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HARMONIC ANALYSIS ON REDUCTIVE p-ADIC GROUPS

(after HARISH-CHANDRA [4 (c)])

by G. VAN DIJK

Séminaire BOURBAKI

23e année, 1970/71, n° 387 Novembre 1970

In [7], Mautner gives a method for constructing irreducible unitary represen-
tations of the p-adic group PGL(2) , whose matrix-coefficients are square-integrable
functions. For this purpose he starts with an irreducible unitary representation

T of the open compact subgroup K , being the canonical image in PGL(2) of the

group of integer matrices with determinant a unit in GL(2) , whose restriction to

the subgroup generated by the matrix (1 
1 01) does not contain the identity repre-

sentation. The unitary representation of PGL(2) induced by T , decomposes into a

direct sum of finitely many irreducible representations, whose matrix-coefficients

with respect to a suitable orthonormal base, are continuous functions with compact

support.

These representations are special cases of so-called supercuspidal represen-

tations. They are defined as follows.

Let Q be a p-adic field, i.e. a locally compact field with a non-trivial

discrete valuation. We start with a connected, reductive (linear) algebraic group 6
defined over Q and we denote by G its subgroup of Q-rational points. Then G

is a locally compact, separable and unimodular group. Let P be a parabolic subgroup

of 6 , defined over Q , with unipotent radical N . -Then N is defined over Q

as well. We put P = P n G , N = N n G and we call P a parabolic subgroup of G

with unipotent radical N . P and N determine P and N completely. By 3 we

denote the maximal Q-split torus in the center . We write Z = Z n G . Let

f be a continuous function on G with compact support mod Z . For any parabolic

subgroup P of G with unipotent radical N , put

where dn is a fixed Haar measure on N .
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A continuous (complex-valued) function f on G is said to be a supercusp

form if

( i ) Supp f is compact mod Z ; ;

(ii) 0 for all parabolic subgroups P ~ G ,

Let n be an irreducible unitary representation of G on a Hilbert space K .

We call TT supercuspidal if there exist e fl- (0) such that the function

x 2014~ (cp, (x E G) is a supercusp form.

In fact, Mautner’s method of construction for this class of representations in

case PGL(2) , can be generalized to semisimple G by taking a "good" open compact

subgroup of G (given by Bruhat-Tits) and a so-called supercuspidal representation
of K , i.e. an irreducible unitary representation of K whose matrix-coefficients,

considered as functions on G , are supercusp forms. It is an open problem if one

obtains all supercuspidal representations of G by means of the above construction.

There is another, more serious, motivation for studying supercuspidal representations.

It originates from the "philosophy of cusp forms" which appeared to be very fruitful

in harmonic analysis on reductive groups ([2], [4(b)]). Furthermore we have to mention
that the supercuspidal representations occur naturally in the study of automorphic

forms (cf. [5]).

Of course our main goal here is the Plancherel formula for G . Apart frbm

technical difficulties (no differential operators, nr. good "exp" in positive charac-

teristic) we are faced with a fundamental problem : given any irreducible unitary

representation of G , does its character exist ?

For supercuspidal representations the answer is affirmative. In the next para-

graphs we propose to describe some of the results concerning supercuspidal represen-

tations. Proofs are omitted almost everywhere. They can be looked up in ~4(c)~.



§ 1. Reductive p-adic groups.

We recall some standard results about algebraic groups (cf. [1]). Let Q be

a field. By an Q-group we mean a linear algebraic group defined over Q . Let G

be a connected and reductive Q-group. By a parabolic subgroup P of G we mean an

algebraic subgroup which contains a Borel subgroup We say that P is Q-

parabolic if it is parabolic and defined over 0 . Let N denote the unipotent radi-

cal of P . Then N is an ~-subgroup and P is the normalizer of N By

a Levi Q-subgroup M of P we mean a reductive ~-group such that the mapping

(m,n) 2014~ mn (m EM, n E N) defines an Q-isomorphism of the algebraic varieties

M x N and P . Such a subgroup M always exists and is connected. Fix M and let

A be a maximal Q-split torus lying in the center of M . Then A is unique and

M is the centralizer of A in G . . We call A a split component of P . Let N

be the group of Q-rational points of N . For any split component A’ of P there

exists a unique element n E N such that A’ = An = nA n ~ .

