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RIGIDITY AND COCYCLES FOR ERGODIC ACTIONS

OF SEMI-SIMPLE LIE GROUPS

[after G.A. Margulis and R. Zimmer]

by Harry FURSTENBERG
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Séminaire BOURBAKI

32e année, 1979/80, n° 559 Juin 1980

Introduction

Margulis’ theory of rigidity of lattices of semi-simple Lie groups of IR-rank ~ 2

([10], [14], [15]) has been recast by Zimmer [16] in a form that becomes meaningful for

arbitrary finite-measure-preserving ergodic actions of these groups. If F is a

lattice in a locally compact group, then G/F carries a finite G-invariant measure,

and being homogeneous, it consits of a single G-orbit. If one replaces transitivity

by ergodicity, then an ergodic action of G on a space X carrying a finite

G-invariant measure may be regarded as the action on the quotient of G by a "virtual

lattice". Certain theorems about lattices become meaningful in this broader context

provided all the concepts involved can be translated to a form in which there is no

explicit reference to the lattice itself. For example, as we shall see, homomorphisms

of the subgroup F into a group H can be replaced by cocycles of the action of G

on G/F with values in H . From this point of view we can summarize Zimmer’s work as

reinterpreting Margulis’ rigidity results for homomorphisms of lattices as theorems

about the cohomology of cocycles of ergodic measure-preserving actions of IR-rank ~ 2

groups with values in a semi-simple group. Inasmuch as such cocycles occur naturally

in several contexts, Margulis’ rigidity theorems have implications that are quite

unrelated tô lattices.

Suppose that F is a subgroup of an arbitrary group G , and let 8 . G/F --~ G

be a cross-section for the natural map G -> G/F , so that 8(x)f = x for x E G/f .

For g E G , x E G/F , we have 8(gx)r = g8(x)f so that

takes values in r. The function Y(g,x) satisfies the cocycle équation

by (0.1). If we now have any homomorphism of F into a third group H , p : F -H ,

then C7(g,x) = pCY(g,x)) is a map from G x G/F --~ H satisfying the cocycle equation.

Let us say that two cocycles with values in H are equivalent (cohomologous)



if there is a map ~ : G/F --~ H with

We see that different choices of the cross-section 9 lead to equivalent cocycles.

Conversely, suppose that ff . G x G/F --~ H is a cocycle with values in the group H .

Restricting e to F x {xo} , 1 x = (F) , 1 we obtain a homomorphism P(Y) = 

of F to H . Moreover, equivalent cocycles lead to equivalent homomorphisms, where

we say that two homomorphisms P,P’ are equivalent if P’(y) = h h E H .
o oo

We thus find a bijection

(0.4) {cocycles 03C3 : GxG/F --3 H}/cohomology ~ fhomomorphisms P : F ~ H}/equivalence .

In this bijection it may be seen that equivalence classes containing cocycles o(g,x)

which are independent of x , so that J(g,x) = ~ O(g1g2) = ~(g1}~(g2} ’
correspond to homomorphisms of F which are extendable to homomorphisms of G .

Taking this into account we find that a natural framework for rigidity theorems

is the cohomology theory of cocycles 6 . : G x X -~ H , where G is a semi-simple Lie

group and X is a measure space on which G acts ergodically, preserving a finite

measure, and H is another topological group. Under certain conditions we shall be

able to show that a cocycle 03C3 is cohomologous to one which is independent of x ,

that is to say, one which corresponds to a homomorphism of G 2014~ H . This may then be

regarded as a "rigidity" theorem, implying in special cases that a homomorphism of

the lattice F extends to G .

In addition to cocycles that occur when X is a homogeneous space, one also

encounters cocycles for other measurable actions. For example suppose we have

measurable actions of two groups G and H on two measure spaces X and Y ,

respectively. Suppose that H acts freely so that h ~ identity ~ hy ~ y for every

y f Y . Assume there is an orbit preserving map of X to Y , i.e., x --3 Y ,

with TT(Gx) = HTï(x) for x E X . Then TT(gx) = defines a unique o(g,x)

and it is easily checked that 0 satisfies the cocycle equation. The same cohomology

phenomenon that leads to Margulis’ rigidity theorems now yields the following result

of Zimmer.

THEOREM 0.1.- Let G and H be a semi-simple Lie group with trivial centers and

assume IR-rank G ~ 2 . Assume that G acts freely on a measure space X preserving

a finite measure and that every simple component of G acts ergodically on X . Let

H act freely on a measure space Y preserving a finite measure and assume that

there exists a 1 - 1 measurable orbit preserving map of X into Y . There is then

a homomorphism of G --~H such that the resulting action of G on Y is conjugate

to the action of G on X .

Actions of G on two spaces X and Y are conjugate if there is a 1 - 1 map

Tr : . X --~ Y with TT(gx) = . Zimmer’s result is particularly striking if one



bears in mind that in the category of amenable group actions matters are quite diffe-

rent. By_{_2] and [4] any two ergodic, measure-preserving free actions of any two

infinite discrete amenable groups are orbit équivalent. On the other hand even for

the same group, two such actions need not be conjugate. For example, two ZZ-actions

of different entropy or different spectral characteristics cannot be conjugate.

