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ABSTRACT HOMOMORPHISMS OF SIMPLE ALGEBRAIC GROUPS

[after A. BOREL and J. TITS]

by Robert STEINBERG

307

Séminaire BOURBAKI

25e année, 1972/73, n° 435 Juin 1973

§ 1. Introduction

Let G be a simple algebraic group (i.e. affine, connected, and having only

finite, hence central, nontrivial normal subgroups) defined over an algebraically
closed field k , and let G(k) denote the group of rational points of G .

According to Chevalley [6, exp. 7] :

1.1. A subgroup of G (identified with G(k) ) is a Cartan subgroup if and only

if it is maximal nilpotent and has every subgroup of finite index of finite index

in its normalizer.

Similarly the structure of G(k) as an abstract group determines the Borel

subgroups, the maximal unipotent subgroups, ..., even the field k , up to isomor-

phism, and eventually almost completely determines the structure of G as an alge-

braic group. The end result (proved in § 2 below) can be stated thus :

1.2. THEOREM.- Let G , k be as above with G simply connected and let G’ be an

algebraic group over an algebraically closed field k’ . Let cx : G(k) - G’(k’) be

an isomorphism of groups. Then there exists an isomorphism of fields cp : k -. k’

and a k’-isogeny P : ~G --~ G’ such that of = S o cp on G(k) .

Here ~G is the group over k’ obtained by transfer of base field and

: G -~ ~G the corresponding map. (If G is given as a matrix group defined

over k , then ~G is got by applying cp to the equations over k defining G

and cp by applying cp to the matrix entries.)

Further a statement concerning the uniqueness of cp and P , especially sim-

ple when G is simply connected, can be given (see 2.3).

This theorem classifies, not only the possible structures of algebraic group

for G(k) , but also the various groups of this type up to abstract isomorphism,



thus also their abstract automorphisms. Further it does so in a precise way since

the isogenies (i.e. rational homomorphisms, surjective with finite kernel) among
the various simple groups are quite well known [6, Exp. 18].

The purpose of the article [4], of which we are giving an account here, is

to prove a vast generalization of this result in which the class of groups is con-

siderably extended and in which homomorphisms, not just isomorphisms, are conside-

red, and then to apply this result to diverse situations concerning isomorphisms,

automorphisms, continuity of homomorphisms, representations (homomorphisms into

some GL(V) ), etc..

First let us state this result. Let k be an infinite field and G a simple

algebraic group defined over k and of positive k-rank, i.e. "isotropic". (Thus
G contains nontrivial k-split tori and many rational unipotent elements.) Let
H be a subgroup of G(k) containing G+ , the group generated by the rational

points of the unipotent radicals of the rational parabolic subgroups of G . (If
k is perfect G is the group generated by the rational unipotent elements.)

Finally let G’ be a simple algebraic group over an infinite field k’ and

Of : H -~ G’(k’) a homomorphism. Then the generalization mentioned above is :

1.3. THEOREM ((A) of [4]).- Let everything be as just stated. Assume that G is

simply connected or G’ adjoint and that a(G+) is dense in G’ (in the Zariski

topology). Then there exists a homomorphism cp : k -~ k’ , a k’-isogeny

: ~G --~ G’ with dp / 0 (called s ecial for this reason), and a homomorphism

Y : H --~ center of G’(k’) , all three unique, such that 

for all h E H .

1.4. Remarks.- (a) C is always dense in G . If P , P are opposed proper pa-

rabolic subgroups of G , then their unipotent radicals U , U generate G , as

is easily seen. Taking P , P" to be defined over k as we may since G is iso-

tropic [3], we see that (U(k) , U-(k) , hence also G+ , is dense in G .

(b) It is conjectured that Y above is always trivial. This is certainly so in

case G’ is adjoint since then the center of G’(k’) is trivial. Assume that G

is simply connected. Then there is a long standing conjecture, proved in most cases

(for G split, quasi-split, a classical group,...), that G(k) = G+ (and hence

that the only choice for H in 1.3 is G ). Now G always equals its own deri-



ved group [4 : 6.4], hence has only trivial homomorphisms into Abelian groups.
Thus this conjecture would imply the present one.

(c) Even if G is not simply connected, then the groups G and G(k) can be

determined quite explicitly in most cases, and hence also the possibilities for H .

(d) An easy consequence of 1.3 is that if G and k are as there and k’ is an

algebraically closed field in which k has no imbedding, e.g. a field of a diffe-

rent characteristic, then a homomorphism from G to any k’-group G’ is neces-

sarily trivial.

The proof of 1.3 and some related results will be discussed in § 3 and § 4.