Now let Q be a p-adic field. Let G denote the group of all Q-rational

points We shall call G simply, a reductive p-adic group. As before, by a

parabolic subgroup (or cuspidal subgroup) P of G , we mean a subgroup of the form

P = G n P, where P is an Q-parabolic subgroup of G . . P determines P comple-

tely. By a split component A of P , we mean a subgroup of the form A n G , where

A is a .split component of P . A is completely determined by A , since Q is an

infinite field. We call -(P,A) a parabolic (or cuspidal) pair in G . Once A is

fixed, we have the corresponding Levi Q-decompositions P = MN and P = MN where

M = M n G . We shall call N the unipotent radical of P (as above).

§ 2. Existence of characters for the discrete series.

Let G be a locally compact unimodular group with center ZG . Let Z be a

subgroup of ZG such that Z~/Z is compact. As usual, Z will denote the set of

unitary characters of Z . Fix Z and x e Z . A unitary representation n of G

is called a x-representation if r(z) = B(z).1 for all z E Z .

Let n be an irreducible (no non-trivial invariant closed subspaces) x-

representation on a Hilbert space ~ . We say that TT is square-integrable mod Z



for some (hence for (0) .

Obviously this notion is invariant under equivalence of representations. The

Schur orthogonality relations are still true : if both and (n’,K’) are

x-representations, which are square-integrable mod Z , then

(oo. , ,. i = 1 , 2) , where d(r) is a positive number only depending on n

and the normalization of the Haar measure on G/Z . Moreover, if n is not equiva-

lent to rr’ , then

Denote by E(G) the set of equivalence classes of irreducible unitary repre-

sentations of G and by E(G,x) the subset of E(G) , consisting of those classes
which contain x-representations. Let E2(G) be the subset of E(G) consisting of

the classes which contain square-integrable representations mod Z and put

E2(G,X) = E 2 (G) n E(G,x) . We call E2(G) the discrete series of G . It is indepen-

dent of the choice of Z .

Observe that d(n) only depends on the class w of n . We shall write d(w)
as well as d(n) .

Let K be any compact subgroup of G . By E(K) we denote the set of equiva-

lence classes of irreducible unitary representations of K . If w E E(G) and

d E E(K) , we define as follows. Fix a representation n e w and let TTy
denote the restriction of n to K . Then is the multiplicity of d in

TL.. Since K is compact, every irreducible representation of K is finite-

dimensional. We write d(d) for the degree of a representation in the class d .

THEOREM 1.- Let K be an open compact subgroup of G . Normalize the Haar measures

dx and dz on G and Z such that the tota measures of K and K n Z are 1 .

Normalize the Haar measure dx* on G/Z such that dx = dx* dz . Then for any



This is a simple consequence of the Schur orthogonality relations, mentioned

above.

COROLLARY.- Fix W E E2(G) . Under the conditions of Theorem 1,

for all d e E(K) .

Now let G be a reductive p-adic group with split component Z . Let G be
o

an open set in G and denote by C~C(Go) the space of all locally constant complex-
c o

valued functions on Go with compact support (no topology). By a distribution on
G we mean simply a linear mapping of C~(G) into the complex numbers.
o c o

THEOREM 2.- Let w e E (G) and fix m e w . Then for any £ e C~c(G) , the operator
- 2 c

is of the trace class (even of finite rank).

Since G contains arbitrarily small open compact subgroups, this is an imme-

diate consequence of the corollary of Theorem 1. Define 9 (f) = tr n(f)

(f E C~c(G)) . Then 6 , the character of n , is a distribution on G which depends

only on the class w of Tr . Hence we may denote it by 9 . Then 9 is invariant

and the mapping w ~ 9 (w E E2 (G)) is injective.

