G such that 03C6|X 
= o h

is an £-approximation of cp .

The theorem shall be proved by several lemmas.

We start by the :

DEFINITION 10.- Let M be a C~ submanifold of Rn and U a relatively compact

open set of M. We shall say that U has Nash proper approximation if for any e > o

there exists an algebraic variety M’ C a neighbourhood D 
U 

of U in R and

a diffeomorphism h : U ~ U’ C M’ such that : U’ is open in M’ , U’ C D , the

points of M’ n D 
U 

are regular and h is an ~-approximation.

Lemma 3.- Let V W C P be algebraic subvarieties of P , K and X C V
00

be a quasi-regular algebraic compact subset of V . Let 03C6 : V ~ W be a C map

such that cp) is algebraic and U ~~ V , U ~ X be an open set such that any point

of U and of is regular.

In these hypotheses U has a Nash proper approximation R x K such that :

(i) U’ ~ X

(ii) there is an algebraic map cp* : U’ 2014~W such that cp’ ! 
= 

(iii) for any E > o , U’ , ~’ can be constructed in such a way that cp’ o n is

an (-approximation of cp , where Tf : P 2014> P is the natural projection.

Proof.- By the theorem 1 we can find a regular map t : P 2014> r such that 03C8|X = 

03C6|X
and 03C8 approximates 03C6 on the closure U of a relatively compact neighbourhood

U " 

2

Let p : W 2014~ K be defined by p(x) = matrix giving the projection of K

the tangent space to W in X . It is known (see [16]) that p is algebraic.
Let now V = {(x,y) ~ F~ x P~ ] x ~ V , t(x)+y ~ W , p(~(x)+y)y= oL Clearly



v’ is an algebraic variety, V ~ X , the map = t(x) + y is algebraic and

If f) is near enough to 03C6|U , by transversality reasons V near U is

regular and rr : n (u) n V’ 2014~ U is a Nash isomorphism (if t(U) is contained in a

tubular neighbourhood of there is only one "nearest point" to ~(x) in W ).

It is also clear that when t approaches cp the map cp* approaches tp . The

lemma is now proved.
q ~y~

Lemma 4.- Let G = II G x H be as in theorem 3 and M a compact C manifold.

Let cp : M ~ G be a C~ map ; then there exists a C , compact manifold W,

WC K , with boundary oW and a C W 2014~ G such that :

(i) 8W = M U M’ and M’ is a regular algebraic variety

(ii) is an algebraic map, ~) 
= cp .

Proof.- By Künneth formula and lemma 2, H*(G,Z2) is algebraic, hence lemma 4 is a

consequence of lemma 1.

CO 00

Lemma 5.- Let B 2014~ X be a C bundle, where B and X are paracompact C
~ ~ ~ ~ 

00 00

manifold. Let S ~ X be a closed set and Y : X 2014> B a C section. If the C
~ . 00

section Y’ : S ~ B approaches enough 03B3|S , then there exists a C section

Y : X ~ B such that Y) 
= Y’ and Y approaches Y .

The above result is a consequence of the fact that the problem of extending a

section is a homotopy problem (see [6] for references).

Proof of theorem 3

Let 03C8 : W 2014>G be the cobordism of cp: M ~ G , as defined in the lemma 4. Now we

remark that if we embed canonically x P , any algebraic map
~ : X 2014~ G defines an algebraic map (~ : X 2014~G given by

n,n-m n+p,n+p-m

= ~B where P~ = (o) x ~ C The same argument can be used for

any map P : M , so we may consider W embedded in any . Later we

shall suppose n > 2m + 3 and, in the end, we shall project the approximating

manifold in r)2m+1 .

Let now T be the double of W ; by standard arguments (see [16]) we may suppose
T is realized in in such a way that :

(i) T F! (x , 1 = 0} = M U M’ where X 
1 

is the last coordinate of P"
n+1 n+

(ii) T near X 1 
= 0 is a product (there is e > o such that

]-E,+e[) UT= (MUM’) x ]-e,+E[ [ ).

(iii) the map 03C8 has a C extension’: T ~ G .