In view of 1.4 (a) the theorem applies in case H’ is a group constructed in

the same way as H and C~(H) = H’ . It therefore yields a classification of the

groups of this type, and of their automorphisms. For the groups PSL over infinite

fields, for example, the result can be formulated geometrically as follows, in view

of the fundamental theorem of projective geometry : every isomorphism between two

groups of this class is effected by a collineation of the underbying projective

spaces and every automorphism by a collineation or a correlation. This is the ori-

ginal result of this type and was first-proved in a classical memoir [11] of

Schreier and van der Waerden who proved also that over finite fields the only

exceptions are and PSL2 (IF5 ) . Later it was exten-
ded by Dieudonné, Hua, Rickert, 0’Meara and others (see [8, 10, 17] for further

references) to include many of the other classical groups ((projective) symplectic,
unitary, orthogonal, spin,...), on a case by case basis. Theorem 1.3 unifies these

results as they apply to isotropic groups (for unitary and orthogonal groups, the

defining form must have positive Witt index) and at the same time extends them to

the exceptional groups. The earlier proofs, however, were decidedly more elemen-

tary.

Let us remark also that substantially the same results hold over finite fields,

as was shown in a number of cases by various of the authors mentioned above and in

the general case by the present author [13]. The proofs, indicated in § 2, are, at

least in the split case, identical with those in the algebraically closed case from

a certain point on.

Now let k , k’ above be nondiscrete locally compact topological fields with



k’ not isomorphic to C . Then one can show (easily if k , k’ are real) that

every homomorphism cp : k -~ k’ is necessarily a topological isomorphism of k

onto a closed subfield of k’ , hence is continuous [4, § 2.3]. It follows, in

this case, that if G(k) and G’(k’) in 1.3 are viewed as topological groups in

the natural way, then Of must be continuous. In [4] this result is extended to

semisimple groups and it is shown that the assumption of isotropicity is not

needed. It then includes the result of E. Cartan [5] and van der Waerden [19]
that every homomorphism of a compact connected semisimple Lie group into a com-

pact Lie group is continuous, and that of Freudenthal [9] that every isomorphism

of a connected Lie group with absolutely simple Lie algebra onto a Lie group is

continuous. These results are discussed further in § 5.

Finally let us consider (abstract) representations.

1.5. THEOREM ((B) of [4]).- Let k , G , G+ , H be as in 1.3, k’ an algebrai-

cally closed field, and p : H --~ PGL (k’) 2) a projective representation
n

which is irreducible on G+ . Then there exist irreducible rational projective
representations n. 

i 
of G and distinct homomorphisms : k ~ k’

(1 s i s such that p is the restriction to H of the tensor product

of the representation 03C6i03C0i 
1 

This result, conjectured by the present author in case k is algebraically

closed in [14], together with a statement of uniqueness, will be proved in § 6

below. Since the only continuous homomorphisms of the complex field into itself

are the identity and ordinary complex conjugation the above result overlaps the

classical result that every irreducible differentiable complex representation of a

connected complex Lie group is the tensor product of a holomorphic representation

and an antiholomorphic one (see, e.g., [12, p. 22-12]).



§ 2. Algebraically closed fields and finite fields

We start with 1.2 since its proof, which is quite simple, will serve as a

model for that of 1.3, which is not. Let everything be as in 1.2 and identify G

with G(k) . For the standard facts about affine algebraic groups, many to be

used without explicit reference, we cite ~2 , 3 , ~~ .

2.1. In G one has the following abstract characterizations.

(a) The maximal tori : as in 1.1.

(b) The Borel subgroups : those that are maximal solvable and without proper

subgroups of finite index.

(c) The maximal connected unipotent subgroups : the derived subgroups of the

Borel subgroups.

(d) car k : if p is a prime then car k = p if and only if there is no

p-torsion in any maximal torus.

Here G need not be simple, only connected reductive (and nontrivial in the
case of (d)). The proof of (a) is given in [6, Exp. 7]. If B satisfies the proper-

ties listed in (b), then it is closed by the maximality, connected since it has no

subgroups of finite index, hence Borel by the maximality. Conversely, let B be

Borel. Then B is maximal solvable [6, p. 9-05]. Write B = TU (semidirect)
with T a torus and U the subgroup of unipotent elements of B . Let B’ be a

subgroup of finite index. Since T is divisible it has no proper subgroup of

finite index. Hence B’ ~ T . Since G is reductive, U is the product of one-

parameter subgroups each normalized by T according to a nontrivial character

(root). If t is a regular element of T (at which no root vanishes) it follows

that the map u - t-~u ~tu on U is surjective (in fact, bijective). Thus if
u’ is arbitrary, then tu’ is conjugate to t , hence semisimple, hence contai-

ned in a maximal torus of B , hence contained in B’ by the earlier argument.

