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Séminaire BOURBAKI

29e année, 1976/77, n° 489 Novembre 1976

RECENT ADVANCES IN ENVELOPING ALGEBRAS OF SEMI-SIMPLE LIE-ALGEBRAS

[a report on work of

N. CONZE, J. DIXMIER, M. DUFLO, J. C. JANTZEN, A. JOSEPH, W. BORHO]

by Walter BORHO

Let g be a finite-dimensional complex semi-simple Lie-algebra, G its adjoint

group, and U(g) its universal associative enveloping algebra. The enveloping

algebra U(g) may be thought of as a "non-commutative version" of the symmetric

algebra S(g) , the deviation from commutativity being given by the Lie-bracket

on g (cf. 2.1 for a more precise statement). The particular interest in U(g)
arises from the study of representations of the group G : To a certain extent the

representation theory of G is determined by that of its Lie-algebra g , and re-

presentations of g (or g-modules) are nothing else but representations of U(g)
( or U(g )-modules).

One would like to know all irreducible representations of g . The finite-

dimensional ones have been known for a long time (E. Cartan), but a complete classi-
fication of the general infinite-dimensional irreducible representations seems to

be out of reach at present. However, a rough classification may be obtained by

looking at the kernels in U(g) . The kernel of a representation of U(g) is an
ideal ("ideal" means "two-sided ideal"). The kernel of an irreducible representa-

tion (in other words, the annihilator of a simple module) is called a primitive
ideal. For instance, all maximal ideals are primitive.

Let X denote the set of all primitive ideals of U(g) . This set is the
correct generalization to non-commutative algebra of the "maximal spectrum" consi-

dered in commutative algebra. In particular, one can define a topology on X , the

so-called Jacobson-topology, in the analoguous way (see ~11~, ~ 1).

Main Problem : Give a complete descri ption of X , as a set and as a topological

space !

The recent advances to be reported on here are all concerned with this main

problem. The methods employed for studying this problem split into three groups,

corresponding to the following three fields :

I. non-commutative algebra

II. representation theory



III. algebraic geometry

I. The first type of method uses non-commutative localization techniques and

explicit calculations in U(g) to get hold of the ideals (even in terms of genera-
tors). This was begun by Dixmier, and in ~1~, and was developed to a certain state

of technical perfection by Joseph.

II. The aim of the representation theorists was to find a particular well-

understood class of simple modules, such that each primitive ideal occurs already

as an annihilator of a module in this class. Here the breakthrough was made by Duflo

(after preliminary work of Dixmier and Conze-Duflo). This opened the way to translate

(see (12J) certain results of Jantzen on the classification of those modules into
results on the classification of primitive ideals.

III. The philosophy of the third group of methods is to study the non-commutative

algebra U(g) by comparing it with several closely related commutative algebras :

namely a) its centre, b) the associated graded algebra, c) the ring of polyno-
mial functions on g (or g* ), and d) the symmetric algebra of a Cartan-

subalgebra. This amounts to comparing the space X with certain (more or less

well-known) geometrical objects, for instance G-orbits in g* (or g ). This

point of view was introduced by Dixmier, and further developed in [2], C3~ , ~ 12~ .

There are various relationships between the methods I, II, III, and the only

adequate way to study U(g) seems to be a combination of all three. However, in the

space available for this expose, it is not possible to adequately discuss all three.

Therefor non-commutative algebra is only touched upon here (§ 1), and representation

theory is a bit neglected (§§ 4, 5), in favour of a more thorough discussion of the

geometrical aspects (§§ 2, 3, 4, 6). Unfortunately, a report on the geometrical

description of the orbit space g ~~G as a "complex" of algebraic varieties (using
Dixmier’s notion of "sheets" of orbits of the same dimension), although essential
for the proof of theorem 6.7, would lead us too far away from enveloping algebras

and had to be omitted. Only a very few proofs have been indicated, and those very

sketchily. As a kind of compensation, each section includes an open problem or a

conjecture at the end. This seemed to me to be a proper way to characterize the

present state of this quickly developing theory.



