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THE HILBERT MODULAR GROUP, RESOLUTION OF

THE SINGULARITIES AT THE CUSPS AND RELATED PROBLEMS

by F. HIRZEBRUCH

Séminaire BOURBAKI

23e annee, 1970/71, n° 396 Juin 1971 1

§ 1. The Hilbert modular group and the cusps.

Let k be a real quadratic field over § and o the ring of algebraic

integers in k. Let x x’ be the non-trivial automorphism of k . The

Hilbert modular group

acts on H x H where H is the upper half plane of C :

The group G = acts effectively. For a description of a fundamental

domain of G, see Siegel [13].

For any point x E H x H, the isotropy group G x ~ G is finite cyclic. The

singular points of the complex space H x H/G correspond bijectively to the fini-

tely many conjugacy classes of maximal finite cyclic subgroups in G . Their number

has been determined by Prestel [12] (see also Gundlach ~7~~. If, for example,

D = 1 (4), D 1 0 (3), D > 5 , D square free, k = Q(~) ,

then there are h(-D) singular points of order 2 and h(-3D) singular points

of order 3 where h(a) denotes the ideal class number of ,~(~~ . (Assume a

to be square free.)

G acts on the projective line k U ~m} by

There are finitely many orbit classes. The elements of (k U [°°))/G are called

cusps. They correspond bijectively to the ideal classes of o . If x = - (where
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m , n E o ) belongs to a certain orbit, then (m,n) is a corresponding ideal. We

denote by C the group of ideal classes in o . (The principal ideals represent

the unit element of C.) H x H/G can be compactified by adding finitely many

points, namely the cusps. The resulting space

is a compact algebraic surface (compare Gundlach [5]) with isolated singularities

(the quotient singularities, as explained above, and the finitely many cusps). We

wish to resolve the singularities. This is well-known for the quotient singulari-

ties (see, for example, [9] § 3.4). Object of this lecture is to do it for the

cusps. For this we have to study the neighborhood of a cusp x in H x H/G and

the local ring at x .

We sometimes denote a cusp and a representing element - (m , n E o) by

the same symbol x . Let Gx = (y Y E G , yx = x) . We cannot, in general, trans-

form x = n to ~ by an element of G , but it can be done by a matrix A with

coefficients in k . Put a = (m,n) . Then, following Siegel [13], we take

where u , v E a~~ (fractional ideal) and define

,

where E is a unit of k ./If we agree to consider a matrix always as a projec-

tive transformation, then

The group U of positive units of k is infinite cyclic. Let e be the genera-

tor with eo > 1 . It is called the fundamental unit. Let U+ be the group of

totally positive units, i.e.



Equation (5) is a motivation to study data (M,V~ where :

1) M is a module of rank 2 contained in k ;
(6) 

2) V is a subgroup / ~1~ of the group of totally positive units

which leave M invariant under multiplication (as is well-known

Given the data (6) we have a group

In analogy to (4) such groups occur for cusps which are singular points of

the compactified orbit spaces F of more general discontinuous groups acting on

H x H (subgroups of finite index of certain finite extensions of G). In (4) we

have M = a 2 and V = U2 and UM = U+ , °

Data (M,V) as in (6) determine a torus bundle X over the circle :

n 1 (S~) acts on the torus. X is associated to the universal cover of S~ . . The

following proposition seems to be well-known. I know it from J.-P. Serre. It

follows, for example, from the information given in [5].

PROPOSITION.- If a cusp with data (M,V) is singular point of an algebraic sur-

face F (see above), then its neighborhood boundary is the torus bundle X

defined by (8). (For "neighborhood boundary" see, for example, [10].)

The local ring for a cusp (M,V) was described by Gundlach [5]. Let

Mo c= R2 be the Z-module of all x e R2 such that

M° has rank 2 . We have by (9) a bilinear pairing

V acts on B such that = B(x,Ew) for E E V , w EM.