Thus B’ ~ U , B’ ~ B , B’ = B , which yields (b). Since U above is maximal

unipotent connected, (c) follows, for example, from the surjectivity above. Finally

since a torus is diagonalizable (d) is clear.

2.2. Proof of 1.2. We observe first that G’ is simple. For since B above does

not have a proper subgroup of finite index neither does G , which is generated by



its Borel subgroups, hence neither does G’ , which is thus connected. And since

G does not have nontrivial infinite normal subgroups, neither does G’ . In G

let B , W be opposite Borel subgroups and U , U their unipotent radicals,

so that B n B* = T is a maximal torus and one has B = TU , B = TU- . It

follows from 2.1 that the groups B’ = B ’ = (y(B ) , etc., have the same

properties in G’ , and that car k = car k’ . Further a matches up the normali-

zers of T and T’ , hence also the corresponding Weyl groups. Let a be a simple

root for G relative to T , U a the corresponding one-parameter subgroup of U, ’

and na an element of the normalizer of T representing the reflection correspon-

ding to a . Since the union of B and another B , B double coset can be a group

only if the coset has the form Bn B ( a simple) and since

an
U = Una U , it follows that a(U ) = U’, and y(n ) = n , for some simple
a a a a a

n

root a’ for G’ . Since a U - U and similarly for a’ one obtains from a
a -a

an isomorphism from (U , U ) to U’a’ , U’ ,) which may be viewed as an isomor-
a -a a -a

phism from SL2(k) to SL2(k’) or to (see, e . g. , ~ 6~ and recall that

G is simply connected) preserving superdiagonal, subdiagonal, and diadonal elements.

Let cp and x on k and k* be defined by

1 + xE 2~ - 1 and , with E12 ,

E~2 the appropriate matrix units. Here x is well-defined even if the second

group is since then SL2(k) has no center, hence car k = 2 and

car k’ = 2 . Here one can normalize the identification of (U , U ) with SL2(k)
so that 03C6(1) = 1 (or one can do this for a’ ). We claim that then cp is an

isomorphism of fields and that X - cp~k~ . One verifies that for given y ~ 0 the

product (1 + + + normalizes the diagonal subgroup only if

z = -y-1 . . Let w(y) ) denote this product when z = -y 1 . It follows that

w’(t~(y~~ . Since also w(y~w(1~ 1 and c~(1~ - 1 it

follows that X = Finally since c~ is additive and x is multiplicative,

cp is an isomorphism as asserted. It depends on a . Now any root r is simple

relative to some ordering of the roots. We write cp 
r 

for the corresponding iso-

morphism. Also we let u : k - U denote a parametrization. Let a and b be

simple roots with a ~ b and (a,b) ~ 0 . Then one has a commutator relation



~~Y) ) - 11 > G a 
~l and

0 . On applying Of and comparing with the corresponding relation in G’

we get ~a and ~b with (a + b)’ = ma’ + nb’ . ° Since , cpa
and cp are isomorphisms it follows that m and n are powers of the characte-

ristic exponent p of k . Since G is simple and its root system irreducible

it follows that there exists an isomorphism cp : k - k’ and integers m , all
m

nonnegative, some equal to 0 , such that Fr r o 03C6 ( Fr = Frobenius), first
for all simple roots r and then for all roots as we see by making the Weyl

group act. We then (c~o ) ~ o a : ~G --~ G’ . Identifying ~G with G

according to cp° we have a normalization in which cp = id . Then P is a mor-

phism on each U and on each T = (U , U ) fit T , by the above. Hence P is a’ 

r r r -r 
’

morphism on U-TU since this set is naturally isomorphic to the Cartesian product

of all of the groups Ur ( r a root) and all of the groups Ta ( a simple ) ,
arranged in some order. Finally since this set is open in G and P is a homo-

morphism of groups P is a morphism on G , which proves 1.2.

2.3. Uniqueness. One can choose cp and P in 1.2 so that P is special. Then they

are unique. More precisely, if cp and P are so chosen and if cp and P satisfy

the conclusions of 1.2 then there exists m a 0 such that cp = Frm o tp and

? = P ° ( Frm) ° .