1. Structure of residue class algebras

1.1. A primitive ideal J of U(g) is called induced, if there exists a parabo-

lic subalgebra p of g and a finite dimensional simple p-module E such that

J is the annihilator ideal of the g-module induced from E , i.e.

J = Ann U(g) ~U C~ ) E . "
It is very useful to find out whether a given primitive ideal J is induced, because

then we know a lot about the structure of its residue class algebra U(g)/J .

1.2. For a finite dimensional vector space F with basis x1 , ... ,xn denote by

Diff F the algebra of "differential operators" on the polynomial ring

C~x 1 ,...,x ~ n ’ generated by the partial derivations 1 
,..., , and (the

multiplications with) x1’...,xn . . This is a non-commutative algebra without zero-

divisors.

THEOREM (Conze [4]).- Let J , p , E be as in 1.1. Then there is an embedding of

algebras i : U(g )/J ~ End E 0 Diff g/p .

COROLLARY.- If dim E = 1 , then U(g)/J has no zero-divisors.

1.3. The Gelfand-Kirillov-dimension (GK-dimension) Dim A of a finitely genera-

ted algebra A is defined as follows : Fix a finite set of generators, denote for

each n E N by A the linear span of all monomials of degree * n in these

generators, and take the infimum of all real numbers d such that dim An ~ nd
for large n . This infimum d is easily seen to be independent of the choice of

generators, and hence is an invariant of A , denoted Dim A , the GK-dimension

of A .

Examples : For commutative A , this is just the Krull-dimension. For finite-

dimensional A , Dim A = 0 . For Diff F as in 1.2, Dim Diff F = 2 dim F .

1.4. COROLLARY.- In the theorem, we have Dim U(g)/J ~ 2 dim 

Proof. Dim Dim End E @ Diff g/p = Dim End E + Dim Diff g/p = 2 
In fact Dim U(g)/J = 2 dim g/p holds. For the reason see 2.5.

1.5. If I , J are primitive ideals with I C J , then Dim U(g)/I = Dim U(g)/J
implies I = J [18]. This nice property is one reason why GK-dimension is very

useful in classification of primitive ideals.

1.6. The Goldie-rank rk A of an algebra A is defined as the maximal number n



such that A contains a direct sum of n nonzero left ideals.

Examples : In 1.2, we have rk End E = dim E , but rk Diff F = 1 .

If A = U(g )/J for a primitive ideal J , then the Goldie-rank has two impor-

tant interpretations (which are immediate consequences of general ring-theoretical
theorems of Goldie resp. Faith-Utumi).

1) There exists a ring of quotients of A isomorphic to a full ring of

n x n - matrices over some skew field, where n = rk A . (A "ring of quotients" of A

is an overring consisting of elements s 1r with s , rEA, s not a zero-

divisor.)

2) The maximal order of a nilpotent element in A is exactly rk A . (The order

of a nilpotent element b is the minimal m such that bm = 0 .)

1.7. COROLLARY . - For E , J as in the theorem, we have rk U(g)/J ~ dim E .

This is immediate from the Faith-Utumi theorem.

1.8. In this Corollary, equality does not hold in general. But it does in "almost

all" cases, that is, under certain restrictions on E (excepting those E with

weights on certain "exceptional hyperplanes"), as was shown by Conze and Duflo [5].

Utilizing their results (and under the same restrictions), Joseph [15] can prove the

following much more precise structure theorem :

The embedding i in Conze’s theorem extends to an isomorphism

where Q(...) denotes the maximal ring of quotients (1.6). ( Q(Diff exists

and is a skew field.) The proof depends on complicated non-commutative algebra

developed in [17].