PROPOSITION.- The local ring for the cusp (M,V) consists of all "convergent"

Fourier series

where a / 0 only if both x1 > 0 and x2 > 0 or x = 0 , and where a = a

for E E V . "Convergent" means that f converges for > c where

c is a constant depending on f .

§ 2. Binary indefinite quadratic forms.

Let M be a 2-module of rank 2 contained in k . The function

is a quadratic form M -~ P which is indefinite and does not represent 0 . We

orient M by the basis (P. J3 ) of M with ~1~2~ - (3 P ’ > 0 .

We now study oriented Z-modules M of rank 2 and quadratic forms

which are indefinite and do not represent 0 . No specific field k is given.

We call (M~,f~~ and (M2,f2) equivalent if there exists an isomorphism

M~ -~ M2 of oriented Z-modules which carries f~ in tf2 where t is a

positive rational number.

Every (M,f) is equivalent to a quadratic form

where Z x ~ is canonically oriented and such that for (u,v) E Z x ~

with (a,b,c) = 1 . Then b2 - 4ac is called the discriminant of f , It depends

only on the equivalence class of f and is a positive integer which is not a



perfect square. The real number

is called the first root of g.

We take the unique continued fraction

where a. E 2 and aj ~ 2 for j > 1 . A continued fraction will be denoted by

[a1,a2,a3,...] . Since r 1 is a quadratic irrationality its continued fraction is

periodic from a certain point on. Let (b ,...,b ) be its primitive period

2) . Observe that the period (2) cannot occur because [2,2,...] = 1 is

rational.

A sequence of integers (b ,...,b ) with 2 is called a period of

length p , two periods are equivalent if they can be obtained from each other

by a cyclic permutation. Such an equivalence class is called a cycle. A cycle is

primitive if it is not obtainable from another cycle by an "unramified covering"

of degree > 1 . Cycles are denoted by ((bl,.,.,bp)) . Thus ((2,3)) is primi-

tive, but ((2,3,2,3)) is not. (b1,...,bp))m means the m-fold cover of

((bl,...,b p )) . For example ((2,5))3 - ((2,5,2,5,2,5)) . °

THEOREM.- The primitive cycle of the first root depends only on the equivalence

class of (M,f) . If we associate to each (M,f) this primitive cycle, we obtain

a bijective map from the set of equivalence classes of quadratic forms (M,f) to

the set of all primitive cycles (where ((2)) is excluded).

This theorem is a suitable modification of classical results. It is related

to Gauss’ reduction theory of quadratic forms ~3J . The continued fractions had

to be modified also, but all relevant theorems in Perron [11] can be taken over.



To simplify notations we shall indicate a cycle by

where s is the number of two’s occuring in the corresponding position and where
J

t. ~ 3 . For example,
J

Let k be a real quadratic field over Q and d its discriminant ; it is

the discriminant of the quadratic form (11~ defined over the module If

a > 0 (square free) and k = Q~~~ , then

Let C be as before the group of ideal classes of o and C the group

of ideal classes with respect to strict equivalence (for which an ideal is equi-

valent 1 if it is principal with a totally positive generator). We have

|C+|:|C| = 2 or 1 depending on whether the fundamental unit e is totally

positive or not. The order of C is the class number h(a) for k = Q(a) .

If the discriminant of k is d , then C+ is via (11) in one-to-one correspon-

dence with the set of equivalence classes of quadratic forms (M,f) with discri-

minant d .

Don Zagier (Bonn) has written a computer program which puts out (the finitely

many) primitive cycles for a given discriminant. For d = 257 the primitive cycles

are

For d = 4879 the primitive cycles are



For k = ~(/257) the fundamental unit is not totally positive, the class

number h(257) equals 3 . For k = the fundamental unit is totally posi-

tive, the class number h(79) equals 3 . The order of C~ is 6 . The 6 qua-

dratic forms for d = 4*79 are listed by Gauss [3] Art, 187 and numbered from

I to VI corresponding to our table above.

The discriminant d = 20 , for example, is not the discriminant of a field

k . There is one primitive cycle namely ~3,6) ( which belongs to the module

Z’1 contained in Q(~/T) and the quadratic form defined on it by (n).