Another example of a cocycle for a measurable action arises in considering

smooth actions of a group G on a manifold X. If we partition X measurably into

coordinate patches then we can identify the tangent space T(X) with X xlRm ,
m = dim X . For each g t X , the differential dg defines a map of T(X) ~ T(X)
which is a linear transformation 0(g,x) E GL (]R) . Again it is easily verified that

m

7 satisfies the cocycle equation, and we shall refer to it as the tangent cocycle.

Under suitable hypotheses we shall be able to obtain information about the cohomology

class of this cocycle. In § 8 we formulatè an "entropy rigidity" theorem for smooth

actions which appears as a consequence of these considérations.

This report is based on Zimmer [16]. There are some modifications which enable

one to obtain slightly sharper results. Thus there are some implications for cocycles

of semi-simple groups having IR-rank one. Also we study general matrix valued

cocycles without assuming the range is Zariski dense in a semi-simple Lie group. A

more detailed exposition is currently in preparation.

§ 1. Cocycles of measurable actions

Let denote a probability space ; i.e., X is an abstract space,.%
is a a-algebra of subsets of X , and  is a o-additive non-negative measure on

JJ with 1 . When we speak of the measure space X we have in mind the

probability triple. If G is a topological group, the Borel sets of G constitute

the measurable sets of G . We say G acts on X if there is a map G x X -~ X ,

(g,x) -~ gx , which is jointly measurable and which satisfies = g1(g2x) ,
ex = x . We suppose furthermore that for A,B E ~ , n g 1B) is a continuous

function of g E G . We also say that X is a measurable G-space. The action is

measure-preserving if 1A) - for g ~ G and A E,~ , and it is ergodic
if gA = A for all g 6 G (or, equivalently, for a dense set of g ) implies

t-i(A) = 0 or 1 . In the sequel X will always denote a measurable G-space.

Throughout our discussion H will denote an algebraically closed real linear

group, for example, a connected Lie group with trivial center. Let denote

the space of measurable functions from X to H C GL (R) C on one
m

can introduce the topology of convergence in measure :

A measurable function cr : G x X --~ H will be called a cocycle if the map of



G -~ c~( X, H ) given by g --~ a ( g, . ) is continuous and

for every g1,g2 E G and a.e. x . In practice G will have a countable dense

subgroup and on account of the continuity hypothesis it doesn’t matter whether the

exceptional set of x depends on g1,g2 or not.

Two cocycles 0,J* are équivalent (or cohomologous) if there exists a measurable

map ~ : X --~ H with

Since H will usually not be commutative, the cohomology classes do not form a group.

Let M be a topological H-space (i.e. we have a continuous map H x M -~ M

with (h,h2)u = h1(h2u), eu = u ) or a measurable H-space, and suppose that o is

a cocycle on G x X with values in H . If we define

by the cocycle equation. Hence we obtain an action of G on X x M . This action is

sometimes called the skew product action of G on X x M , and we denote the latter

space by X 03C3 M to specify the action of G on it. X x M is an extension of X

in the sense that there is a morphism TT : X 03C3 M ~ X (or a G-equivariant map)

commuting with the action of G . Note that equivalent cocycles define essentially

isomorphic extensions in the sense of a commuting diagram of G-equivariant maps :

§ 2. Cocycles for groups with property T

Let G be a group with property T (L3~, [8]). This means that there exists

a compact subset Q c G and an E > o , such that if R : G is any

strongly continuous unitary representation of G on a Hilbert space ~i for which

some vector u ~ 36, = 1 , satisfies ~~R(g)u - for all g ( Q , then

there exists v v ~ 0 , with R(g)v = v for all g ( G . A semi-simple group

all of whose simple factors have IR-rank ~ 2 has property T . The real and complex

hyperbolic groups do not have property T and an amenable group has property T iff

it is compact.

We can illustrate the program of studying the cohomology of cocycles for measure

preserving actions with the following simple result. It generalizes the fact that if

F is a lattice in a group with property T then is finité.



PROPOSITION 2.1.- Assume that G has property T and that the action of G on

X is measure preserving and ergodic. Let 03C3 be a cocycle on G x X with values in

the positive reals. Then 1 .

Proof.- Let Q C G and ~ > O be given as above. Define a representation of G on

L (X x IR) by

If we choose u6 6 L2(X xÎR) to be constant for jt~ ~ 0 and u6 = 0 otherwise, it

can be seen that for g 6 Q as soon as 0 is sufficiently small.

This implies the existence of some v(x,t) , measurable on X xIR , with

For each t , by ergodicity of the G-action is a constant and since v ~ O

we can take 1 for a set 6 of t with m(6) > 0 . Also by ergodicity,

for any fixed t , two solutions of (2.2) are proportional, and so the function

v(x,t)v(y,t) on X x X is uniquely determined by (2.2). Next we see that we can

solve (2.2) for t E ~ - ~ and hence for all t by taking quotients and products of

v(x,t) , t E 6 . By measurability we have a measurable function V(x,t) defined for

all t , 1 with (2.2) satisfied for every t and for a.e. x . By

which now holds for a.e. x,y and for a.e. t,s . But this implies that

with p(x,y) uniquely determined. From p(x,y) + p(y,z) = p(x,z) we deduce that

p(x,y) = k(x) - k(y) + c which implies that

The following corollary will be used in § 8.

COROLLARY.- Let G have property T and suppose that the action of G on X is

measure preserving and ergodic. Let Q be a cocycle on G x X with values in

GL (R) then o is équivalent to a cocycle the values of which are matrices of
m 
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determinant ~ 1 .