1.9. The adjoint group G of g acts on U(g ) and on U(g)/J locally finitely.

This action of G is completely reducible by Weyl’s theorem ; each irreducible

representation of G occurs with a certain multiplicity. These multiplicities of

U(g)/J are computed by Conze and Duflo [5] for "almost all" induced primitive
ideals J (restrictions as in 1.8). They provide a powerful tool for the classi-

fication of induced ideals (cf. 6.8).

1.10. It was discovered only recently that there exist also non-induced primitive

ideals (in case g = ~p4 , Conze-Dixmier). Joseph [14] constructs for each simple



g except In a particular non-induced ideal, which has Goldie-rank 1

and the least possible GK-dimension > 0 (and is characterized by these proper-

ties). In [12] we show that various further non-induced primitive ideals exist (in

general), and that they always occur in infinite families.

Problem.- Compute the GK-dimensions, Goldie-ranks, and multiplicities of (the

residue class algebras of) these non-induced ideals !

The Goldie-ranks are known only in case g = [16].

2. Associating to each primitive ideal a cone in g

2.1. We may consider the symmetric algebra S(g) as the associated graded alge-

bra of U(g) (Theorem of Poincare-Birkhoff-Witt). More precisely, U(g ) has a

natural filtration by finite dimensional subspaces

U~(g) - C + g , U2(g) - C + g + g . g , ...

such that for each n (g ) is canonically isomorphic to the n-th

symmetric power Sn(g) . Denote by grn the canonical linear map Un(g ) --~ Sn(g ) .
For each subspace V c U(g ) define gr V c S(g ) by

If I is an ideal of U(g) , then gr I is an idaal of S(g ) , the "associated

graded ideal" of I .

Identifying g with g* by means of the Killing-form, we consider S(g) as

the ring of polynomial functions on g .

DEFINITION.- To each ideal I of U(g) , we associate the variety
KI := for all .

Since gr I is a homogeneous ideal, K I is a closed cone in g . Therefor KI is

called the "associated cone" of I .

2.2. THEOREM.- Let I be an ideal of U (g ) .
a) The closed cone is stable under the action of the adjoint group G.

b) The GK-dimension of I is given by Dim U(g)/I = dim K I .

c) For I primitive, KI is contained in the cone of nilpotent elements in g .

2.3. As is well-known, the number of G-orbits of nilpotent elements in g is

finite (Dynkin). Their dimensions are even. Hence we conclude from 2.2 :

COROLLARY ~18~.- For each primitive ideal J , the associated cone is a finite union



of (nilpotent) G-orbits. The GK-Dimension of J is equal to the dimension of some

nilpotent orbit. In particular, the GK-dimension is even.

2.4. Let us sketch a proof of theorem 2.2c). As a primitive ideal, I contains a

maximal ideal p of the center Z(g) = of U(g) . Hence gr J ~ gr p . It

is easy to see that gr Z(g) is just the ring of invariant functions on g ,

and that gr p is the maximal ideal of s(g)G consisting of the functions vanishing

at 0 . These latter functions generate in S(g) the prime ideal I(N) defining

the cone N c g of all nilpotent elements (B. Kostant). Now gr J ~ S(g) gr p = I(N)
implies K J c N .

2.5. Now we consider the associated cone of an induced primitive ideal, say

J = Ann U(g) B 
E as in 1.1. Let n denote the nilradical of the parabolic

subalgebra  , and Gn the G-invariant cone generated by n .

THEOREM ~2~ .- The associated cone K J of J contains Gn .

The cone Gn is closed and irreducible, and hence it contains a unique dense

G-orbit. This orbit has been studied by Richardson, who in particular determined

the dimension : dim Gn = 2 dim n = 2 dim c~/p . We conclude from 1.4, 2.2b) and
the theorem, that

In particular, Gn is an irreducible component of maximal dimension of K J .

CONJECTURE : Gn is equal to K J.

2.6. Here is a special case where the conjecture can be proved : Keep the nota-

tion J , ~ , n , E , but assume now dim E = 1 . Furthermore, assume that the

stabilizer-group G x C G of an element x generating the dense orbit in Gn is

connected. Assume finally that Gn = Gx is a normal variety.

