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Séminaire BQURBAKI

29e année, 1976/77, n° 490 Novembre 1976

THE LIGHT IN THE NEIGHBORHOOD OF A CAUSTIC 1

by J. J. DUISTERMAAT

Consider high-frequency waves coming from a point source and traveling through a

medium with variable speed of propagation (lenses), boundary conditions (mirrors),
etc. At any point x E Rn the wave pattern will be given locally, and asymptoti-

cally as the frequency T tends to + ~ , as a finite sum of integrals of the form

where cx E Rk is a set of auxiliary integration vaxiables, the amplitude a is a

complex-valued C 
m 

function on X x A x R+ with X , resp. A open in Rn ,
resp. Rk , and the phase function c~ is a real-valued C functian on X X A.

It is assumed that a(x , a , T~ - 0 for a outside a fixed compact subset I~ of

A , making I into a C function of x and T . Furthermore it is assumed that

a has a locally uniform asymptotic expansion of the form

and similarly for all derivatives with respect to x and a .

Before the validity of the above representation can be made plausible, some

facts have to be collected about the asymptotic behaviour of integrals like (1).
For simplification let us consider first

with a ~ C (R ) , supp 6 C (R ) and real-valued.

The first observation is that if there exist b. (: such that
,- J °

then, using that

and perf orming a partial integration in (3) we see that

~ 
This lecture is based almost entirely on [~2] .
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In other words, if a is in the C - ideal ) = 1 
,..., spanned by

the first order derivatives of tp with respect to the integration variables, then

the oscillatory integral is equal to - times another oscillatory integral, with
T

the same phase function but another amplitude.

For instance, if 0 for all K then using a partition of unity

it is easy to see that there is a neighborhood A of K such that each a 6 C (A)
is in 3" , and repeating the above observation it follows that l(r) is rapidly

decreasing (that is of order T for all r ) as T -*co . . Again using partitions

of unity it follows that in general the oscillatory integral modulo rapidly decrea-

sing functions of T only depends on the behaviour of a in arbitrarily small

neighborhoods of the set

of stationary points of cp . This statement is usually referred to as the princi-

ple of stationary phase.

The simplest case with stationary points, and the one of the greatest practical

importance, is that we have only one stationary point which is non-degenerate,

that is the symmetric bilinear form

is non-degenerate. This implies that all functions a which vanish at cy are

in the ideal ~ , so modulo oscillatory integrals with the same phase function but

a factor - in front, I(T) depends only on the value a(a } of the amplitude
T

a at CY~ ~’ .
In order to actually compute the asymptotic behaviour one can use the Morse

lemma to replace cp with a substitution of variables by

} _ ~ (~ ~ ~ ~ ~ + ( Q~ , ~ )~2 and amplitude b such that b ( 0 ~ - a(cr~) . . Then

and it is shown that
,

where c(Q) is an analytic function of Q in the domain of complex symmetric bili-



near forms Q with Im Q > 0 , and continuous for Im Q z 0 . Since it is elemen-

tary that

it follows that

In this way one ends up with the asymptotic expansion

here a(0) = |det Q.[ . . e 
T 1 TT1 . . sgn Q 

. a(03B1

(0)) and a(r
) 

is a linear form in the

derivatives of a at a(~~ of order s 2r . In particular, as T -* oo , the func-

ti on

tends in the distribution sense to the Dirac measure at a~G~ . This is a variant
of the classical statement that the Gaussian density

tends to the Dirac measure at the origin as T -* co . Such a variant is useful if

there is a non-degenerate symmetric bilinear form Q available which however

happens to be non-definite. For example, this summer at a conference in Durbam

(England), Victor Guillemin showed me how to use this in order to prove formula’s
of the form

for Hari sh-Chandra’ s transformation, mapping functions f on a semi-simple Lie

group G to functions Ff on a Cartan subgroup H . In this case the Killing

form is the natural bilinear form. It is non-degenerate, but only definite in the

case that G is compact. In fact I believe that the "oscillatory integral" point

of view is illuminating in large parts of Harish-Chandra’s work. Formula (13) is

usually referred to as the method of stationary phase, as I .indicated above it

should really be regarded as a tool in computations.

The statements for (3) have versions for (1) which depend smoothly, resp.

locally uniformly on x in a rather obvious way. Write

If supp a 0 for all r then I(x,T) is rapidly decreasing as T -~ ~ ,



locally uniformly in g , this is called a shadow.