§ 3. Minimal and proximal cocycles

If M is a compact metric H-space we can consider various "dynamical" properties

of the action. We say the action is minimal if all H-orbits on M are dense. This is

equivalent to requiring that no proper closed subset of M may be H-invariant -

hence, the term "minimal". Another property is proximality ; i we say H acts

proximally on M if for every u,v E M there exists a sequence h E H with the

distance d(h u,h v) ~ 0 . Equivalently, H acts proximally if every H-invariant

subset of M x M meets the diagonal A 
M 

CI M x M . We shall now extend thèse notions

to cocycles of a G-action on X with values in H . We now have an action of G on

the (measurable x topological) space X 03C3 M and minimality and proximality

correspond to behavior of this action relative to the base X . We assume throughout

that the action of G on X is ergodic.

In order to define minimality and proximality we need the analogue of a closed

invariant set for a skew product action. We shall denote by 2M the compact metric

space of closed subsets of M endowed with the Hausdorff metric. We shall be concerned

with subsets of X x~ M whose fibre over each point x E X corresponds to a closed

subset of M .

DEFINITION.- A measurable function ~ . X --~ 2M is said to be o-invariant if

~(gx) , g E G , and a.e. x E X .

If ~ is a a-invariant map then the set

is G-invariant in X 03C3 M . We write 03A61 ~ 03A62 if 03A61(x) c 03A62(x) a.e.

DEFINITION.- A o-invariant map ~ . X ---~ 2M is minimal if ~1 ~ ~ and

03A61 03C3-invariant ~ 03A61 = 03A6 .

The following lemma will be useful.

Lemma 3.1.- If ~ is any a-invariant map ~ : : X --~ 2M , there exists a minimal
which is o-invariant and .

Proof.- One uses Zorn’s lemma and the separability of the metric space o25(X~2 ) . ,

Lemma 3.2.- The map ~(x) == M is minimal for every A C X with > 0 and

measurable function u : X -~ 2M and open set V C M there exists g f G , x E A

with gx 6 A and a(g,x)u(x) 6 V .

Proof.- Suppose ~ is not minimal is a-invariant, and that for a set

A of positive M . Restricting A we can find an open set V c M

V = Q5- for x E A . Choose u(x) then cr(g,x)u(x) 

so we cannot have o(g,x)u(x) f V for gx E A . Conversely, suppose ~ is minimal

and A , u(x) , V are given, and suppose V if x,g E A . Set



this being measurable since by our hypotheses on cocycles we can replace the union in

(3.1) by a countable ùnion. We check that 03A61 is o-invariant 0 for

x E A . By ergodicity of the action of G on X, ~1{x) ~ ~ a.e. so that P1 1 is

well defined. This contradicts the minimality of 03A6 .

When the map ~(x) - M is minimal we say that a is minimal on M .

DEFINITION.- A a-invariant map P is proximal if ~1 ~ ~’x~ where  1 : X --~2MxM
and ~1 a-invariant implies ~’1(x) n M ~ 0 for a.e. x .

The proof of the following is analogous to that of lemma 3.2.

Lemma 3.3.- The map ~(x) - M is proximal ~ for every A C X with ~(A) > 0 and

measurable functions u,v : X --~ 2 ,and E > o , there exists g E G , x E A with

gx E A and d(6(g,x)u(x),6(g,x)v(x))  E .

Again, we say in this case that 03C3 is proximal on M . With either characteriz-

ation it is easy to see that if o is minimal or proximal on M the same is true of

any equivalent cocycle.

§ 4. Boundaries of Lie groups

Let G be a topological group and let B be a compact G-space. We say B is

a projective G-space if there is a representation of G into PGL (m) and an

injection of B into Pm (HR) so that the action of G on B cornes from the

action of PGL (JR) on P 
m

DEFINITION.- If B is a compact G-space we say the action is strongly proximal

if for any probability measure ’rT on M there exists a sequence g E G with

g 03C0 ~ point measure.
n 
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The following is not difficult to prove.

Lemma 4.1.- For projective G-spaces, proximality and strong proximality are equivalent.

Recall that a group P is amenable if whenever P acts by affine transformations

on a compact convex set, there exists a fixed point. Equivalently, when P acts by

homeomorphisms on a compact space, there exists an invariant measure.

PROPOSITION 4.2.- If G is a connected Lie group, there exists a closed subgroup,

unique up to conjugacy, satisfying

(i) P is amenable,

(ii) G/P is compact,

(iii) the action of G on G/P is strongly proximal.

This is proved in [6]. We make some remarks regarding the proposition. Suppose

P satisfies (i), (ii), and (iii) and suppose S is any normal amenable subgroup or G .



S has a fixed measure on G/P and since S is normal all the translates by G of

this measure are S-invariant. By (iii) it follows that S has a fixed point and so

all the points of G/P are S-invariant. It follows that the space G/P will be the

same for G as for G/radical G . In the semi-simple case we write G = KAN , the

Iwasawa decomposition of G . Then if M = normalizer of AN in K , P = MAN

satisfies the conditions of the proposition ([11]). We can readily see that P is

unique up to conjugacy. For let P’ also satisfy (i), (ii), and (iii). P’ has an

invariant measure À on G/P and since G/P’ is compact, GÀ is compact. By (iii)

for G/P , there is a point measure in the closure of G~ ; hence À is a point

measure. This proves that P’ C conjugate of P . The same argument shows that X is

unique, so the conjugate is unique, and reversing the argument we see that P’ = conjugate of P

We denote this uniquely determined space by B(G) . P is a minimal parabolic

subgroup of G and it is known that G/P is a projective G-space corresponding to

an irreducible representation of G ([11]). B(G) reduces to a point iff G is

amenable. B(G) can be charactèrized either as the universal strongly proximal,

minimal G-space or as the universal projective, proximal, minimal G-space.