THEOREM.- These assumptions imply that the associated graded ideal gr J is prime.

Consequently, tne associated cone is irreducible. So KJ = Gn is true in this

case. (Cf. C3~, [ 1 3] , [ 19] .)

Remarks.- 1~ If g - ~t , then G is always connected.
- n x

2) It is conjectured by algebraic geometers that the closure of G-orbit in

g should be a normal variety. Special cases have been settled (Kostant, Hesselink) ;
in general, this seems to be a difficult problem.



2.7. Example.- Let us look at the special case where p is a Borel-subalgebra.

Then Gn = N is already the whole cone N of nilpotent elements in g . This is

known to be normal (Kostant). But in this case, KJ= Gn is already clear from

Gn c K J C N (2 . 5 and 2 .2c~ ~ .

For later application, let us note an even more precise consequence for this

special case : We have J = U(g)p , where p denotes the maximal ideal of the cen-

tre contained in J , as in 2.4. In fact, the argument in 2.4 gave

gr J ~ gr U(g~p ~ I(N) , and 2.5 gives I(N~ ~ gr J . Hence these inclusions are

equalities, and gr J = gr U(g)p implies J = U(g)p .

2.8. For an arbitrary primitive ideal J , a lower estimate for KJ is still

known [13], which is very useful for actual computations of GK-dimensions.

*(Using the notation of §§ 4, 5, this estimate may be stated as follows. For

each root cx , let x denote a root-vector. For each subset B’ of the base, set

xB, := 2 a E B’ . Let J = J. be associated to the weight X (§ 4). Then a
sufficient condition for x B, E KJ is tNB’ n = ~ (5.1).) . ~

2.9. Conjecture 2.5 is a special case of the following important open problem.

Denote by N/G the set of G-orbits in the cone N of all nilpotent elements

in g . This is a finite set (Dynkin).

Problem.- I s the associated cone of a primitive ideal always irreducible ? If yes,

attach to each primitive ideal J E X the dense orbit in K J . Is this map

X -> N/G onto ?

3. Associating to each primitive ideal a central character

3.1. Let Z(g) denote the centre of U(g) ., and Z the space of maximal ideals

of Z(g) . Let l be the rank of g . It is well known that Z(g) has t alge-

braically independent generators ("Casimir-elements" ; see 4.3 for the reason).

Chosing these generators for coordinates, we may think of the maximal spectrum Z

as a complex i-space C~ , ~ endowed with the Zariski-topology. 

-

3.2. Every simple g-module M admits a central character, that is to say Z(g)
acts by scalars on M , or equivalently, the annihilator ideal Ann M in U(g)
contains a maximal ideal of Z(g) Hence we obtain a natural map

n : : X_ -~ Z of the primitive spectrum X of U(g) into the maximal spectrum of

Z(g) by sending J onto J n Z(g) . Let us denote by X =P the fibre n (p) over

a point p E Z . This set is ordered by inclusion.



THEOREM.- a) The ma n is surjective, continuous, open, and closed [12].

b) All the fibres of n are finite (Dixmier).

c) Each fibre X (p E Z) has a unique maximal element (Dixmier).

d) Each X has a unique minimal element, namely U(g)p (Dixmier-Duflo).

Thus we have a very nice projection of X onto a complex ,~-space.

3.3. Let X denote the set of all maximal ideals of U(g) . This is a subspace
of X . Let Xmln denote the set of minimal primitive ideals of U(g) . Combining
parts a), c), d) of the theorem, we can say :

COROLLARY.- Restriction of n gives homeomorphisms Xm~ "’ > Z, Z .