Secondly, if for each g E X there is exactly one cx - E A such that

(~,~~ E S~ , and if = ~ ( g , ot( ~ ~ g is non-dege n e rate for each x E X , then
° aa

x - is C , and

as T -*co ~ here a (r) E C 
°° 

and the asymptotics is locally uniformly in x . In

particular

So in this case we have an asymptotic sum of simple progressing waves with phase

~(x) = c~ (g , a(g~ ~ . Note that the order of the amplitude changes when integrating
away the a-variables, for this reason the will be called the

order of the oscillatory integral (1), even in the general case when we make no

assumptions on the derivatives of 03C6 .

In order to understand more general oscillatory integrals one can test them

against oscillatory functions of the form b(x) , with $ 6 C and real-

valued, b E C and b(x / (o) ’) B = 1 . This resembles the investigation of the singu-

larities of a distribution u near x by cutting it off near x(O) with b

and then looking at the asymptotic behaviour of the Fourier transform of bu at

infinity. So we consider the asymptotic behaviour of

as T --~ This can be computed with the method of stationary phase if there is

only one stationary point (x , or ) , that is

which moreover is non-degenerate. Now the latter can only happen if

in which case (p is called a non-degenerate phase function. It can be proved that

the property (22) is generic, and in particular it will be satisfied when dealing

with wave patterns originating at a point source, as we will see. (22) implies that
S is a C manifold through (x ’ , o’ ’) of codimension = k , and also that
cp

*B..~



is an immersion on a neighborhood of (x ,Qf ) in S . So the image A is a
cp cp

smooth n-dimensional submanifold of T~X which turns out to be a Lagrange manifold,

that is the restriction of the canonical 2-form to A vanishes
j ~ ~ ~P

identically. Conversely every Lagrange manifold A in the (x , ~)-space T~X is

locally of the form A 
cp 

for some non-degenerate phase function cp . Writing

~(0) ~ _E. ~(0) ~(0)~ ~ d~(x~’) , we note that (2l) means that d~ (or rather its

graph in intersects A at (x’ ’ , ~’ ’) , and the non-degeneracy of the
~

stationary point just means that the intersection is transversal.

Since A can be found from looking for which ~ (and b ) the integral (20)
is not rapidly decreasing, it is an invariant for I in the sense that A = A~

~P cp
~~

if the classes of oscillatory integrals I defined by cp , resp. cp are the same.
"~-’

Here it is even allowed to have different integration dimensions k , resp. k .

As Hörmander showed, there is also a strong converse here : if A = A and say
Cp ~

~~ ~- 
~

k ~ k , then one can regroupe the 03B1-variables such that with the notation

’ I = (5’ ,.... T,’) , c?" = (S" , ,..., ?") the function " t2014* cp(x,?’ ,?") has a
1 K k+l ~ k 

’

non-degenerate stationary point at ’o?" =of"(x,?’) . Writing

’(x,’) =cp(x ,S’’ ,’S"(x, ’)) one then has a regular substitution of variables

~ = such that Tp’(x ,o?’) =cp(x ,of(x ,a’)) + const.. So integrating away

the "-variables with the method of stationary phase and then making a substitu-

tion of variables one obtains that modulo factors of the form e or . const. (phase

shifts) the class of oscillatory integrals defined by cp is the same as that defi-

ned by cp .

The coefficient of the top order term in the asymptotic expansion of (20)
o

regarding to 03C8 only depends on 2014" (x ) , which can be identified with the
5x

tangent space of d~f at (x , ~ ) . This can be any Lagrange space in

T

(x(0) , 03BE(0) )(T*X) transversal to the fiber (= 03BE-space) and to T 

/ x , .x ) 
A .

Going from one 03C8 to another leads to multiplication by a factor depending only

on these Lagrange spaces. The functions of these Lagrange spaces with these transi-

tion properties form a 1-dimensional complex vector space L 

/ B , / B ) 
and it is

rather obvious that their union over all (x , 03BE(0)) 6 A is a smooth complex line

bundle L over A . In this way the coefficients in the top order terms in (20) are



regarded as a section of L , which is called the principal symbol Q of the oscil-

latory integral I of order ~ . . If A is some (global) Lagrange manifold in T*X

then an oscillatory function u defined by A of order v is defined as a locally

(in x ) finite sum of integrals like in ( 1 ) with A V an open piece in A . Its

symbol is defined as the sum of the symbols of each of the integrals.
~s~ 3

It is not surprising in view of the factor c(Q) (see (12)) in the method of

stationary phase, that L = C~~ ~ M , where Qj_ denotes the line bundle of densities
2 2

of order -2- on A and M , the Maslov bundle, is a bundle over A with constant

local transition functions which are powers of i . In particular, if a is the

principal symbol of a compactly supported oscillatory function u defined by A

and of order ~ , then is a density of order 1 on A because

M.M = 1 , and

This shows that, since cr is smooth, the energy of u in a domain U in x-space

is asymptotically proportional to the n-dimensional volume of rr (u) in A , where

n denotes the projection A 3 (x, ~,~ ’2014" x from A onto the base (x-) space.