PROPOSITION 4.3.- If B’ is either a strongly proximal, minimal compact G-space or

a projective, proximal, minimal compact G-space, then B’ is an equivariant image

of B(G) .

The proof is the same as the argument regarding the uniqueness of P . Minimality

is used to conclude that the map B(G) --~ B’ is onto.

Now suppose that X is a measurable G-space and let o : : G x X ~ G be the

cocycle 03C3o (g,x) = g . B(G) is clearly a proximal, minimal G-space. We claim that

as a cocycle on G x X , cr is proximal and minimal on B(G) , provided the action
° 

o

of G on X is measure preserving.

PROPOSITION 4.4.- Assume the action of G on X is measure preserving. Then the

cocycle Q 
o 

is proximal and minimal on B(G) .

Proof.- We prove minimality, the proof of proximality being similar. Let

~ : : X -~ 28(G) be a o -invariant map. Consider all probability measure supported
o

on the set X03A6 and which project onto  under the map (x,y) H x . This is a

non-empty convex set and it can also be seen to be compact, passing to a compact

model of X for which p is continuous. Since  is G-invariant, the action of

G on X~ takes this set of measures to itself. The amenable subgroup P has a fixed

measure in this set, say X . Projecting À to B(G) gives a P-invariant measure

on B(G) . But we have already seen that there is a unique P-invariant measure on

B(G) , namely where u o = (P) . Hence u 
o 

for a.e: x and so

gu for a.e. x . We conclude that 03A6(x) = B(G) and so B(G) is minimal.

Taking X - for a lattice F in G we can conclude from proposition 4.4

that F acts minimally and proximally on B(G) .



DEFINITION.- If X is a measurable G-space, M a topological H-space and

a : G x X -i H a cocycle, we say that a measurable map ~ . X -~ M is (7-invariant

if V(gx) = 

The following theorem is a basic tool for studying cocycles with values in

non-amenable Lie groups.

THEOREM 4.5.- Let G be a Lie group and assume that the action of G on X is

measure preserving and ergodic. Let a be a cocycle on G x X with values in H

and let M be a projective H-space. Let ~ . X -3 2M be a proximal 6-invariant

map. Then there exists a unique measurable ~-invariant map ~ . X x B(G) -~ M

with ~(x,u) E ~{x) , x f X , u f B(G) .

For the special case X = G/F , the foregoing theorem has the following corollary.

COROLLARY.- Let f be a lattice in the Lie group G and let T : F (JR) be a

representation of r for which the range T(T) acts proximally on a compact

M C . Then there exists a measurable equivariant map -~ M ; i namely a

satisfies a(yu) = for Y E f, u E B(G) .

Proof of corollary.- Let 0 : G/F -~ G be a Borel cross-section so that

Y(g,x) = 0(gx) ~g6(x) E F . Set ~(~g,x) - so that a is a cocycle on

G x G/F to H . Apply the theorem to a with ~(x) - M to obtain a measurable

a-invariant map 03C8 : G/F x B(G) ~ M . For a.e. g E G , 03C8(go r,u) is defined

for a.e. u E B(G) and

holds for all g E g Fg . It is readily seen that for appropriate Y the map

T(Y )03C8(go 0393,go u) satisfies the conclusion of the corollary.

For the proof of the theorem 4.5 we need two lemmas. We denote by (F) the

compact metrizable space of probability measure on a compact metric space F .

Lemma 4.6.- Let G be a Lie group and assume the action of G on X is measure

preserving. Let o : G x X ~ H be a cocycle and let M be any compact metric

H-space, and 03A6 : X ~ 2M a 03C3-invariant map. Then there exists a 03C3-invariant

measurable X x B(G) 2014~(~(M) with ~(x~u) for a.e. x G X ,

u E B(G) .

Proof.- Consider the set  of all probability measures on X03A6 projecting to 

on X . As in the proof of prop. 4.4, let À be P-invariant. If we desintegrate

03BB =  03B4x x 03BBx d (x) so that x ~ À x is defined a. e. from X ~ P(M) , we will have

À E ~(~’(x)) . pÀ = À for p E P implies

Let 03C3(g1,g-11x)03BBg-11x . This is well defined on account of (4.1), and



this completes the proof.

In the next lemma M is assumed to be a projective H-space and we furthermore

assume the action on X is ergodic.

Lemma 4.7.- ~f_ ~ : X x B(G) -j‘~(M) is Q-invariant and ~(x,u) E ~(~(x)) where

~ is a proximal 0-invariant map ~ . X -~ 2M , , then for a.e. (x,u) E X x B(G) ,

~(x,u) is a point measure.

Clearly these two lemmas imply theorem 4.5. A sketch of the proof of lemma 4.7

is given in an appendix. The idea of the argument, which is based on probabilistic

considerations, is that "in general" o(g,x) tends to contract ~(x,u) to a point

measure, so a solution to

for all g , x , u implies ~(x,u) is a point measure.