Let now 03C6T : T be defined by :

t9 (x) = linear subvariety orthogonal to the tangent space to T in X . From condition

(ii) we deduce that 03C6 is algebraic and, from the hypotheses of the theorem, we

* ! M ’



know that D 

T|M 
has an algebraic approximation cp’ : x 2014>G 

n,n-m ~ Gn+ .. 
. If (p*

is near to cp 

!x 
, in the sense of lemma 5, then there is a C map

p 
o 

: T ~ Gn+1 ,n-m , 
such that cp 

!xUM’ 
is algebraic and 03C6o approximates cp T

.

Let now = P : T ~ Gn+1,n-m  G ~ ?P U ~Gn+1,n-m  G a C°°

extension of P to a relatively compact tubular neighbourhood U of T in 

Let us apply lemma 3 to the variety P n+1 and the map ~" p , we find an algebraic
subvariety D* c: ~ ?P such that :

I. D’ has an open set U’ ~ such that any point of U’ is regular and

03C0 : U’ ~ U is a Nash isomorphism

II. there exists a regular map p’ : U’ ~ G 
n +1 ,n-m 

x G such that p* approximates
 03C0

and 

’~

Using the map n’ o P’ , where n’ is the projection :
n’

G . ,n-m x G ~ Gn+1 ,n-m 
, we find the equations of a Nash proper approximation T’

of T such that : D’ , T’ ~ {x . = 0} ~ X U M’ , T’ cuts tranversely
n+)

(x . = o) . (For the construction of the equations see remark d) of the section c).

Let T" = T’ U S be the smallet algebraic subvariety of containing T’

and h : Rn+p+1 ~ P a C map such that :

1) h is near enough to X in a neighbourhood of T’ ,
n+1

’ ~1 ’ ’~1 - - - ~+1’ ’’"’"n+1 ’
" =°

3) h(x) = 1 on the complement of a compact set K , such that K D S = 0

Clearly h defines a C ~ map h’ : 2014~ R , where the sphere is considered

as the compactification of 

So we may approximate h’ by a regular function h" : 2014~ P such that :

1)’ h" is near enough to X 
n+1 

in a neighbourhood of T’

~’ =~

3)’ h"(x) > y P"~~ - K . °
Let now (h’’ = 0~ = ?! U M’ ; we have that M approximates M and M~ X .

The theorem is proved.

Lemma 6.- Let (s.)._. be a family of regular algebraic subvarieties of R
°°--°°~ ~ i i20141,..,q 

"’ " "" ’

and let us suppose that for any i , K and x ~ S. F) S the germ of S. is

transverse - to the germ of S 
K 

in .- the Zariski tangent space of - (S.) U (S ) x .

In these hypotheses if cc : ~J S. 2014~ P is a continuous function such that cpt~ ~~ 

i=1 
I ’ i

is a regular function, for any i ~ then (p is a regular function.



Proof.- The problem is local, then we may suppose S. transverse to any S . Let
now X = X U X2 be the union of two algebraic subvarieties of Rn . Let us suppose
that the ideal , of the polynomials zero on X~ , is generated by the

ideals I , defined by X’ and X2 . Under this hypothesis we wish to prove

that any continuous function % : : X -i F , such that i - 1 , 2 are regular,

is, actually, a regular function.

Let % 1 , % 2 be two regular functions that extend 
1 

and ~! ) 0 to a

Zariski open set of ~n . We t 2 C hence, by the above condition,

we have ~1 - ~~ - f,~ - , fi E IX. , i - 1 , 2 . °

i

Then the regular function - f 1 - ~ 2 - f 
2 

extends %’ and this proves that

03C8 is a regular function. 
-

Now we remark that S ’ and S2 satisfy the above condition, hence 03C6|S1 .. S 2
is a regular function.

Now S3 cuts transversely S1 and S2 , hence IS ~ (S1 U S ) 
is generated by

and 

S ’ 2 
, is a regular function.

After a finite number of steps we prove that c~ is a regular function.

We have :

PROPOSITION 4.- Let M be a compact submanifold of - n 3- 2 dim M + 1 and

~ Si~ i=1 , .. , be a family of compact C submanifolds of M in g eneral position. Then the
i"i=1,.. ,q 201420142014201420142014201420142014*201420142014201420142014"-20142014 20142014201420142014201420142014201420142014201420142014201420142014 2014201420142014201420142014

pair has algebraic approximation (M’,lsl) in Rn and we may suppose
i=1 i q i=1 1 q

M’ , Si regular and that ( M’ , U Sl) is isotopic to (M, ~_Js. ) .~ i=1 ~ i=1

Proof.- Let us consider the finite family of all subvarieties

Si 1 ,...,i - t 
= S. 