Proof. Choose r so that m = 0 above. Then P : 03C6Ur ~ U’ is an alge-
- r r r

braic isomorphism. Thus d~ ~ 0 and P as constructed above is special. For the

other assertions we replace G by ~G , thus normalize to the case c? = id . Then

on U , imbedded as k in SL2 as above, we have $ = $ o cp . Since P is a

morphism and P an algebraic isomorphism, it follows that c~ is a morphism, hence

is of the form Frm (m z 0) . Then $ = o 
. Bence if 03B2 is also

special, 0 , then m = C , ~ - ~ , and id = c~ .

2.4. A slight extension. If we assume that a is surjective instead of bijective

in 1.2 and 2.3 then the conclusions still hold.

Proof . ker a is central in G since G is simple so that G/ker a is also

a simple algebraic group. Applying 2.1 to this group we see that the properties of



B , T ,... are preserved which is all that is needed for the rest of the

proof.

2.5. Special isogenies and central isogenies. We recall some facts about isogenies

of connected semisimple algebraic groups. An isogeny G - G’ is central if

ker drr is central, or, equivalently, if rr is an algebraic isomorphism on unipo-

tent subgroups, or, again, if, when restricted to corresponding maximal tori, r*

maps one root system onto the other. Every central isogeny is special and conver-

sely for simple groups a special isogeny can be noncentral only in the exceptional

case that G is of type Bn , Gn , F4 , G2 and car k = 2 , 2 , 2 , 3 , resp..

The central isogenies are those that figure in the definition of universal covering,

hence of simpleconnectedness. If G is simply connected and F the quotient of

the weight lattice by the root lattice then the central isogenies G --~ ~ are in

correspondence with the subgroups of F , and also with the subgroups of Z(G) in

case (car k, IFI) = 1 . For all this see [4, § 3 ; 6, Exp. 18].

2.6. The simple connectedness of G. This assumption can not be entirely dropped

in 1.2 since then cx need not be a morphism even if it is a morphism on each

(U , U ) and each such group is isomorphic to SL2 , as is shown by the example

rr (nat) : SL4 ~ PSL4’ car k = 2 , a = . However such examples are the

only ones possible :

2.7. Corollary.- In 1.2 as extended in 2.4 drop the assumption that G is simply

connected. Then o cp o Y with cp and 03B2 as in 1.2 and Y the inverse

of purely inseparable central isogeny. If G is simply connected or G’ adjoint,

then Y may be omitted.

Proof. Let n :  ~ G be the universal covering of G . By 2.4 one has

a with cp : G - . By replacing G by ~G and G by G we

may assume that 03C6 = id . Factor n thus : G G1 1 G with rr s separable

and n. purely inseparable, both central. Then n is a quotient map and a is

constant on its fibres. Hence there is a (unique) morphism P : G1 ~ G’ such

that $ = $ ° n . . Then 03B1 = 03B2  03B3 with Y = , as required. Further if

0 then d03B2 ~ 0 so that P can be chosen to be special. Finally, if G’ is



-

adjoint then p factors through n itself so that Qf is a morphism and Y may

be omitted. We have used here (and elsewhere) a theorem of Chevalley [6, p. 18-07]

which gives conditions under which one isogeny emanating from a (connected) semi-

simple group can be factored through another. These conditions are seen to be

verified here since G’ is adjoint and n is central.

The discussion of uniqueness here, which is very easy, will be omitted.

2.8. Automorphisms. Let G be simple (and k still algebraically closed) and a

an (abstract) automorphism of G. Then there exist cp , p , Y as in 2.7 (with
k’ = k and G’ = G ) such that QC = Y o P o ~ . Here Y is necessary only

if car k = 2 and G is of type D corresponding to a semispinorial represen-

tation (thus not simply connected and not adjoint).
~

Proof. By 2.7 we may suppose that G is not simply connected and not adjoint.

Thus we are not in the exceptional cases of 2.5 and every special isogeny is cen-
-

tral. Let n : G - G be the universal covering. By 2.4 applied to

Of o Ti : G -* G we have ey o rr = p 
o 

with 03C6 an automorphism of k and

P : ’G -* G a central isogeny. Since ’C is simply connected, p is thus a uni-

versal covering, thus equivalent to n . Thus dg it = dg rr = dg ~rr . Let G, hence

also G , etc., not be of type D2n. . Then the group F of 2.5 is cyclic [6]. Thus
there is at most one subgroup of a given index, thus at most one central isogeny

(D ’G -* ’ of a given degree. Thus 03C603C0 and are equivalent and there exists

an algebraic isomorphism p : m ’G -* G such that ~ p = p o (p ’n . Then

~ = ~ o ’n o cp = P o cp o n . Since n is surjective, c~ = P o . Now let

G be of type D . In any case = 03B1 o cp 
o" 

o Thus ker == ker 03C603C0 . If

car k ~ 2 then again it is equivalent to "rr for now the central isogenies

coming from ’G correspond to the central subgroups of ’G since F is now a

(2,2) group, of order prime to cark. Finally if car k = 2 then TT is purely

inseparable, hence an abstract isomorphism. If we apply what has been proved to

TT 
~ on G we get 2.8 with Y = n 2014 1 , which ends the proof.