§ 5. Examples of proximal cocycles

1. Orbit equivalence

Let X be an ergodic measurable G-space and let H be a Lie group acting on

Y and preserving measure on Y. Suppose that the action of H on Y is free and

that the two actions are orbit equivalent so that there exists an invertible measur-

able map TT : : X ~ Y with 03C0(Gx) = HTï(x) . . Define the cocycle 6 : G x X ~ H by

Q(g,x)’tT(y) .

PROPOSITION 5.1.- 6 is minimal and proximal on B(H) .

Proof.- We prove proximality, the proof of minimality being similar. Suppose 

(A) > 0 , and u(x) , v(x) are measurable functions u,v : X ~ B(H) . For ~ > O

we want to find x E A , g C G with gx E A and d(6(g,x)u(x),6(g,y)u(y))  E .

By prop. 4.4, the identity cocycle H x Y -H is proximal on B(H) . So ~ h E H ,

y E ’n(A) with hy E ’rr(A) and d(huTI (y),hvn 1 {y) )  E . Let x = ’rt 1y and let g

satisfy TT(gx) = hy and we obtain the desired inequality.

2. Linear cocycles

We now consider cocycles with values in PGL (3R) . We shall denote by p 
m,r

the Grassman variety of r-dimensional subspaces of aem .

DEFINITION.- Q . : G x X --~ PGL (ae) is reducible if for some r , 0  r  m , there
m 201420142014201420142014201420142014201420142014201420142014201420142014201420142014 20142014201420142014

exists a measurable d-invariant map ~ . X --~ ~ m,r m_1 .
A finite union of linear subvarieties of 

’ 

P will be called a quasi-linear

variety. The following is the analogue for cocycles of reducibility of a representation



on a subgroup of finite index.

DEFINITION.- Q : : G x X ~ PGLm(IR) is FI-reducible if there exists a measurable

a-invariant ma£  : X -~ 2P 
m-1 

with ~(x) = quasi-linear variety t pm-1 .
It is easy to show that if 6 is FI-reducible there exists a finite extension

-~, 
, 

- ~-

X --~ X and a compatible G-action on X so that the lifted cocycle is

reducible. If 6 is not FI-reducible we say it is FI-irreducible.

DEFINITION.- 03C3 : G x X ~ H is compact if it is equivalent to a cocycle with values

in a compact subgroup of H .

It can be shown that if H is semi-simple and o(g,x) is uniformly bounded

then o is compact.

Lemma 5.2.- Let L be any subgroup of PGL (IR) . Either L is contained in a compact

subgroup, or L has a subgroup of finite index which is reducible, or ~ r ,

O  r  m and L-invariant closed subset M C 9 
m,r 

so that L acts proximally on M .

Proof.- One can define quasi-projective transformations of --~ as pointwise

limits of projective transformations. If T is a quasi-projective transformation

(q.p.t.) it can be described as follows. One has a sequence of subspaces

IRm = Wo > W1 > ... f Wk-1 > {o} and linear transformations Ai : Wi with

W, 1+1 = Ker A, , 1 i = 0,1,...,k-1 . If W, i C pm-1 is the corresponding linear

subvariety, then is the transformation induced by A.. The set of all

q.p.t. form a semigroup which is compact in the topology of pointwise convergence.

Form the closure L in this semigroup. L is again a semigroup (the enveloping

semigroup of L ). If no non-singular elements occur in L , then L is a compact

subgroup of PGL {7R) . Otherwise consider the elements TEL for which
m

dim W - dim W = dim A (W ) is minimal. Let r be this dimension, and let M be
000

the set of r-dimensional subspaces of the form A (W ) obtained in this way. It is

easily seen that this is a closed L-invariant set.

Assume now that no subgroup of finite index of L is reducible. This implies

that if U1 , U2 , W1 are three subspaces of IRm , then for some g E L , neither

gU1 C W1 nor gU C W1 . For if the contrary were true, then in the dual space to
~tm we would have U~ U U2 . Now every subset of a finite dimensional vector
space has a unique minimal finite union of subspaces containing it (by the ascending

chain condition on polynomial ideals). Let Q be this minimal finite union containing

LJ ; then QC UV. By uniqueness, Q is L invariant, so L permutes

the subspaces of Q. So tL has reducible subgroup of finite index, and the same

would be true of L. Now take and W1 - W1(T) for some T with 
-

dim A (W ) = r . Because of the minimality of r it follows that no o E L can
oo

collapse U1 or U2 to a subspace of dimension  r . On the other hand for



gU. 9" W1 , gU_ 9" W1 , ’ and TgU2 ~ Ao(Wo) . It follows that L is

proximal on M .

Lemma 5.2 has the following generalization in terms of cocycles. We omit the

proof which involves probabilistic considerations.

PROPOSITION 5.3.- Let Q be a cocycle on G x X with values in PGL (IR) where G
- 2014201420142014201420142014~20142014201420142014 201420142014201420142014201420142014201420142014 

m 2014201420142014

is measure preserving and ergodic on X . Then either cr is compact, or a is

FI-reducible, or ~ r , 0  r  m and a a-invariant map 03A6 : X ~ 2 m,r which is

proximal.

We now apply theorem 4.5 to the proximal spaces of prop. 5.1 and prop. 5.3.

THEOREM 5.4.- Let (X,G) and (Y,H) be measure preserving actions where G acts

ergodically and H acts freely. Assume G and H are Lie groups and that there is

an invertible measurable map TT from X to Y taking G orbits onto H orbits.