1 

n ... Q S. 
t 

def S where I = (il,...,it) . Let us consider for any

pair of subsets I’ , I" of 1,...,q , I’ c I" , the injection and let

us denote by 03B3I’I" : SI" the equations of S .. in SI, . For any

I c (1,...,q) let us consider the family of the maps Y , : S r I

and all the restrictions of the maps ~(IaI" , , I° ~ I , Finally

; SI be the product of all the maps 03B3I’I and I°I" just described.

Let now I q = (1,...,q) and S be the corresponding C 
~ 

subvariety. Let

be 
an algebraic approximation of such that :

(i) o h 1 has an algebraic approximation ’Iq
( ii ) there exists a C pair (M~, ~ S° ) in F isotopic to 

i=1 1 



(iii) 0 S? = S’ and the S? are near enough to the S
i ~ ~q 1 i

To obtain the above result we apply theorem 3 to M=S , , X = 0 and by standard
1~

arguments we construct an isotopy of P into itself sending S onto S’ .

.. 

K 
1~ 1~

Let now denote S 1~-1 . = J~i ~ f ! i we have : S 1~-~ . f1 S 
. 
= S’ 

i~ 
. Let now apply

theorem 3 to any pair (S~ . , S’ ) , starting from (S 
1 

~ , S’ ) ... ; after any
I" q20141 I" q I" ct2014t I" q

step we construct an isotopy that doesn’t move the manifolds that we have approximated
00

and gives a new C situation that contains the modified manifolds. After the

ii, K def ~approximation of the S 
.... 

we can approach the S 
~ 

= t t S. without
" 

~ 

" 

I" q-2 i

changing the S1Iq-1 i 1 ’-’ We ramark that theorem 3 can be applied because the

approximations of the 03C8I , that are regular on any S , just approached, are regular

also on the union of these manifolds (see lemma 6). In this way, after a finite number

of steps, we end the construction.

Remark 1.- Let H be a compact regular algebraic variety such that H*(H,ZZ2) is

algebraic and 03C6 : M ~ HaC map. Now let M be as in proposition 4, then the

proof we have given shows that we can construct the algebraic approximations

(M* , U S’) in such a way that there exists a regular map cp’ : M’ 2014~ H that
i ~* 

.

approximates cp .

f. The S. Akbulut and C. King result

We wish to prove the following result stated by S. Akbulut and C. King in [2].
CO

THEOREM 4.- Let V be a C compact manifold and T a triangulation of V . Let

K. crv , i = 1,...,p be a family of closed disjoint subpolyhedra of T and V the

quotient space of V obtained by the equivalence relation : x ~ y if and only if

x = y or tyj C K. , i == 1,...,p . Under these hypotheses V is homeomorphic

to a real algebraic variety having, at most, p singular points. Moreover, any such

algebraic variety has this form.

The Hironaka desingularisation theorem proves that any algebraic variety, with

p isolated singularities, has the above form.

To prove the converse we need some lemmas that are contained in [2] :

Lemma 7.- Let V c p be an algebraic variety and S ~ V a compact algebraic

subvariety. Then there exists an affine variety V S and a regular map 03C6 : V ~ V b
such that :

(i) ~ : V - S 20142014~~c ~ * ~~S) is an isomorphism

(ii) ’-(S) is a point of V .



The lemma is proved by the following remarks :

I. Let us suppose P embedded in P (P) and let S be the locus of zeros of a
n

polynomial of degree d. Using the Veronese embedding of degree d,

p (P) 2014~ p (R) , we may suppose i(S) is the part of i(V) contained in one
n N

hyperplane of P N (P) ~ i(V) .
II. The stereographic projection P 2014> S has a natural algebraic extension

p : P (R) 2014~ S N such that the image of P (P) - P N is one pole of S. The
N N

variety p(i(V)) = V satisfies the required property. To verify the assertion

we recall that if the sphere S has equation ). 
1 

+ (x + 1) = 1 , and we

N 
~ 

’~~~

project X 
1 
= - 2 on S from the origin, the map has the equation :

1N = N1 ’ N 
+ 1 

N 
+ 1) and hence 

regular extension p’ : P (P) 
The proof of lemma 7 given in [2] is slightly different.