Conversely, if G is of this exceptional type then Y may be needed : let
- 

, 
-

Of be an algebraic automorphism of G which maps the semispinorial representa-

tion defining G onto another one, and then Of = ~ .



2.9. Split groups and quasisplit groups. For split groups the proofs of 1.2 and

the later results work equally well over arbitrary fields, with G(k) , G’(k’)

replaced by G+ , G’+ , , once it is known that or must preserve the properties of

B , T , U ,.... For quasisplit groups (those having a rational Borel subgroup)
only a little more work is needed (see [13] where automorphisms are considered).
For infinite fields, this preservation will be shown in § 3 below in a very general

setting.

2.10. Finite groups. For finite fields the preservation can be proved in most

cases as follows. First G is quasisplit by a theorem of Lang, so that rational

B and U exist. One then shows that except for a few cases of small rank car k

is that prime which makes the largest contribution to the order of G . This
involves an exhaustive analysis of the group orders ’G+) for the various types

of simple groups and finite fields Thus G determines p = car k ,

hence also, up to conjugacy, the Sylow p-subgroup U(k) , and finally B(k) , the

normalizer of U(k) . The excluded cases then involve further considerations, and

eventually one gets the result as stated for algebraically closed fields with a

few exceptions, e.g. SL3(F2) ,.... If we are interested only in auto-

morphisms then this development can be dispensed with since we have the preserva-

tion a priori (see [13]).

§ 3. Proof of 1.3

We give only several indications, supposing first G’ adjoint. If X is a

subgroup of G , let us write a(X) for a(X n H) (closure in G’ ).

3.1. (cf. 7.1 of [4]) Let S be a k-subtorus of G and U a connected unipo-

tent subgroup normalized by S such that . Suppose that H f1 S

is dense in S and that H ~ U(k) . Then U’ is a connected unipotent k’-

subgroup of G’ .

Proof. The set A of s E S such that Z(s) n U = (if is dense open in U ,

and for each n H the map u -~ (s,u) on U is a k-isomorphism of varie-

ties, thus (*) it maps U(k) onto itself [2 : 9.3]. SU is solvable, thus

L = (SU)’ is also. Let us choose E of finite index in S n H such that E’ is



connected, hence contained in L . Since S n H is dense in S , there exists

s ~ A n E . By (*), = ~~~~> ~ and then t

the derived group of L° . But DL C U’ since D(SU) cU. Thus V = DL° , t a con-

nected unipotent group by the theorem of Lie-Kolchin.

3.2. One has car k = car k’ .

Proof. Since G is isotropic, one can realize the situation in 3.1 with S

and U nontrivial [3]. Then U’ is nontrivial, for G is generated by U(k) as

a normal subgroup of itself [16] and c~(G+) is dense in G’ . If car k = 0 then

G(k) is divisible, hence a(G(k)) is also, hence car k’ = 0 . If car k = p ~ 0 ,
then U(k) has only p-elements, thus of(U(k)) has also, and car k’ = p .

3.3. (7.2 of [4]) Let P , P" be opposite parabolic k-subgroups of G, TJ , U-

their unipotent radicals, Z = P n P .

(a) U’ and II ~ are connected unipotent k’-groups and U ’Z’U’ is dense open

in G’ . .

(b) P’ , P ’ are opposed parabolic k’-subgroups of G’ , U’ , U ~ their uni-

potent radicals and Z’ = P’ n P-’ .

Proof, (a) There exists a split torus S normalizing U and such that

ZG(S) n U = ~ 1 ~ , and it can be imbedded in a split semisimple k-subgroup of

G [3]. It follows that (S n G+) is dense in S , and U’ and U ’ are connec-

ted unipotent by 3.1. Let Q’ = U ’Z’U’ . Now G is the union of a finite number

of translates of U"ZU by elements of G~ [4 : 6.11] ; ; thus H and

H)U(k) have the same property. Thus G’ = H’ is the union of a finite

number of translates of Thus Q’ contains a nonempty open subset of G ,

thus is itself open since it is a double coset : every double coset AcB is an

orbit for the action g --~ agb ~ of A X B on G , thus is locally closed.

(b) Let T’ be a maximal torus of Z’° and V- , V opposed maximal connected

unipotent subgroups of Z’° normalized by T’ and such that V".T’.V contains

a non empty open subset of Z’ ° . . By (a) and the density of cx(H) in G’ .