Let °E(G) denote the set of all classes in E(G) which contain supercuspidal

representations. Obviously °E(G) C E2(G) . Consequently, supercuspidal representa-

tions have a character.



§ 3. A theorem.

Let G be a reductive p-adic group with split component Z . For X E Z

we denote by C~c(G,~) the space of locally constant complex-valued functions f

on G with compact support, satisfying

f(xz) = f(x) X(z) (x E G , z E Z) .

By we mean the space of supercusp forms in Given two cuspidal

pairs (Pi,Ai) (i = 1 , 2) in G , we write (P1 ,A1) > (P2,A2) if P1 c P2 and

A~ ~ A A cuspidal pair is called mincuspidal if it is minimal with respect to
this partial order.

Let (P,A) be a cuspidal pair in G , P = MN the corresponding Levi decompo-

sition. Let f be a continuous complex-valued function with compact support. We

define

Suppose P is given. Then this definition is independent of the choice of A

and the normalization of the occuring Haar measures.

LEMMA 1.- Let (P,A) be a cuspidal pair in G , P = MN the corresponding Levi

decomposition. There is a one-to-one correspondence between cuspidal pairs (~P,~A)
in M and those cuspidal pairs (P’,A’) in G for which (?’,A’) -~ (P,A) . The

correspondence is given as follows :

THEOREM 3.- Let f be a continuous complex-valued function on G , with compact

support. Suppose fP  0 for all P (including P = G) . Then f = 0 .

The proof rests upon Lemma 1 and is very similar to the case of reductive

groups over a finite field (cf. [2], C, § 3).



§ 4. A relation between supercusp forms and supercuspidal reprentations.

In order to state the results of this paragraph, we have to recall a recent

theorem of Bruhat and Tits. It is of great importance in the proofs as well. We

refer to [10].

Let (Pi,Ai) (i = 1 , 2) be two cuspidal pairs in G . Let w(A~,A2) denote

the set of all bisections s : A~ -~ with the following property. There is an

element y E G such that a (=yay ) for all a E A~ . It is known that

w(A. ,A ) is a finite set. Fix s c w(A~,A2) . We say that y E G is a representa-

tive of s in G if a s = ay for all a E case A~ - A2 = A we write

w(A) instead of w(A,A) . Then is a finite group. Let (P,o,Aa) be a mincus-

pidal pair in G and MoNo the corresponding Levi decomposition. For any root

03B1 of (P,A) be the corresponding character of A . Let A+o be the

set of all points a E Ao where 
’ 
Z 1 for every root a of (P oo ,A ) .

THEOREM (Bruhat-Tits).- We can choose an open and.compact subgroup K of G with

the following properties.

(i) G = 

(ii) G = K , where (j~ is a finite subset of Mo .
o 0

(iii) Every element of w(A ) has a representative in K .

(iv) If (P,A)  (Po,Ao) is a cuspidal pair and P = MN the corresponding Levi

decomposition, then P fl K = (M (1 K)(N fl K) .

(v) Put K- K (1 M dnd *Po = M (1 P . If we replace (G,P ,A ,K) by
the above four conditions are again fulfilled.

Let P be any parabolic subgroup of G . There is a minimal parabolic sub-

group contained in P . Since the minimal parabolic subgroups are ~-conjugate, we

can find an element k in G , and by (i) even in K , such that P We then
obviously have G = KP . Moreover, we can choose a split component A of P in such

a way that (Po,Ao) . Let P = MN be the corresponding Levi decomposition.

Then Pk - and by (iv), Pk ~ K = (Mk n K) , hence P ~ K = 



Let F be a finite subset of E(K) . Define

where = d(d) tr d(k) (k E K) , ad(x) = 0 if x E Then of f E 

By we denote the convolution algebra of the complex-valued continuous

functions f with compact support, satisfying f * = f . Furthermore, put

oCc (G,~,03B1F) = f1 C (G,(Y-) , where B e Z . We have the following important
lemma.