3.4. Comments on the proof of theorem 3.2 : Parts a) and c) are rather elementary ;
they mainly depend on the fact that Z(g) is an isotypical component for the (com-

pletely reducible) adjoint action of G on U(g) . Part b) seems to be very deep ;

no purely algebraic proof is known so far ; the known proofs depend on the theory

of principal series representations. For part d) we shall sketch a simple proof
below (4.4).

3.5. The next sections (§§ 4, 5) will be concerned with detailed results on the

cardinality of the fibres X . Here we present Qnly a rough statement about the
fibres of cardinality one or two. Let us denote by Z the set of points p E Z

such that the fibre over p has cardinality ~ m .

THEOREM.- a) Z2 is a locally finite union of algebraic hypersurfaces (Dixmier).

b) Z3 is contained in the set of singularities of Z- (2~,

c) Suppose that the Coxeter-diagram of g has no double or triple lines.

Then Z3 coincides with the set of singularities of Z2 

3.6. The theorem is illustrated by the diagram below for the case g = . Here

the rank is 2 , so Z is a complex plane, and the exceptional hyperplanes forming

Z2 are curves. The diagram shows the real points of these curves. In this case,

Z3 is the set of intersection points of the curves. For more diagrams, see [2].

3.7. In view of theorem 3.5 b), c) and of further results of Conze and Duflo [5]
on non-primitive ideals, it is natural to ask the following.

Problem.- Let p E Z2 . To which extent does the local geometric structure of Z2
at the point 

. 

p determine the structure of the fibre Xp , , or even the complete
ideal structure of U(g)/U(g)p ?



Exceptional subset in Z for a - ~3 ~
-x = t2 + nt + n~ , ~r - (2t + n)(t - n)(t + 2n~ , n - ~ , ~ , 3 ....



4. A ssociating to each weight a primitive ideal

4.1. Fix a Cartan-subalgebra ~ of g and a Borel-subalgebra b containing § .
Denote by R the root-system (in the dual space 9* of % ), by B C R the base

of R corresponding to b , by R + the set of positive roots, and by W the

Weyl-group.

4.2. For each A. denote by E A. a b-module of dimension 1 and weight X °

(EÀ is spanned by a vector e such that he = B(h)e for all h E 9 .) An element
of any g-module is called a b-eigenvector or a "highest weight vector" of weight

X , if it spans a b-submodule isomorphic to E . Any g -module generated by a

b-eigenvector of weight x is a homomorphic image of a certain "universal" such

module, the so-called "Verma-module", denoted M(B) . This M(x) is nothing else

but the induced module U(g) ®U(b ) E~ (1.1). There exists a beautiful theory of

these modules, developed by Bernstein, Gelfand, Verma, and others, and reported

already in this seminar [8] by Dixmier.

4.3. The module M(X) admits a central character. Setting

:= Z(g) n Ann M(~~ , we obtain a map cp : 9* -+ Z . This map has a nice des-

cription. Consider the "translated action" of the Weyl-group defined by

w.X = w(B + p) - p for w E W , À E 9* , where p is half the sum of positive

roots. This induces an action of W on the ring S(9) of regular functions 

Denote the ring of invariants. This ring gives the structure of an alge-

braic variety to the set of orbits ~~~W. - (W.X I À E ~~~ of that action in ~~ .
Now there is a natural isomorphism z(g)-~2014~ S(~ ~W’ , due to Harish-Chandra [8].
This provides an isomorphism */W. Z . Now our map (p : q * -+ Z is obtained

by composing this isomorphism and the canonical map 9* -+ ~~~W, .

(In passing, we note that the Harish-Chandra-isomorphism gives the reason why

Z(g) is a polynomial ring (3.1) : Namely, is known to be a polynomial

ring, since W is generated by reflections.)

4.4. We note in particular that each maximal ideal p E Z is equal to for

some X E 9* . In the sequel we always denote the fibre X = X .
Let us insert now the reason why p generates a primitive ideal and hence is the

smallest element of X (3.2d)). By the theory of Verma-modules, M(w.X) is irre-

ducible for some w E W . Since cp(x) = p , we may assume M(B) irreduci-

ble. The ideal J := Ann M(B) is therefor primitive, and is induced in the sense

of 1.1 from a Borel-subalgebra. We have shown in 2.7 that this implies :

U(g)p = J is primitive.