U-’.V-.T’ .V.U’ contains (thus is) a nonempty open subset of G’ , and U .V- ,
V.U’ are connected unipotent groups normalized by T’ . As G’ is simple

U ~.Y .T’ and T’.V.U’ are opposed Borel subgroups of G’ . From this the asser-

tions of (b) follow without trouble.



In (b) G’ can be reductive, and in (a) arbitrary.

Now let S be a maximal k-split torus of G , a the maximal root on S
m m m

relative to some ordering, a the coroot of a , and S = a (Mult) the corres-
m m m

ponding one-dimensional torus. Let Z = ZG(S) and U (resp. U ) = the connected

unipotent subgroup of G corresponding to the positive (resp. negative) weights
on S relative to some ordering. Then Z is connected reductive and P = ZU ,

P = ZU are opposite parabolic subgroups. Further all of these groups are k-

groups. For all of this see [3]. This is the set-up in which 3.2 and 3.3 will be

used.

3.4. Definition of cp . One uses the action of S on U in much the same way as

in 2.2 where the group SL2 was considered (there S = diagonal subgroup ,

U = superdiagonal unipotent subgroup), the multiplicative structure of k being

embodied in S and the additive structure in U . But now the situation is more

complicated since U is not just the group Add . However, U is the extension

of one vector space by another such that S acts according to a character a

on one and according to 2a on the other [4, § 8]. From this and a suitable
"preservation theorem", refining 3.2 and 3.3, and a good deal of further work,

one can construct a homomorphism cp : k --~ k’ such that if G is replaced by

~G then cx becomes on U(k) the restriction of a special morphism

P : U ~ U’ , and similarly for U- . °

3.5. Completion of proof. The group Z acts on U (via a rational representation,
in fact, if one of the above vector spaces is trivial), as does Z’ ’ on U’ , and

the last action is faithful since G’ is adjoint. From this one gets a morphism

on Z whose restriction to Z n H agrees with a . Since the map

U x Z x U - U ZU = Q is an isomorphisms of varieties we deduce a morphism P
on Q which agrees with a on Q n H . Finally we define P on G thus. Write

x E G as gy with g E G+ , y and then This defi-

uniquely since for fixed g E G+ , SO(gx) = for

g ~f~ for this holds on the dense set Q fl (1 H . Since P is a mor-

phism of varieties on 0 , it is so on each g03A9 , hence also on G . But P is

also a homomorphism on the dense subgroup H since a - clearly. Thus P



is a morphism of groups. Further P is special since ~H is.

3.6. G simply connected. Consider this case now. Let n : G’ - Ad G’ be the

natural map. Applying the case just proved to ~t o a we get cp and P as before

such that TT o a - ~ ~ 1 0 c~° ( on H ) . Since G, hence ~G , is simply connected

and n is central there exists an isogeny P : ~G -~ G’ such that ~ ~ - 
thus TT o a = n o p 0 

. Since TT is central, a and 03B2  cp agree on H up

to a map ~ into the center of G’ , and clearly ~ is a homomorphism.

3.7. Uniqueness. This can be proved as in 2.3.

3.8. An example. Consider TT (nat) : SL-(R) -* PSL~(R) , y = . This shows

that, even if car k = 0 , if G is not simply connected and G’ is not adjoint

then 1.3 may fail (cf. 2.7).

3.9. A complement. Suppose that G’ , H’ are like G , H in 1.3 and that

Q(H) = H’ . Then s~ : k -~ k’ in 1.3 is an isomorphism, not just a homomorphism.

This is proved in [4 : 8.11].

3.10. Automorphisms. The result is like that in 2.8 except that now a homomorphism

~ : : Z(G) n H must be included and in the exceptional case of type D of

2.8 one does not know (but one supposes) that car k = 2 since H may not contain

Z(G) (as in the example of 3.8 ; it does so if G is split, quasisplit,...).
The proof is similar.

§ 4. Extension and reformulation

We wish to extend 1.3 to the case where G’ is reductive. This can not always

be done : Let a : SL n (C) - SL2n(R) be the map obtained by replacing each complex

coordinate by two real coordinates. Clearly there is no homomorphism cp : C -~ R .