LEMMA 2.- The elements of °C are Hecke-finite : Fix f = oCc (G,~,03B1F) . Let
J f be the space spanned by all functions of the form Of * f * 03B2 . 

Then oo .

The following theorem has a real analogue. The proofs are mutatis mutandis the

same (cf. ~4(a)’, lemma 77). The main burden of the proof rests upon Lemma 2.

Let L2(G,x) denote the completion of with respect to the norm

tlf!! _ ~ ~’ dx~ ~~ (f E G°° (G,x) ~ . Let X be the left-translation on

G/Z 
c

L 2 (G,X) : X(x)f(t) = f(x ~ t) (x , t E G) . Then X is a continuous unitary x-
representation of G on the Hilbert space L2(G,X) , which we call the left regular
representation of G on L2(G,x) .
THEOREM 4.- Fix f E / 0 . Let X denote the left regular representa-

tion of G on L2(G,x) . Let rnf be the smallest closed subspace of Tt = L2(G,x) ,
which is stable under X and which contains f . Then there exists such

that H = ) V. , where Vi are closed, mutually orthogonal X-stable irredu-

1 

cible subspaces of H . Let X. = restriction of À on V.. Then X. is a super-

cuspidal x-representation.

COROLLARY.- Let f E oC~c(G,~) . Then f is a finite sum of matrix-coefficients of

supercuspidal x-representations.



§ 5. Existence of characters in general.

Let (P,A) be a cuspidal pair in G with corresponding Levi decomposition

P = MN . Let p be an irreducible unitary representation of M on a Hilbert space

V , whose class belongs to °E(M) . Extend p to a representation of P by putting

p(p) = p(mn) (p E P ; m E M , n E N ; p = mn) . Denote by n the unitary represen-

tation of G induced by p in the sense of Mackey. The definition is as follows.

Let H be the space of all continuous functions f : G -~ V with compact support

mod P and satisfying the following condition :

where Ap(p) is given by the relation d (qp) = d~q being a left Haar

measure of P . We provide H with the scalar product

( K given by Bruhat-Tits). Let H be the completion of H w.r.t. the norm of this

scalar product. Then n is the (continuous) unitary representation of G on K,

given by

The set of all n , obtained by this method, is a complete set of representations :

let f be a continuous complex-valued function with compact support and suppose

for all TT , then f = 0 . The main tool in the proof is the corollary of Theorem 4.

Observe that it suffices to consider standard parabolic subgroups (w.r.t. some

mincuspidal pair).

Assumption.- Let G be a reductive p-adic group. Let K be an open compact subgroup

of G given by Bruhat and Tits. Then

for all d E E(K) .

Now fix d E E(K) . Let n be as above. Denote by the multiplicity of

d in the restriction of n to K . Then it is easily checked that is boun-



ded if n runs over the complete set of representations introduced above. By a

wellknown result of Godement (~3~, Lemma 4) this yields :

It is clear that this result implies the existence of the character for every

tu e E(G) .

At this point we take the opportunity to state a conjecture. Keeping in mind

the corollary of Theorem 1, the above assumption leads naturally to the following :

In view of results of Shalika for SL(2,Q) (cf. [8]), one is inclined to
believe that, at least for semisimple G , the "formal degrees" d(w) (w E °E(G))
are integers, up to a constant depending on the choice of the Haar measures.

As shown by Shalika in case the residual characteristic of Q is not 2 ,

every n E °E(G) is induced by an irreducible representation T of some maximal

compact subgroup of G (G = SL(2,Q)) . Assuming this, it is an easy exercise to

prove that d(d) , where d is the class of T , provided the Haar measure

on G is so normalized that the total measure of K is one. The general case is

however rather misty and no general result in this direction has been obtained.

§ 6. Characters are functions.