For instance, if U shrinks as a ball with.decreasing radius to the point x
then the ratio between the energy in U and the volume in U (asymptotically as

, let’s say for V = 0 ) tends to + ~ if and only if x(O) is a singular

value of TT . Such points will be called caustic points for A because there the

light "burns". Because it is easily verified that the kernel of Q(x ) and the

kernel of the tangent mapping of n at ( x ( ~ ~ , ~ ( ~ ~ ? ) have the same dimension,

these are exactly the points where we do not have simple progressing waves as in (18).

Up till now nothing has been said about the wave mechanics, that is the equa-

tions which have to be satisfied by u . It will be assumed that these are of the

form " Pu is asymptotically small as ". Here P is linear partial diffe-

rential operator with coefficients depending smoothly on x and polynomially on T .

On has

for an invariantly defined C function p on T*X, which is a polynomial in § ,
called the principal symbol of P . It follows directly from the definition that if

u is an oscillatory function defined by A of order ~ with principal symbol c ,

then Pu is an oscillatory function defined by A of order y + m with principal

symbol p.o . So if we want to satisfy Pu = 0 asymptotically we need p . Q - 0 ,



that is p = 0 on A i f we take 0 .

Now suppose that p is real and dp ~ 0 on A . Because A is a Lagrange

manifold, p = 0 on A implies that A is invariant under the solution curves of

that is the Hamilton system defined by the function p . Its solution curves in

p-1({0}) are called the bicharacteristic strips, and their projections in x-

spaces the bicharacteristic curves of the operator P .

If p = 0 on A then Pu is actually an oscillatory function defined by A

of order B) + m - 1 , and its symbol of that order is equal to

Here JC denotes Lie-derivative (of densities of order 1 2), H is the H amilton

vector field on the right hand sides in (36), and q = q(x , 03BE) is another invarian-

tly defined function on T*x called the subprincipal symbol of P . (The fact that

everything is invariantly defined means that the above is all valid in the same way

if X is a smooth n-dimensional manifold.) Demanding that (27) be =0 means

solving an ordinary linear differential equation for a along the bicharacteristic

strips. In particular a is determined along the whole strip if it is given at one of

its points. One says that 7 propagates along the bicharacteristic strips. Regarding

A tb.gether with its bicharacteristic strips as the geometrical optics of the oscil-

latory solution u , then the statement is that the geometrical optics describes the

propagation of the high-frequency asymptotics of waves. The light rays are identi-

fied with the bicharacteristic curves.

For global oscillatory solutions we have to take the full flow-out of a local

Lagrange manifold along the bicharacteristic strips. Following A along such a

bicharacteristic strip it may "turn over", that is its tangent space may get an

intersection with the fiber of positive dimension, the projection in X will then

be a caustic point. This will also correspond to a singular concentration of light

rays there, which is the geometrical optics definition of a caustic point.

By induction on lower order terms one can construct global oscillatory func-

tions defined by A such that Pu is not only of order  B~ + m - 1 but even

rapidly decreasing as r -~ oo , and there are also results about the uniqueness of

such solutions.

Waves coming from a point x are obtained by defining A as the flow-out

of



by the bicharacteristic strips. If ap (x(0) , 03BE) ~ 0 when p(x(0) , 03BE) = 0 ,
dim A = n- 1 and the bicharacteristic strips are transversal to it, so

dim A = n . Because A is isotropic for the canonical 2-form and p = 0 on

A it follows that A is a Lagrange manifold contained in p ~ ( ~ 0~ ~ , and the

proof of the statement that the wave pattern at an arbitrary point is given by

locally finite sums of integrals as in (l) now is in sight. (Except for the mirrors.

If the light rays hit them transversally it is not hard to prove that one gets oscil-

latory solutions of the same kind defined by a "reflected" Lagrange manifold, see

for instance Chazarain [1]. But in the case of tangential light rays the solutions

are of a much more complicated nature, see for instance Melrose [4] and Taylor C 5~ . ~

We now turn to the problem of determining the actual asymptotic behaviour of

I(x,T) near a caustic point. The most general result is that if the function cp
in (3) is real analytic then, using Hironaka’s theorem on resolution of singulari-

ties, one has (assuming that 03C6 = 0 on S ) :

where t, s range over finitely many natural numbers, 03B1s 6 Q . For analytic func-

tions with an isolated singularity in the complex domain there is a relation between

the Of , t and the monodromy of the singularity. See Malgrange [3]. However, in
s

general it is hard to compute the a , t or c ,(a.)t and also these approa-
s r,s,

ches do not seem to give information whether the estimates are locally uniform in

the presence of parameters. (See erratum, p. 490-11.)