4.5. One of the elementary properties of a Verma-module M(x) is that it has a

unique largest submodule, and hence a unique simple quotient, denoted by L(B) .
To each weight X E 9* , we associate the primitive ideal J ~ := Ann L(X) . Together
with the maps introduced above, this new map X r-~ J A. makes up a commutative

diagram :

4.6. THEOREM (Duflo [9]).- The X , X ~ J is surjective.

In view of the diagram above, the following description of the fibres X of

X follows readily :

4.7. COROLLARY.- X. = {Jw.03BB )w ( Wt for each 03BB ~ * .

Comments : This theorem is one of the deepest facts known about enveloping

algebras of semi-simple Lie-algebras. The proof is based upon the relations between

the theory of Verma-modules and the theory of principal series representations revea-

led by Duflo and Conze [5]~ [9]~ [6], 9.6. (A nice report on the principal series
of complex semi-simple groups, as developed by Zelobenko, Wallach, Varadarajan,

et al., originating from the work of Gelfand, Naimark, Harish-Chandra, is presented

in [10].)
The theorem implies, of course, the finiteness of the fibres (3.2b)). It even

gives a common upper bound for the cardinality : ~t~X~ This bound may be

improved as follows.

4.8. Let ZR denote the lattice generated by the roots. For X ~ ~ , let W 
A. 
c:W

denote the subgroup of W fixing the lattice X + ZR , and W A. ~ W03BB the subgroup
of W fixing X + p . Both are generated by reflections.

THEOREM (Duflo [ 9]).- # X03BB ~ # {w = W03BB t w"’’ ( 

4.9. COROLLARY.- = 1 , ’ then the cardinality of X03BB is at most the number

of in W , that is ~X ~-~"(w ~ W ) w = 1) . °

4.10. It is now easy to determine the "exceptional" subset Z ? of Z (3.5) : It

is given by Z = ep((B ( ~ ) ( W ~ W )) , an image of a family of hyperplanes.2014 A. A.

4.11. CONJECTURE : The structure of a fibre X (as an abstract ordered set) is
uniquely determined by the pair (W , W.) alone (considered as an abstract pair of



reflection groups, one containing the other), even independently of g .

This is closely related to problem 3.6. It was suggested by various examples,

and by the "translation principle" to be reported on now.

5. Relating primitive ideals of different central characters by a trans-

lati on principle

5.1. We introduce a few technical abbreviations, which are useful to express

frequently-occuring positivity and integrality conditions for weights. For a root

of , let H G E 9 denote the dual root. For each weight X E 9* , set

Note that R. A. is a root-system : the one with Weyl-group W A. (4.8).

5.2. Example : E. Cartan’s classification of all finite dimensional simple g-

modules may be summarized as follows : Up to isomorphism, they are just the modules

such that R = R + . (In classical language, these weights V

are called "dominant integral" weights.)

5.3. THEOREM [12].- Let X , ~ (: b~ be such that R~ = Rand R~ = R~ . Then- 20142014201420142014201420142014201420142014201420142014 ~ + 201420142014 ~ A.+v 2014201420142014

there exists an isomorphism T. : X. C~-~X. of ordered sets.

Moreover, this T , the "translation from X to B + B~ " is given by
~ ... 

201420142014201420142014201420142014201420142014 2014

and satisfies

Finally, it preserves GK-dimensions :

5.4. Example : Let À be an integral point in the interior of some Weyl-chambre.

(This means ~t (W~ , W~) _ {W , _ I) in the notation of § 4.) The "translation principle"
(5.3) says that for all such weights X , , the fibres X
are isomorphic. The diagram shows, how they look like for

9 = ’14 (points = ideals, lines = inclusions, numbers =

GK-dimensions). For more diagrams, see [ 12] , [ 13] .