The image group is semisimple, not simple (as an algebraic group). This process
which produces from a group defined over C ( SL in this case) a corresponding

group defined over R (the image) is called restriction of scalars and works

whenever we have a finite dimensional field (or even algebra) k’ separable over

a given field k and a group G defined over k’ . We write I~, ~k G for the

resulting group over k . There exists a natural isomorphism



4.1. THEOREM (8.16 of [4]).- Assume as in 1.3 except that G’ is reductive. Let

G’ (1 s i s m) be the normal k’-subgroups of G’ that are k’-simple (perhaps
1

not absolutely simple). Then there exist finite separable extensions k.
1

i s m) of k’ , field homomorphisms 03C6i : k ~ k. , and a special k’ -
i i

isogeny S : 
1 k’( G’ and a homomorphism p : H -; Z(G’)(k’)

i=1 ~~ m

such that ~ ( ~llk , (~1G ) ) - and c~ ( h ) - w ( h ) . ~ ( i=1 ~ ( R° ki~k , (c~ 1 ° ( r~ ) ) ) for

all h E H .

We give the proof in case G’ is adjoint.

Then G’ is the direct product of the Gi ’ s , and Gi = Rk, ‘k~ G~ with

k./k’ finite separable and G"i absolutely simple. Let 

_ 
rt, : G’ ~ G’. be the natural projection. One then applies 1.3 to each of the. 

1 1

maps (R~ k~) 1 o ni o a : G -> G" and collects the results to get 4.1.
_ 1

4.2. Uniqueness. We consider only the case : k’ algebraically closed. Then 4.1

simplifies since the G’ themselves are absolutely simple, each k. = k’ , and
i 1

each R and each R° = id . Then the possibility of making S special and the

resulting uniqueness easily follow from that of 1.3. We see further that

c~ . J ( i ~ j ) could never occur since then the image of in

Gi X G’j would be the graph of a morphism Gi and thus not dense.

4.3. A reformulation of 4.1. Under the hypotheses of 4.1 there exists a finite

dimensional separable commutative k’-algebra L, a homomorphism k ~ L,

a G’ and a homomorphism  : : E - center G’ (k’ )
such that = for all h E E .

Proof. In 4.1 let L = 03A3 k’i , 03C6 = 03A3 03C6i ,... .

4.4. A conjecture. The result 4.3 remains true if G’ is arbitrary, with, perhaps,

some mild changes (like dropping the separability).

The authors of C4~ indicate that they have proved this in a number of cases

and expect to return to it later. It holds, for example, if G is split, simply



connected, semisimple and k is infinite and not nonperfect of car 2 .

§ 5. Continuity of homomorphisms 

There are many results in [4] on this subject. We discuss here only one or

two of them related to the development given so far. We now assume that k is

given a nondiscrete locally compact topology which makes it into a topological

field, hence G(k) into a Lie group, and similarly for k’ and G’ , and further

that G is semisimple and G’ reductive.

5.1. DEFINITION.- Given a connected normal k-subgroup G1 of G , we say that

G (k~ is a complex factor of G(k) if either ~( 1 ~ k "--’ C or (2) k ~‘ R and G~
is isogenous to a group of the form R- k~k G2 .
5.2. THEOREM (9.8, 9.13 (ii) of [4]).- Let G , G’ , k , k’ be as above. Suppose

that G possesses no nontrivial normal k-anisotropic factor and that G’ posses-

ses no nontrivial complex factor. Let H and a be as in 1.3 (G( k) :::> H :::> G+ ,
ex(H) Zariski-dense in G’ ) . Then a is continuous. In particular k 1 C . Further
each surjective homomorphism of G(k) onto G’(k’) is continuous and each such

isomorphism is a topological isomorphism.

If G is simple then the first statement follows from 4.1 and the fact, men-

tioned above, that if k’ t C then every homomorphism cp : k --~ k’ is continuous.

The general case follows from this case by a series of simple reductions. The last

statement then follows since cp is then necessarily surjective by 3.9.

As just seen, the assumption of isotropicity on G has been used to deduce

5.2 from 4.1, but as shown in [4J it is, in fact, not needed here and in many other

results. For example :

5.3. THEOREM (9.13 (i) of [4]). In 5.2 replace the assumption of isotropicity on

G by : the universal covering of G is separable (which holds if G is simply

connected or if car k = 0 , and in many other cases). Then the last conclusion

there holds.

The proof of 5.3 is based on a line of reasoning (due to van der Waerden [19])
not in the spirit of the above development and will be omitted.

In closing, let us mention that in particular this result implies the result



of Freudenthal in the introduction, extended to other types of groups and fields.

5.4. Added remark. One of the authors of [4] has proved, over R , a very general

theorem [18, § 4] of the type we have been discussing. It implies that 4.4 holds

if k = k’ = R and G is simply connected as an algebraic group (but not necessa-

rily semisimple) and equal to its own derived group. The two basic cases are
G = SL2(R) and G = Spin,,(R) . From these the general case is deduced.