Let x A) , real-valued. Considering cp(x , a) as a family of func-

tions of a , , or an unfolding of a function of a in Thom’s terminology, one may

call cp equivalent as such to 6 x A) , B if there exists a diffeomorphism of

the form H : (x ,Qf) ~ (x(x) ,?(x , c~)) and a function; 6 C (X) such that

If T(x , T) is an oscillatory integral with phase function cp and

amplitude a , then implies that

where I is an oscillatory integral with phase function ~ and corresponding

amplitude a . So if we disregard x- dependent phase shifts ~~g~ then the

oscillatory integrals defined by equivalent phase functions can be transformed into

one another just by a diffeomorphism of x-sp&#x26;ee. In particular also their asympto-



tic growth at corresponding points is the same and for instance their caustic sets

must be diffeomorphic. cp will be called a stable unfolding if there is a neigh-

borhood U of  in C (X xA) in the Whitney topology such for every

I E U . cp will be called stable at (g{~) , ) E X x A if there exist open

neighborhoods ~~~~ , resp. of g~~~ , resp. such that the restriction

to X~~~ is stable. If n S 5 the generically cp is stable at every

point. For arbitrary n generically cp can at least be embedded in a family with

more parameters which is stable at any point. Finally Mather theory shows that cp is

stable if and only if 03C6 is infinitesimally stable, that is :

Here we recognize the ideal spanned by the derivatives of 03C6 with respect to

the again. Writing
J

cutting off in the a-variables, performing a partial integration with the

and repeating the procedure with the amplitude of the newly obtained

oscillatory integral, one obtains for stable tp an asymptotic expansion of the form

00

Here 03BDr , 03BDrl 0 E C (X) , the expansion is locally uniformly in x and

for some x E C~o (A) such that x - 1 in a neighborhood of the set of a E A for

which there is an x E X with (x,~~ E S . If we restrict to suitable neighborhoods
X , resp. A of , resp. ~~ ~ , this can be arranged. (Everything under the

assumption that cp is stable at (x(Q~ .) This reduces the problem to the

asymptotic expansion of the oscillatory integral (34) with the phase function
and amplitude essentially equal to 1 , and its x-derivatives which is an oscilla-

tory integral with phase function cp and amplitude essentially equal to 
a g~

The next step which one can make is that cp is locally equivalent to an

unfolding of the form
vt

where f is a polynomi al which can be taken as the Taylor expansion of

at r~ ~ ~ up to some order N + 1 , and the f, are arbitrary



monomials such that each polynomial of degree S N can be written as

for some polynomials c. , constants dl , and the equality holding only modulo

terms of degree ~ N . This step is the analogue of the use of the Morse lemma with

parameters in the method of stationary phase. The polynomials f occuring here are

exactly those with an isolated singularity in the complex domain to which Malgrange’s

observations about the relation with the monodromy apply.

Despite their apparent special character, it is still a very hard problem to

determine the asymptotic behaviour of the oscillatory integrals to which we have

reduced now. In fact I only know somewhat what happens if one can choose f to be

weighted homogeneous, that is

for some real numbers r~,...,r~ . By an analytic change of a-variables it can be

achieved that (37) holds with 0  2 and then the are uniquely determi-

ned and rational. Writing

it is not surprising to find that

as T -~ ~ . Here for any polynomial P we define

S eif , P - ~. eif . P . ~ + e eif , P , ( t - x ) , The last integral is rewritten using

partial integrations, which become possible because f has no stationary points in

supp(1 - x) , untill the integrand is absolutely integrable. Locally uniform x-

dependent versions hold if 1 for all l , if we replace f(a) in the left

n

hand sides of (39) by f(a) + ~ x~ f~ (a) and in the right hand sides by
n 1 -s 

,~-~ .

f (at ) + ~ T 
1-s~ 

~~ f~ (a~ ) . ( Sai t o has proved that the f wi th s~ s 1 f or all J,

,t= t

a re just those f or which any local def ormation is equivalent to a weighted homo-

geneous polynom:ial again.) If s~ ~ 1 for all ,~ then the functions of x

appearing in the right hand sides of (39) are entire analytic, and non-zero at

g = Q . These are egactly the "simple singularities" of they contain all
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the "elementary catastrophies", the pictures of which are just the caustic sets.
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p. 490.08, line 22 : However, see A.N. Varchenko, Newton polygons and estimates
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