Then if o : . G x X ~ H is defined by Og,x)TT(x) = TT(gx) , there exists a unique

measurable o-equivariant X x B(G) 2014~B(H) .

THEOREM 5.5.- Let (X,G) be an ergodic measure preserving action and let cr be a

cocycle on G x X with values in If a is FI-irreducible and non-compact,

3 r , 0  r  m and a a-equivariant map 03C8 : X x B(G) ~ m,r .

§ 6. Smooth actions and rationality

A group action for a locally compact group on a complete metric space is smooth

if all orbits are locally closed. This is very different from ergodicity, and, in

fact, if an action is both smooth and ergodic with respect to a measure, the measure

must be concentrated on a single orbit. Examples of smooth actions are : actions of

algebraic groups on algebraic varieties, the action of GL (IR) on the space of

probability measurs on Pm 1 . The following result of Margulis provides further

examples [10, p. 42].

Lemma 6.1.- Let Z be a measure space and let M = H/L where H is a real algebraic

group and L an algebraic subgroup. Let S = be the space of all measurable

maps from Z to M with the topology of convergence in measure. H acts on by
(hf)(z) = h(f(z)) . This actions of H is smooth.

When an action is smooth the orbit space of the action is a standard Borel space

with a countably generated algebra of Borel sets [5]. Since functions with values in

such a space which are constant along the orbits of an ergodic action must be constant

we have the following.:

Lemma 6.2.- Let X be an ergodic measurable G-space and let cr be a cocycle on

G x X with values in H and suppose that H acts smoothly on M . If ~ : . X --~ M

is a a-invariant map, then there exists x E X and a map ~ . X -3 H with

for a.e. x t X .



We now return to the situation of theorem 4.5 where we obtained a a-invariant

map from X x B(G) to the H-space M . We impose two more conditions which will

enable us to deduce that the map in question is well behaved. We assume first of all

that G is a semi-simple Lie group with m-rank G ~ 2 . We also assume that each

simple factor of G acts ergodically on X .

Lemma 6.3 (Moore [12]).- If G is a semi-simple Lie group acting on a measure space

X and preserving the measure and if every simple component of G acts ergodically

on X , then for any T E G , either T E compact subgroup or T acts ergodically

on X .

The hypothesis IR-rank G ? 2 appears in the following observation. Consider a

a-invariant map ~ : X x B(G) --~ M , assuming H algebraic and M a homogeneous

space of H by an algebraic subgroup. Let P denote a parabolic subgroup of G so

that B{G) - G/P . If m-rank G ~ 2 there will exist abelian subgroups T ~ P with

centralizer C 7 P . Now if T 6 T , c E C

(6.1) 

Thus along a T-orbit in X the function ~(x,.) on CP C B(G) remains in the same

H-orbit. By lemma 6.3, T will be ergodic on X and applying lemma 6.2 we will be

More generally we have

and since gTg ~ is ergodic on X we can write

From (6.4) we deduce that for c,c~,c2 ~ C ,

Thus (i)(x,g,.) is a map of C ~ H which modulo the normalizer or the stability

group in H of the function ~(x,gcP) is multiplicative. This implies that the map

of C to the quotient group which was a priori measurable is, in fact, rational.

Hence ~(x,gc’cP) depends rationally on c’ , or ~(x,gcP) depends rationally on

c E C . By varying T so as to "exhaust" G/P , and using the fact ([14], Appendix,
lemma 17) that a function of two variables rational in each variable separately is

rational in the pair, one proves, as in that ~(x,gP) is rational in g for

a.e. x . One thus obtains



THEOREM 6.4.- Let G be semi-simple with IR-rank G ? 2 and let G act in a

measure preserving way on X so that each simple factor of G is ergodic on X .

Let cr : G x X -~ H be a cocycle with values in an algebraic subgroup H C 

and let M be an H-invariant subvariety of Pm 1 . If ~ : X x B(G) -~ M is a

c-invariant measurable map, then for a.e. x , ~(x,u) is a rational function from

B(G) to M .

§ 7. Straightening out the cocycle a

A cocycle o defines a skew action of G on X x M . If cr is equivalent to

a cocycle o’ in which the variable x does not appear, we may say that we have

straightened out the action ; i i.e., there is an action of G on M so that X x , M

is the product action. A further argument of Margulis now shows that this occurs when

theorem 6.4 holds.

THEOREM 7.1.- Let G , X , H , and M be as in theorem 6.4, and assume that the

cocycle a is irreducible and minimal on M . If there exists a a-invariant,

measurable map ~ : X x B(G) ---~ M , then a is equivalent to a cocycle o’(g,x) == S(g)
where S: G --~ H i s a homomorphism.

Proof.- By theorem 6.4, is rational in u for almost every x . Regard
as a map from X --~ ~ where E consits of all rational functions from B(G) to M .

The group H acts on ¿ as before and the action is smooth. This time G also acts

on S by gf(u) = f(g 1u) , and the combined action of G x H on S is smooth.