CO

Lemma 8.- Let W be a compact connected C manifold with boundary ~W . Then there

is a family - 
of closed embedded discs in W - such that :

1) the boundaries S 
a 

= oE 
a 

of the discs are a family of C submanifolds of W

in general position

2) there is 
a family }03B1=1,..,q of closed embedded discs of W - oW such that

W - D is a regular neighbourhood of S in W.
~ 

0=1

Proof.- Let us fix a triangulation T of W , such that the interior of any simplex
00

o is an open set in a C , locally closed, submanifold V 
a 

of W. Moreover we

shall suppose v ~ o . Such a triangulation shall be called smooth.

Now we suppose that T is so refined that the union U of all the simplices

that intersect oW is a regular neighbourhood of oW . Let now K the subpolyedron

of all the simplices that do not touch oW .

We wish to construct a family of "simplicial" closed discs fE j C7 02014 ’ , . * t S 
such

that :

(i) the E. 
i 

are in one - one correspondence with the simplices o. 
i 

of K

(simplices of any dimension)
s

(ii) LJ E. is a regular neighbourhood of K

i=1 ~
(iii) the boundaries oE. of the E. are in general position (as subpolyhedra)

(iv) the closure of any connected component of ~J E. - U oE. is a topological
i=1 i=1 1 

~

closed disc.

Let o 
p 

be a simplex of dimension p of K and the union of all simplices,



of a p + 1 -th barycentric smooth subdivision of , wich do not touch the boundary

~o .
p

Let E~ be the union of all simplices, I of a p + 2 -th barycentric smooth
p

subdivision of K , that intersect F .
P

If p = 2 the situation is illustrated by fig. 1.

It is a direct verification that the "simplicial" disc E 
a 

satisfy the required

properties.
~~ CO

Let now E be a family of C discs, obtained from E , smoothing the corners.J 
"~’ 

a

We shall suppose the E 
a approximate enough the E 

J 
and the properties (i), 

(iii), (iv) are satisfied for the family E
o s s

Let now (A ) 
. 

be the set of the connected components of LJE - LJoE0 ~=1,..,q 
~ ~ 0 ~, 0

and for any A_ let D be a closed smooth disc embedded in A . Clearly"OQ’ o
s q s

LJD is a regular neighbourhood of ~~E03C3 (because any A is homeomorphic
o=1 Q’=1 ~ 0=1 ~ 
to a closed disc).

The lemma is now proved because W is a regular neighbourhood of E

0=1 ~
Lemma 9.- Let W be a connected compact manifold of dimension n and ~W the

boundary. There exists a compact manifold V such that :

(i) ~v = ~w 
~ 

(ii) V is a regular neighbourhood of )U(~Js.), where the S. ,
~ 

1=~ ~ 3=~ ’ ~ -J ~*

S , are diffeomorphic to the n - 1 and 1 spheres. Moreover the manifolds of the

family S. ~ S are in general position.

Proof.- From lemma 8 we know that there exists two families of embedded closed discs

fE L ... . 
in W - ~W such that : W - tjD is a regularc c=1,...,s Cr Q= 1,....q ~ C~ 

-’



s 
_

neighbourhood of S = LJ c~.Ec, . Moreover, from the construction, we know that the

_ 

o=’i 

are diffeomorphic to and they are in general position.

Now to prove the lemma we construct a new manifold that has the same boundary

(up to diffeomorphism) of W and that can be deformed on T , for some family 
q 

of embedded circles. We remark that the boundary of W - (J D is the union of c~ W

_ 

c~=1 
a

and of disjoint spheres. Then in our construction we must kill the new
q

boundary ~_~ 8D . Let us consider the simple situation q = 1 , W = a disc . In

c~=1 

this case the new manifold W that we construct is illustrated, in dimension 2,

by figure 2,below :

The boundary of W’ is diffeomorphic to 8W (a circle in our picture) and W’ can

be continuously retracted on U S~ . It is not difficult to see that the above

construction gives us the desired result for any dimension n . This construction

shall be called the "iron" construction.