Let n be a supercuspidal representation of G . Define 9 (f) = tr n(f)
(f E 

Let l = rank G . Denote by D(x) (x E G) the coefficient of t in the

polynomial det(t + 1 - Ad(x)) in the indeterminate t . We call x regular if

D(x) I 0 . Denote by G’ the set of regular elements of G . Then G’ is an open,

invariant and dense subset of G , whose complement is of Haar measure zero. We have

the following theorem.



THEOREM 5.- Let n be a supercuspidal representation of G . There exists a function

F on G with the following properties.

(i) F is locally constant on G’ and

for all f E c=(G) with Supp f c G’ .

(ii) If char Q = 0 , then in addition F is locally summable on G and

The starting point for the proof of the above result is the following theorem.

THEOREM 6.- Let G be a reductive p-adic group. Let w E E2(G) . Fix 03C0 ~ 03C9 and

denote by H03C0 the space of 11. Then for any f E C°°(G) ,

This is an easy consequence of the Schur orthogonality relations. Now let

w E °E(G) and fix n E w . Choose a unit vector cp E , which is left fixed by

some open subgroup of G , and define

Then 8 is a supercusp form and

The idea of the proof of Theorem 5 is clear : one has to interchange integrals.

By a Cartan subgroup of G we mean a subgroup of the form r = 0393 ~ G , where

r is a maximal Q-torus in (E . Put F’ = r n G’ . Then r’ is open and dense in

r . Put Gr = (r’) ; Gr is open, G-invariant and G = Ur Gr . In the proof of

the first part of Theorem 5 (which is valid in arbitrary characteristic) we reduce
the problem to Cartan subgroups r : the restriction of 6 to Gr is a G-

invariant distribution and gives rise to a unique distribution ar on F’ . This

is not difficult. The basic lemma then reads as follows.



LEMMA 3.- Let K be any open compact subgroup of G . For any compact subset tu~,
of r’ , there exists a compact set w C G such that

f or al l ’~ E , unless x E uZ . .

The proof is by contradiction and involves the fact tnat we are dealing with

a supercusp form.

The lemma enables us to conclude that Op is a function : °

of the choice of K . Now let y e G’ . Choose a Cartan subgroup r such that

y e r’ . . r is unique. Define F (y) = It is an easy exercise to show that

F satisfies the conditions of the first part.

The proof of the second part works only in characteristic zero. This is mainly

due to the fact that we often turn to the Lie algebra g of G , while the mapping

"exp" behaves badly in positive characteristic. The idea of the proof is due to

Jacquet and Langlands ([5], § 7). They give a similar proof in case G = GL(2,Q)
(without any restriction on char Q ). It consists of cutting off the integration

over G/Z in the formula

f

and giving estimates for the pieces to be able to apply Lebesgue’s Theorem on domina-

ted convergence.

For any a define its absolute value lal in the usual way so that

d(at) = a)dt , where dt is a Haar measure on the additive group of Q . Let q

be the number of elements of the residue class field of Q . Define À(x) by

qÀ(X) = ID(x) I (x E G’) .

Let denote the algebra of all n x n matrices with coefficients in Q .



For any 1 , let CL denote the set of all x E G such that 1 + ~(x~ S T .
Denote by Q* the image of under the canonical projection G -~ G* = G/Z and

write $- for its characteristic function. Then

We want estimates for 9 . As above, we restrict 8 T to Gr = (r*) , F

being any Cartan subgroup of G . Let A denote the maximal split torus of F .

Fix a compact set w in G such that Supp e c wZ, Supp Let cu~,
be the set of all Y E r such that Yx e wZ for some x E G . Then an easy observa-

tion shows that wr is relatively compact mod Z . The first estimate is the follo-

wing :

where t = dim A/Z and c is a positive constant. Moreover we have

This needs considerable preparation, too much to explain here, and involves a

refinement of Lemma 3 : the compact set w of Lemma 3 must be known in terms of

y e This can be realized since we are in char Q = 0 .

Let r be as above. Let h be a locally constant function with compact sup-

port mod Z . We define

This integral exists.



THEOREM 7.- (char Q = 0). Let r be any Cartan subgroup of G and let be a

compact subset of r. Then

for all locally constant functions h with compact support mod Z .