5.5. A more refined version [12] of the translation principle says : We can deduce

the structure of the fibres ~ for p on a wall from the structure of fibres X ~ ,



for 7~ inside a Weyl-chambre.

To be a little more precise : If in theorem 5.3 the conditon R~ - R is

weakened to , then the translation operator defined by formula (*)
still sends a certain part of XÀ order-isomorphically onto X , but the other

part is sent onto the single ideal U(g) .
So under a translation onto a wall, a primitive ideal may "degenerate" to U(g).

5.6. Primarily, the translation principle provides only relative information, rela-

ting some fibres. But applied with some skill, we may use it to produce also absolute

information on the structure of a fibre X . Here we sketch one of the methods to
do so. Another one will be indicated in 6.8.

Fix a weight X inside a chambre. In the root system R03BB , the positive system

R~ fl R+ determines a base B~ of R~ . We can arrange R. A. = R~ fl R+ (and we do

so). To each primitive ideal J E X~ , we now associate a subset TJ of B~ as

follows : TJ is the set of those cx E B~ , such that J "degenerates" if transla-

ted onto the wall corresponding to Thus we define a map T : XÀ - P(B~) of

X into the set P(B~) of subsets of B~ .
THEOREM [12].- T i s an order-h omomorphi sm of X~ onto - P ( B~ ) .

In particular, we obtain a lower estimate for ~X ’ =A ([12], cf. [9]) :

5.7. COROLLARY.- Let À be as before. Then ~X~ Z 2 rank 
R ~ 

.

5.8. In general, equality does not hold in this corollary : If R. is linearly

closed in R , then equality holds in corollary 5.7 iff  has no simple component
of rank ~ 3 [12]. In particular the " T-invariant" alone almost never separates

all elements of X~ . °
Example : For R = R of type A A A5 , we have ~ X~ - 10 , 26, 76 (> 8, 16 ,

32 ) respectively [12], [13].
The additional invariants used to prove these statements (and many other

results) are GK-dimension and associated cones.

5.9. Problem.- Let X_ be integral and not on a wall (i.e. as in 5.4) . Here is a

precise conjecture how XÀ should look like in case g = : To begin with,

problem 2.9 should have a positive answer for this case, i.e. the associated cone

KJ should contain a dense orbit for each J E X~ . ’ Denote this orbit by OKJ . Now

recall the Jordan "normal form" of a nilpotent matrix, and note that the nilpotent

orbits of In are in natural bijection to the partitions of n (given by the
sizes of "Jordan-blocks"). On the other hand, note that the Weyl-group is here the



symmetric group S , and recall that the classes of irreducible complex represen-

tations of S are also in bijection to the partitions of n (considered as

"Young-diagrams"). Thus the orbit OKJ corresponds to a certain irreducible repre-

sentation of the Weyl-group, denoted ROKJ .

CONJECTURE (Jantzen).- For each primitive ideal X03BB , we should have :

Example : This is true for g - ~ I 5 ~ 12~ : There are 7 partitions of 5 , hence

7 nilpotent orbits in g , of dimension 0 , 8 , 12 , 14 , 16 , 18 , 20 . Such an

orbit is dense in the associated cone KJ of 1 resp. 4 , 5 , 6 , 5 , 4 , 1 dif-

ferent ideals J E X , and such an ideal J is the annihilator of 1 resp. 4 ,

5 , 6 , 5 , 4 , 1 different modules L( ) . We have 5! = 120 =

1 + 42 + 5 +6 + 52 + 42 + 1 elements in the Weyl-group, and we have exactly

26 = 1 +4 + 5+6+ 5+4+ 1 elements in X .
Remark. - Jantzen’s conjecture would imply that Duflo’s estimate 4.9 for ~ X~ gives

already the exact value in this case ( g = integral, not on a wall). In fact,
it says that should be the sum of the dimensions over all classes of irre-

ducible complex representations of W = S , and this sum is known to be the number

of involutions in W (Schur). For S 16 w2 - 1~ (= 76) is

true [13]. For g ’~ ~ n , it is generally not true.