§ 3. Resolution of the cusps.

An isolated singular point x of a complex space of complex dimension 2

admits a resolution by which x is blown up into a system of non-singular curves

Kj . For each K. we have the genus g(K.) and the self-intersection number

K. o K..
J J

The resolution is minimal (and then uniquely determined) if there is no Kj
wi th g(K.) = 0 and K. o K. = -1 . The matrix (K. o K.) is negative-definite

J J J 1 J

(compare [10]).

The resolution is called cyclic if all are zero (i.e, all curves

are rational) and if j can be assumed to run through the residue classes

mod q 3) such that o Kj = Kj+1 - 1 for all j 6 (transver-

sal intersection) ’ and Kr o Ks = 0 for r - s / 0 , 1 ,-1 . Example (q = 8) :



The following result is a consequence of a theorem in § 4.

THEOREM.- A cusp (M,V), see (6), admits a cyclic resolution. M determines by

(11) and the theorem in § 2 a primitive cycle c = ((b ,...,b )) . Put
m = [U+M : V] . T h en q = pm and

(Exceptional cases pm = 1 or 2 . If ((b)) or «b1,b2)) we have a

cycle of 3 curves with self-intersection numbers -(b + 3) , -2 , -1 or

-(b + 1) , -1 , -(b2 + 1 ) respectively. )

The cyclic resolution is the minimal one with these exceptions which can be

blown down to minimal ones looking like this :

Examples.- For k = 0(Va) with a > 1 (square free) and G as in § 1 we have

h(a) cusps (h(a) = order of the ideal class group C , see § 2). Each cusp has

the Z-module a ~ where the ideal a represents an element of C . If a and

b give the same element in C , then the Z-modules a -2 and b -2 are obtaina-

ble from each other by multiplication with a totally positive number and (as

fractional ideals) represent the same element of C+ . Thus we have a homomor-



phism

p : C -~ C~ .

The resolution of a cusp x E C is given by the equivalence class of the quadra-

tic form belonging to P(x) or rather by its corresponding primitive cycle c

(§ 2). The cycle of the resolution is cm where m = 2 if the fundamental unit

eo of k is totally positive, otherwise m = 1 . For k = and G as

in § 1, we have three cusps. We have to analyze what are the squares in C+ and

their periods. In the list of § 2 the squares are I, IV, V. The cusps IV, V give

the same singularity (the periods are just reversed). They go over into each other

by the permutation d of the factors of H x H (which leaves the cusp I inva-

riant). The resolution of the cusp I looks like :

where we have indicated the self-intersection numbers. The (minimal) resolution

of IV has 16 curves.

For k = ~( ~/257) we have C = C+ and m = 1 . The resolutions of the

three cusps are given by the primitive cycles written down in § 2.

The permutation 6 on H x H carries the cusp b) into the cusp c) whereas

on the cusp a) it carries the curve K with self-intersection number -17

into itself, has the intersection point P of two curves of self-intersection

number -2 as fixed point



and otherwise interchanges the curves according to the symmetry of the continued

fraction of a quadratic irrationality w , which is equivalent to -wt under

SL2(Z) (Theorem of Galois, see [11] § 23). The corresponding singularity of

(H x is a quotient singularity admitting a "linear resolution"

obtained by "dividing" the diagram (14) by C~ and using that curves of self-

intersection number -1 can be "blown down" .



§ 4. Construction of cyclic singularities.

Let 3) be a sequence of integers ~ 2 not all equal 2.

For q = 3 also sequences (a + 3 , 2 , 1) and (a1 + 1 , 1 , a2 + 1 ) with a z 3 and

3 or a2 2 3 are admitted. Let j run through Consider the matrix

(c ) , where r, s E 3!/qX , wi th

LEMMA.- Under the preceding assumptions the matrix (c ) is negative-definite.