§ 6. Irreducible representations

We recall that a projective (resp. linear) representation of a group is a

homomorphism into some [finite-dimensional] PGL(V) (resp. GL(V) ). We shall

identify isomorphic representations. The principal result in [4] in this area is

the following result and its refinement in 6.4. 

6.1. THEOREM (10.3 of [4]).- Let k , G , H be as in 1.2, and let k’ be an

algebraically closed field. Let p : H -~ PGL (k’) (n z 2~ be a projective
n

representation irreducible on G+ . Then there exist homomorphisms

: k --~ k’ , finite in number, and irreducible rational projective representa-

tions TT. of cpo 1G such that, on H, p is equivalent to the tensor product of

the 03C0i ° 03C6oi .

Let G’ = p(G+) . By 3.1 this group is connected, thus by the lemma of Schur

it is also reductive, semisimple, adjoint. Let {G’i} be its simple factors. The

identity representation of G’ = n G’ i is irreducible, thus can be written as a
i

tensor product n A. with X. an irreducible rational projective representation

of G! . By 4.1 there exist homomorphisms k ~ k’ and special isogenies

P. 
i 

: Gi such that p = ° S. 
i 

o cp.) on G . If p’ denotes this

product and h E H , then p’(h~p(h~ 1 centralizes p(G+) ( G+ is normal in H )
and is thus equal to 1 by Schur’s lemma. This gives 6.1 with rr. = X. 0 S.. .

1 1 1

6.2. Refinement and uniqueness. In 6.1 uniqueness does not hold if

car k = p ~ 0 , for, if S is an irreducible rational projective representation

then Fr P o Fro is one also. The situation is, in fact, more complicated than



this, for one has the following result [~ 14, th. 6.1].

6.3. THEOREM.- Assume car k = p ~ 0 . Let M(G) denote the set of irreducible

rational projective representations of G for which the dominant weight is a

linear combination of the fundamental weights with all coefficients between 0

and p - 1 . (Up to isomorphism, there are p such, 4 = rank G .) Then every
irreducible rational projective representation of G is isomorphic to a finite

tensor product of the form II o Frl with n. E uniquely up to

trivial factors.

For simplicity we shall write M(G) in this situation. If car k = 0 ,

then M(G) is defined as above with no restriction on coefficients.

6.4. THEOREM.- In ~.1 it can be arranged that the are distinct and that each

~r. 
i 

is nontrivial and in M( 1G) . Then the decomposition is unique. Conversely,
if the cpi and ni are such, then the resulting product is irreducible.

Proof. The first statement follows easily from 6.1, 6.3 and the last remark

of 4.2. For the uniqueness, we put together in blocks the terms of the product

for which the corresponding cpi ’s differ only by a power of Fr . We get a coarser

factorization II = II1 II2 ... with II~ - n~ o , p" and rt~ _ fl, 
i 

o Fr~ with

M(~ G) . Now is the image under ~t~ , hence is simple,

equal to one of the G! . It follows that the form a permutation of the

G! . The uniqueness of the 03C6j and 03C0j follows from 4.2, and then the uniqueness

of the ni from 6.3. The final statement is proved in [14, th. 5.1].

6.5. Linear representations. The preceding results extend to linear representations

if one assumes that G is simply connected and adds a homomorphism into the center

of GL (k’) . The proof is rather easy.
We thus see that the theory of abstract irreducible representations of H is

very much like that of rational ones, e . g. in case k is algebraically closed so

that H - G (= G(k)) : Let B be a Borel subgroup. Then B fixes a unique line

of V and acts on it according to some character, the "highest weight", which

conversely determines p uniquely.



We close with a reformulation of the conjecture 4.4 in terms of representations.

We recall that a function f : H -~ k’ is called a representative function if the

space generated by its translates over k’ (left or right) is finite dimensional.
As one sees these functions are the matrix coefficients of the finite-dimensional

representations of H over k’ . They form a k’-algebra. Let L be a finite-

dimensional commutative k’-algebra and 03C6 : k ~ L a homomorphism. Now if f

is a polynomial function on G defined over k , and g is a k’-linear function

from L to k’ one sees easily that is a representative

function. For example, if d : k --. k is a derivation, then d o f is of this

form, with L the algebra of dual numbers over k and tp the map

x + dx . E . This case is related to a number of examples given in

[4 : 8.18 (b), 9.15 (a)] to show the pathology that can occur if various assumptions

are omitted.

6.6. Reformulation of 4.4. Under the assumptions of 4.4 every representative func-

tion on H is a polynomial in functions of the above form.
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