The proof is very long and by no means trivial. It is mainly carried out on

the Lie algebra of G .

By Theorem 7 we obtain a constant c1 > 0 such that

for all Y E r and y E G such that y n G’ . Since there are only finitely

many non-conjugate Cartan subgroups in G , there exists a constant c2 > 0 such

that

for all x E w n G’ and all T ~ 1 .

THEOREM 8.- (char Q = 0). There exists E > 0 such that the function

x - ID(x)I 2 e is locally summable with respect to the Haar measure on G .

First of all, the proof is reduced to the case of semisimple groups. Let r

be a Cartan subgroup of G . Let dx , dy denote the Haar measures on G and r

respectively. Let r be the normalizer of r in G and define Wr = Wr is

a finite group with elements.

LEMMA 4.- Let dx be the invariant measure on G = G/r such that dx = dxdy . Then

By means of this Lemma the proof of Theorem 8 is reduced to :

LEMMA 5.- Let r be a Cartan subgroup of G . There exists E > 0 such that

~D~Y~~ ~ is locally summable on F .

This is proved, by going over to the Lie algebra of r, with induction on the

dimension of g, .



By Theorem 8, the function

is locally summable on G .

By Lebesgue’s Theorem we have now

(i) F n is locally summable on G ,

§ 7. Some consequences.

We assume char Q = 0 . Let G be as defined in § 1. A Cartan subgroup r of

G is called elliptic if r/Z is compact. Such subgroups exist (cf. [6], § 15).

The Selberg principle. Let r be any Cartan subgroup of G . Let 9 be a

supercusp form. Then

unless r is elliptic.

The proof is easy.

Let 81,...,Hr be a maximal set of non-conjugate elliptic Cartan subgroups

of G . As usual, put GB = (1 ~ i ~ r) . Define

Then G is an open subset of G . We call it the elliptic set. We normalize the

Haar measures d.b on B./Z in such a way that
i r

Notice that in the real case r is at most 1 . In the p-adic case r can

be larger than 1 as already the group G = GL(2) shows, where r = 3 . For

w E °E(G) , denote by 8~ the character of w . Fix x E Z . .. For w E °E(G,X) ,
put



THEOREM 9 (cf. [4(a)], Corollary 1 of Lemma 81 and [5], § 15).- Let w1’ °E(G,x) . .

The proof of the orthogonality relations rests upon Theorem 5, the Selberg

principle and Lemma 4.

COROLLARY.- Fix x E Z and let

§ 8. A conjecture.

If one tries to prove the results of [4(a)], Part II, for p-adic groups, one

is naturally lead to the following problem. It also appears in Harish-Chandra’s theory

of Eisenstein integrals [4(b)].

Let V be a finite-dimensional complex Hilbert space and let T be a unitary

representation of K (given by Bruhat-Tits) on V . Denote by H(T) the convolution

algebra of the mappings p : G -~ with compact support, satisfying

Let (P,A) be any cuspidal pair in G , P = MN the corresponding Levi decomposition.

Put

VP = subspace of v E V such that T(n)v = v for all n E N n K .

Let E be che orthogonal projection of V on V . . Put

Then TM may be regarded as a representation of K n M on VP and so we can consi-

der the algebra H(TM) . Define q as in § 5. For 03B2 e H(T) , put



Then ~(P)(m) = for all m EM. Moreover E H(T ) . The mapping

p~ : p t2014~ P (p) ’ is actually a homomorphism of H(T) into H(T ) .
Conjecture (Problem). H(TM) is a finite right-module over ~(H(T)~ , i.e. there

exist 1 and a1 ,...,ap E H(TM) such that

It is obviouly enough to state the conjecture for standard parabolic pairs with res-

pect to some mincuspidal pair (P ,A ) . Satake has proved the conjecture in case

char Q = 0, G is simply connected, T = identity representation of K and P is

minimal. In this case H(TH) is a free module of finite rank over (cf.

[9], ch. II).
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