Let k run through the integers and define bk to be equal to bj above

if k = j mod q . We now do a construction as in [9] § 3.4. For each k take a

copy Rk of C2 with coordinates u , v . We define R’ to be the complement

of the line fi = 0 and Rk to be the complement of the line vk = 0 .

The equations

give a biholomorphic map cp : Rk-1 -~ Rk . * If we make in the disjoint union

the identifications given by the 03C6k-1 we get a complex manifold Y in

which we have a string of compact rational curves Sk non-singularly imbedded.

Sk is given by u~ = 0 "in the k-th coordinate system" and by vk-1 = 0 in

the coordinate system. Sk , , S, k+1 1 intersect in just one point trans-

versally. S. , Sk (i  k) do not intersect, if k - i ~ 1 . The self-intersection

number Sk o Sk equals -bk . The complex manifold Y admits a biholomorphic map

T : Y -~ Y which sends a point with coordinates vk in the k-th coordinate

system to the point with the same coordinates in the (k+q)-th coordinate system,

thus T(Sk) = S k+q . The main point is the existence of a tubular neighborhood Yo

of U Sk on which the infinite cyclic group Z = {Tn ( n E Z) operates freely

such that Yo/Z is a complex manifold in which q rational curves

K1 U ... U Kq = U SkIZ are embedded. Their intersection behaviour is given by



the negative-definite matrix crs (see Lemma).

According to Grauert [4J the curves K~ U ... U Kq can be blown down to a

singular point x in a complex space where x has by construction a cyclic reso-

lution as defined in § 3.

THEOREM.- ~bl,...,bq , bl,...,bq,.,.~ . Then B Z.1 is a Z-module

contained in k = Suppose ((bl,...,bq~~ is the m-th power of a primitive

cycle. Then the local ring at the singular point x constructed above is isomor-

phic to the local ring described in the second proposition of § 1 provided

[U~ : V] = m .

The proof will be published elsewhere.

§ 5. Applications.

The resolution of the cusps can be used to calculate certain numerical

invariants of H x H/G, (H x for example, where a : H x H -+ H x H

is the permutation of the factors as before. We have to use a result of Harder [8].

Compare the lecture of Serre in this Seminar. We mention two cases.

1. For a cusp x = (M,V) with a resolution as in the theorem of § 3 we put

The number cp(x) is essentially the value at 1 of a certain L-function.

tp(x) vanishes if the quadratic form f on M (see (11)) is equivalent to -f

(under an automorphism of M which need not be orientation preserving).

THEOREM.- Suppose a > 6 , square free, a 1 0 (3). Put k = Using the

notation of § 1 we have :

The signature of the (non-compact) rational homology manifold H x H/G

equals E cp(x) .
~ 

xeC
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2, For a prime 1 mod 4 we shall calculate the arithmetic genus x 
p 

of the

non singular model of the compact algebraic surface (H x for k = ?(~) .
Information on the fixed points (see § 1) is needed. The following result is closely

related to theorems of Freitag [2] and Busam ~1~, see in particular [1] § 7.

THEOREM.- Let p be a prime = 1 mod 4 and p > 5 . Put k = Q(P) . The arithme-

tic genus x 
p 

is given by

48 xp - 12 ~k{-1 ) + 3h(-p) + 4h{-3p) - p + 8~ + 12 8 + 29

where e = 1 for p = 1 mod 3 , e = 0 for p --- 2 mod 3 , b = 1 for

p = 1 mod 8 , 6 = 0 for p == 5 mod 8 . ( 03B6k is the Zeta-function of the

field k .)

For have the following formula ~14~

where 61 (n) is the sum of the divisors of n .

By calculations of R. Lundquist, Don Zagier and myself there are exactly

24 primes = 1 mod 4 for which the arithmetic genus equals 1 , namely all such

primes smaller than the prime 193 and 197 , 229 , 269 , 293 , 317 . For p = 5

the surface (H x is rational (Gundlach [6]). Which of the 23 others

are rational ?

Final joke : At the end of my dissertation [9] I claim that there are no

cycles in a resolution. This is nonsense, as I know for a long time, and as this

talk proves, I hope.
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