Let now consider the general case.

Let us fix a point x and let us construct a tree, starting from x .
o 0

The tree has a vertex for any connected component of W - S and a one simplex

joining two vertices if the closure of the corresponding connected components has

non-empty intersection (see fig. 3).

Clearly the tree can be constructed in many different ways ; we shall suppose, only,

that all the D. are reached from the tree, and this is possible because W is

connected.



to end the proof of the lemma it is now enough to construct a ribbon along the tree

having an "iron" at any vertex (see fig. 4).

It is now easy to realize that the manifold W" , of fig. 4, has a boundary

diffeomorphic to ~W (if all the corners are smoothed). Moreover W" is a regular

neighbourhood of ( U ~03C3 ) U (Us1j) where we have one S. 
7 

for any 1-simplex of

the tree.

The lemma is proved.

Proof of theorem 4 (see [2]).- To collapse K, i is equivalent to collapse a regular

neighbourhood W. of K..

Wi is a C manifold and 8W, i is its boundary ; i we shall suppose Wi n WK 
= 0 ,

i , K = 1,...,p, i ~ K .
00

Lemmas 8 and 9 prove that aW, 
i 

is the boundary of a compact C manifold U. 
i

such that U, 
i 

is a regular neighbourhood of a finite family U of compact

C manifolds in general position.
00 P

Let V be the C manifold obtained gluing V - LJ W, and U U. along

U 8w, . 
~ i-1 1 i=1 ~

i ~L

Now to collapse the 
, 

K in V is equivalent to collapse the U. in VU and

hence to collapse the S1 in V . By proposition 4 the pair has an

algebraic approximation and, by lemma 7, the quotient space obtained collapsing the

S1 is an algebraic variety, with at most p singular points.

The theorem is proved.

Remark 1 (see [2]).- Let V c Rn be an algebraic variety ; lemma 7 proves that the

"one point compactification" of V is homeomorphic to a (compact) algebraic variety.

So we have : a topological space X is homeomorphic to an algebraic variety if

and only if this is true for the one point compactification of X. From this remark

and theorem 4 we can deduce characterisations of the topology of non-compact algebraic

varieties.

Now we prove (see [6]) that any pure dimensional, compact, real analytic set,

having isolated singularities, is homeomorphic to an algebraic variety.



PROPOSITION 5.- Let ~S1 ~ be a family of germs of real analytic sets, of
~ 

i i=1,..,q
pure dimension n , having xi as isolated singularity.

There exists a compact, connected, real algebraic variety V and q points

Y1’ ... ,y q of V 
such that :

(i) V - U y. is a regular algebraic variety of dimension n

i=1 ~ ,

(ii) the germ of V at y. is homeomorphic to , i = 1,...,q

Proof.- Let U1 be a realisation of Sixi and let us suppose xi be the only

singular point of U . From the Hironaka desingularisation theorem there exists a

proper map p. : U ~ Ui such that U is an analytic manifold, p.(U) = U ,
p : U - p. (x’) is an analytic isomorphism. Let D be a compactp : U - 20142014>U - is an analytic isomorphism. Let D be a compact

neighbourhood of pl 1(x!) i in Ul such that D. 
i 

is a connected manifold with
boundary 0D.. It is known (Lojasiewicz) that the pair (D. , p. (x!)) has a

triangulation.

Let now D, be the double of D, and W the connected union of the D, ,
11 i

i = 1,...,q . Let us suppose W be constructed in such a way that the "tubes" joining

the components do not touch the set U p. -1 (x’) .
i i i

The manifold W is compact and connected. Theorem 4 proves that if we collapse

to a point each set the quotient space is homeomorphic to an algebraic

variety. The proposition is proved.

g. Final remarks

In this section we shall give some refinements of the results given before.

Remark 1.- Let M be a C~ compact submanifold of Rn , , m = dim M . In the

approximation process (of theorem 3, for example) we construct a regular algebraic

approximation Rn x RP of M such that the projection TT(M’) def M" C Rn is

a Nash approximation of M and locally , 
is an isomorphism. From proposition 3

we know that there exists an algebraic subvariety of Rn such that M" ~ M" ,
S = M" - M" is contained in the singular set of M" . . Let us denote by S’ the

singular set of M" and let S" = S’ n M" .