(See [16] for details.) The o-equivariance : ’~(gx,gu) - together

with lemma 6.2 imply that there is a single element 03C8o ~ 03A3 with

where T) : X -H and y : X -G are measurable maps. ~ and y must satisfy

and so we see that the maps 03C8o (Y(gx)gu) and 03C8o (Y(x)u) are in the same H-orbit in

S . Let HB03A3 denote the space of H-orbits of 03A3 and let be the image of 03C8
o 0

in H~~ . For every g C G and a.e. x E X , Y(gx)g and V(x) have the same

effect on 03C8 as elements of G acting on HB03A3 . Now it can be seen (F 16]) that
o

the stabilizer in G of any point of H~~ is an algebraic subgroup of G. On the

other hand the map x ~ Y(x) 1~r is a G-equivariant map, so that if G dénotes
_ 

o 0

the stabilizer , then G/G carries a finite G-invariant measure. By the

Borel density theorem [1], G is Zariski dense in G ; i so G = G . This means
o 0

that 03C8o (gu) = 03BE(g)03C8o (u) for some measurable map 03BE : G ~ H . Since the cocycle cr

is minimal we must have 03C8o (B(G)) = M and since Q is irreducible M cannot be

contained in a proper linear subvariety of Pm 1 . Hence an element of H is uniquely



determined by what it does on M . This shows that S is a homomorphism of G to H .

Finally we can see from (7.2) that cr - a’ where o’(g,x) - S(g) :

This completes the proof.

Note that in the foregoing argument it was essential that no non-trivial element

of H leaves every point of 03C8o (B(G)) fixed. Nevertheless, we can sometimes obtain

a partial straightening of 03C3 . The next lemma will be useful for the situation where

we have a a-invariant map ~ : . X x B(G) ~ ~ . . It will be more convenient to
m,r

treat groups of complex matrices.

Lemma 7.2.- Let L be a subgroup of for which no subgroup of finite index

is reducible. Let be an L-invariant subset, let J c PGL m () be the

subgroup of elements which fix each point of M , and let J’ be the centralizer of

J in PGL (T) . There is a subgroup L of finite index in L, and there are

homomorphisms 8 . L ~ J , 8’ . L ~ J’ , so that for each 1 E Lo , 1 = 03B8(l)03B8’(l) .

Moreover if W E M is some r-dimensional subspace of (C , each j E J is determined

by its restriction to W .

We sketch the proof. The Lie algebra ~ of J consists of the trace 0

endomorphisms of ~Cm taking each W E M into itself. Clearly ,~ ~ ,~ 1 - ~- for 1 EL.

If an abelian subalgebra of ~ were invariant under L , it would have an L-invariant

eigenspace contradicting the irreducibility of L . From this it is easy to conclude

that 7 is semi-simple. We can replace L by the normalizer of 1 so that L is an

algebraically closed subgroup, and we take L to be the connected component of the

identity. Since conjugation in by elements of L o corresponds to Ad J we

conclude that L = JJ’ . Finally if j E J and j is the identity on W , then j

is the identity on j’W for j’ E J’ . Hence j is the identity on 1w for all

.~ EL, and since L is irreducible, j = 1 .

o 0

Now suppose G and X satisfy the hypotheses of theorem 6.4 and let

d : G x X --~ PGL ((E) be a cocycle which is neither compact nor FI-reducible. We
m

apply the argument in the proof of theorem 7.1 to the a-equivariant map

~ : X x B(G) --~C~ of theorem 5.5, and we conclude that a is equivalent to a

cocycle ?’ whose action on * (B(G)) is independent of x :

We apply the foregoing lemma to the group generated by and M = 03C8o(B(G)) ,
and we find that for a finite extension of X (corresponding to a subgroup of finite

index of L ) we can write

where O’(cr’(g,x)) = S(g) is independent of x . Finally, it is not hard to show



that if the minimal value of r was chosen in prop. 5.3 giving a proximal action on

mir (!E) , then the cocycle 6(o’(g,x» which is determined by its restriction to a

subspace W ~ 03C8o (B(G)) , , will be compact. We obtain the following result.

THEOREM 7.3.- Let G be semi-simple with IR-rank G ~ 2 and let G act in a measure

preserving way on X so that each simple component of G is ergodic on X . Let

o : G x X -~ PGL be an FI-irreducible cocycle. There exists a finite extension
_ m 
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X --~ X of the G-action and the lifted cocycle is equivalent to a cocycle c’’ ( g, x )

where 
_ _

o’(g.x) - 
with p(g,x) taking values in a compact subgroup U C and 03BE is a homomor-

phism of G into a subgroup H ci PGL (C) where H and U commute elementwise.

§ 8. Applications

1. Rigidity of lattices

Let F be an irreducible lattice in, G . This means that every simple component

of G acts ergodically on G/F . Let H be a semi-simple Lie group with trivial

center and let T : F -7 H be a representation. Extend T to an H-valued cocycle

on G x G/F as in the proof of the corollary to theorem 4.5. If T(I") acts proxim-

ally and minimally on B(H) we obtain by theorem 4.5 a a-invariant map

~ : X x B(G) --~B(H) . Applying theorem 7.1 the cocycle a can be straightened out

to a homomorphism of G -H . This gives us the following rigidity theorem.

THEOREM 8.1.- Let IR-rank G > 2 and let F be an irreducible lattice in G (the

projection of F on any direct factor of G is nondiscrete). Let T be a homomor-

phism of F -H where H is a semi-simple Lie group with trivial center and such

that T(F) acts proximally and minimally on B(H) (e.g., T(f) is a sublattice or

is dense in H ). Then T extends to a homomorphism of G ~ H .