6. Associating primitive ideals to orbits in g*

6.1. Even if we have completely determined all fibres XÀ of X we can not be

satisfied, because this would describe X only as an abstract set. We should rather

like to describe the primitive spectrum X as a topological space, or even better,

parametrize it piece-wise by algebraic varieties. This is the ambitious aim of

Dixmier’s "orbit-method".

6.2. To explain the idea of this method, suppose for a moment that g is a commu-

tative Lie-algebra. Then the only irreducible representations of g are those of

dimension 1 , and the only primitive ideals of U(g) (a polynomial ring now) are

the maximal ideals. Associating to each linear form f E g* the kernel of the corres-

ponding character of U(g) , we obtain a bijection 3~-*~ X . This is Hilbert’s

Nullstellensatz, the classical connection between geometry and commutative algebra.

6.3. Now let g be a non-commutative Lie-algebra. Dixmier’s idea is to describe

X also in this case by a similar map g* - X . Since now a linear form f E g*



need not be a representation of g , one first has to restrict it to suitable suBal-

gebras, the "polarizations". A polarization of f is a subalgebra p c g of codi-

mension = 1 2 dim Gf (where G = adjoint algebraic group), such that f defines a

representation of p . This representation induces a representation of g and hence

an annihilator ideal in U(g) , denoted by T(p , f) . (Here we must take "twisted"

induced representations, as explained in [6].) Although the induced representation
need not be irreducible, it turns out that the induced ideal is primitive (at least

for semi-simple or solvable g ). Now two problems arise :

I. Does every linear form f E g* admit a polarization p ?

And if there exists more than one :

II. Is the induced ideal f) independent pf the choice of p ?

6.4. Once we have answered these questions affirmatively, we have well-defined a map

g~ -i X by f H I(, f) . It is easy to see then that this map is constant on

G-orbits, and hence induces a map on the orbit-space g ~~G , denoted Dix :g ~~G-# X .

6.5. For solvable g , the map Dix : g*/G - X is well-defined (Dixmier), sur-

jective (Conze-Duflo-Vergne), and injective (Rentschler) [6], [11].

6.6. Unfortunately, for g semi-simple questions I and II both have negative

answers in general (see the bad situation in case g = ~0’S , described by

Rentschler, and in [1]). The situation is better for n , where the existence
of polarizations was proved by Ozeki-Wakimoto [20].

6.7. THEOREM.- For , the map Dix : g*/G - X is well-defined ~3~ and

injective [12].

6.8. Comments on the proofs. The proof of the well-definedness (the positive
answer to question II) requires mainly a careful analysis of the multiplicities of
the action of G in (cf. 1.9). One of the by-products of this ana-

lysis is theorem 2.6.

For the proof of the injectivity, we employ the translation principle (5.3) in

the following way. Let ~, E ~ ~ . Take a "dominant integral" weight V such that

all the translation operators T for m E N are defined (cf. 5.3), and define

a function T : X 
-; m by

v I := Dim (intersection over m E M) .
For induced ideals I , we are able to compute these numerical invariants. It turns

out that this system of invariants contains enough information to reconstruct from



f) the orbit Gf by combinatorial methods. This is the strategy of proof.

However, the details are complicated.

6.9. Denote by X the subspace of primitive ideals of Goldie-rank m (1.6).
The image of g*/G in X is contained in X1 (this is immediate from Conze’s

theorem 1.2).

CONJECTURE (Dixmier).- For In’ , the ma Dix is a bijection g~~G -; - X1 . .
This is true 

Problem.- Find modifications of the orbit-method which apply

1. also to arbitrary semi-simple Lie-algebras ;

2. also to the parts Xm of X , for m > 1 .
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