Let us consider the projection fl : : Cn x cP ~ Cn and the complexification

M’ , M" of M’ , M" .

It is clear - that any point x E S" ~-1 is the ~ image, under n M’ , of at least

3 points of M’ , in fact we have ip n (x) n M’ one real point and, at least, a

couple of complex points. It follows that S" is contained in the image, under Tr ,

of the triple points set ~_(TT ~ ) ) of .

3 M’ !n’



It is known (see [13], propositions 7.2, 7.4) that, if rr is generic, we have

dim 03A33(|’) - 3m - 2n .

We deduce that, if n > 2 m , the set S" is empty.

Let n > 2 m and, eventually after a little change of Ti , , let us suppose

S" = ~ . There exists a polynomial P such that = O and P(x) ~ O if

x E M" (we have M" - M" = sing M" because locally 03C0|M’ is an isomorphism).

Let now Q : P ~ R be a polynomial such that Q~M" - M" - O , Q approximates

the function 1 in a neighbourhood of M" . (Clearly we can find a C function

Q’ - P. h , h(x) ~ O , v x , having the above property. If we approximate h by a

polynomial function h’ we obtain the desired Q ).

If we consider the embedding P - (Q = o) ---~ R given by

{x1, ... ,xn) (x ... ,xn, Q(x . 1 .x ) ) ) we find an algebraic approximation of M

in Rn+1 (it is j(n(M’)) ). 

We may summarize : Let M be a C 
00 

compact, m-dimensional subvariety of ~n

and let us suppose n > 3 2 m .
Under these hypotheses M has in E x t~o) = ~n algebraic approximation

M ’ . .

Moreover we have the same result, even if we require that M’ satisfies the

extra conditions of theorem 3 or of proposition 4.

Remark 2.- Let M be an algebraic variety, we shall call M totally algebraic if

any topological vector bundle F -~ M has a strongly algebraic structure.

In theorem 3 (and in proposition 4) we can suppose that the algebraic approx-

imation M’ is totally algebraic.

To prove this it is enough to show that, given M , there is a finite number of

maps cp : M --j G such that if we approximate ~P. by regular maps
i n.,q. 

"~ i
i i

cp’ : M’ -~ G then all the vector bundles on M’ have a strongly algebraic
i 

structure. 9

This last fact ensues from the remarks :

(i) F has a strongly algebraic structure if and only if there exists p f N such

that F ~ M’ x ~p has this property

(ii) the Grothendieck ring K(M) has a finite number of generators.

The details are contained in [5].
The notion of totally algebraic variety is not satisfactory ; for example, if M

and N are totally algebraic, M x N , in general, is not (see [7]).
In the case of line bundles we have : a sufficient condition to ensure that any

line bundle F x N has a strongly algebraic structure is : any irreducible

component of M , N is connected and all the line bundles on M , N have a strongly

algebraic structure (see [7]).



A family of examples of totally algebraic varieties is given by the suspensions

(see [5]). In this case the totally algebraic structure is a consequence of a

topological property. For example any regular algebraic variety diffeomorphic to a

sphere is totally algebraic.

, 

co

Remark 3.- It seems very interesting (see section d) to know if any C compact

manifold M has an algebraic structure M such that the homology H (M ,E ) is
a " a 2

algebraic. Up to now we can prove the following (see [7]) :
co

THEOREM.- Let M be a compact C manifold, then M has an algebraic structure

M such that :
a

(i) M is totally algebraic
a 

00

(ii) all 03B1 C H (M ,22.) that are represented by C smooth cycles are also

represented by regular algebraic subvarieties

(iii) any Of ~ H (M ,ZZ.) that is dual to a Stiefel-Whitney class of some vector
p a 2

bundle is algebraic.

Remark 4.- Proposition 2 proves that, if M is compact, totally algebraic then any
co 

,

C weakly complete intersection S of M can be approximated, in M, by a weak

algebraic complete intersection S’ .

The case of complete intersection is, up to now, the only case in which we are

able to give a positive answer to problem 1 of section c.
co

A necessary and sufficient condition to the fact : S is a weak C complete

intersection is given in [7].
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