2. Orbit equivalence

Consider now the situation of theorem 5.4. (X,G) and (Y,H) are orbit

equivalent actions where H acts freely on Y and let us now assume IR-rank G ~ 2

and that each simple component of G is ergodic on X . a . G x X --~ H is defined

by o(g,x)TT(x) = T(gx) , and by theorem 5.4, there exists a o-equivariant map

~ : X x B(G) --3 B(H) . We can apply theorem 7.1 to conclude that cr is equivalent to

a homomorphism § : G 2014~ H ,

for some measurable w : X -~H . Set TT’(x) = w(x)TT(x) ; then



If we now assume in addition that G acts freely on X then (8.1) implies that the

action of G on X, (g,x) --j gx , and the action of G on Y , (g,y) -~ ~ ( g ) y
are conjugate. This gives us Zimmer’s theorem, theorem 0.1 of the Introduction.

3. Entropy of smooth actions of Margulis groups

Let X be a compact m-dimensional c2-manifold and let T : . X -~ X be a

c2-diffeomorphism of X preserving a smooth measure and acting ergodically on X .

We denote by the Kolmogorov-Sinai entropy of the automorphism T . ~(T) is

defined in information theoretic terms, but for smooth transformations an alternative

characterization has been given by Pesin [13]. Namely, introduce a Riemannian metric

in the tangent space T(X) . In the space of p-vectors T(p)(X) - T(X) A ... A T(X)
we consider the induced linear transformation

and form the norm . It can be proved, using the subadditive ergodic theorem
p,x

exists for a.e. x and is independent of x .

PROPOSITION 8.2 (Pesin).

We shall now use theorem 7.3 to obtain information regarding the X where we
P

assume that T is the restriction to a single element of G of an action of the

group G on a compact manifold X. We suppose now that G is simple with IR-rank

G ~ 2 so that G also has property T , and we assume that G acts smoothly and

ergodically on X . Let cr (g,x) be the tangent cocycle of this action (cf. Intro-

duction) applied to the p-fold exterior product T (X) . If this cocycle is

FI-reducible, we replace X by a finite extension for which the cocycle becomes

reducible. We apply theorem 7.3 to the irreducible components obtained by successively

lifting 6 to appropriate finite extensions. We conclude that after replacing X by

a finite extension, will be équivalent to a cocycle
~ 

. 1

/"~ 

’

where thé ?. (g,x) are unitary matrices and ~. : G 2014~ SL (0152) are homomorphisms,

and thé matrices o.(g,x) and 03BEi(g) commute.

Now let ’Y ~ G and let T be thé restriction to Y of thé action of G on X .



By lemma 6.3, either Y E compact subgroup of G in which case ~(T) - o , or T

is ergodic on X . In this case ~(T) = max X , where
p

Set c~ (g,x) = (D(gx) and let A ci X be a subset of X > O
P P -1

and on which w(x) and are bounded. Restricting the séquence n in (8.4) so that

E A (by ergodicity) we find that

Finally it ma00FF be seen that for matrices in triangular form, the rate of growth is

determined by the diagonal components. Since 1 we obtain
i

for some representation § : G ~ SLm i . This gives the following.

THEOREM 8.3.- Let G be a simple Lie group with 1R-rank G > 2 and let T E G . Let

G act by c2-diffeomorphisms on a compact c2-manifold X preserving a smooth

measure and ergodically with respect to that measure. Let Y E G and let T : x --~ X

be the restriction of the G-action to Y. Then either 5(T) = o or

S(T) = log max eigenvalue 
where S is a représentation of G in .

This implies that as one ranges over the family of all such actions of G , 1 the

set of values of for any fixed G is discrete.

Appendix. Sketch of proof of lemma 4.7 ( see [7j)

Let TT be a measure on G absolutely continuous with respect to Haar measure

and with support equal to all of G . On any Borel G-space Z, if v is a Borel

measure on Z , we can form TT * v on Z by

We say that v is u-stationary if ’rr* v - v , It is shown in [7] that on B(G) ,

there exists a unique n-stationary measure v . On X x B(G) we have the TT-stationary

measure Let Y1’Y2’’.’’Yn’ " . be a séquence of G-valued random variables

which are independent and have distribution ’rt . Let W be an X x B(G)-valued r.v.
o

independent of these and with distribution   03BD . Setting W = Y Y ...Y W we
~ ’ 

n n n-1 1 0

find that forms a stationary sequence of G x X x B(G)-valued random

variables. This stationary process can be extended to negative values of the index.

Now consider the r.v.’s *(W) where ] is a a-invariant map. Writing

W = (X ~U ) , we have
n n n

(A.1)



This expectation is meaningful since the random variable takes its values in
o

a compact convex set. Using the martingale convergence theorem one concludes that

converges as n -~ ~ with probability one. If one shows that the limit

is a.e. a point measure, it will follow that 03C8(Wo) is itself a point measure. By

(A.1) we rewrite (A.2) as

since Y ,...,Y are independent of W 
~ 

. Shifting variables we can say that
o -n -n-1

for fixed k , become doser- and closer together as n --~ ~ . Using the fact that G

is measure preserving on X we can assert that

are close as n -~~ . By proximality there is positive probability that

is close to a point measure. The variables are independent of

Y-1’" ’’Y_k and we consider the set of limits of o(Y n ...Y ,x) as quasi-projective

transformations. The limits of (A.3) and (A.4) must be identical and since that of

(A.3) will be close to a point measure the limits of (A.4) must be point measures.

This in turn implies that the expectations of (A.2) converge to point measures and

this completes the proof.
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