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SYLOW 2-SUBGROUPS OF SIMPLE GROUPS

by John G. THOMPSON

I will primarily limit this lecture to a discussion of results obtained by two

students, Goldschmidt and MacWilliams.

For each group X , let m(X) be the minimal number of generators of X and

let d(X) = max~m(A~~ , where A ranges over all the normal abelian subgroups

of X .

Suppose G is simple and T is a Sylow 2-subgroup of G . In studying the

minimal simple groups, it became clear that the case 2 was anomalous. I

handled the problem by first determining all the possibilities for a Sylow 2-subgroup

and then using techniques available in any minimal simple group.

For further work in simple groups, it is desirable to classify all simple G

such that d(T) ~ 2 . The case d(T) = 1 is non trivial, but seems well on the

way to a solution, so we assume d(T) = 2 .

The most naive way to tackle this problem is first to classify all 2-groups T

with d(T) = 2 . This is difficult, but one result about 2-groups is helpful.

LEMMA 1.- If T is a 2-group with d(T) ~ 2 , then every subgroup of T is gene-

rated by 4 elements.

This result then leads fairly rapidly to
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THEOREM 1 (MacWilliams).- Suppose T is a Sylow 2-subgroup of the simple group G ,

d(T)=2 and T.C(T) C N(T) . Then ITI = 4 , 64 or 128 and T is determined

by ITI .

If ITI = 64 , T is isomorphic to a Sylow 2-subgroup of U3(4) and if

ITI = 128 , T is isomorphic to a Sylow 2-subgroup of the new simple groups of

Janko of orders 604 800 and 50232960 .

The structure of T in case T.C(T) = N(T) is not yet determined. Several of

the families of known simple groups satisfy these hypotheses.

Goldschmidt’s work had a different origin. Initially, he studied simple groups

with a Sylow 2-subgroup whose class of nilpotency is 2 . One of the results obtai-

ned is that a Sylow 2-subgroup has exponent 4 . However, this emerges from a more

general set up, the starting point being

LEMMA 2.- Suppose p is a prime and P is a Sylow p-subgroup of a group G .

Let n be the smallest integer such that n(p-l)~c-1 , , where c is the

n
class of nilpotency of P . Let W = (xp )x E Z(P)) , where Z(P) is the center

of P . Then W is weakly closed in P (that is, g E G and Wg C P imply

This is elementary, but clever. The crucial result is

THEOREM 2 (Goldschmidt).- Suppose T is a Sylow 2-subgroup of G , W is a

weakly closed subgroup of T, and t is an involution of T - W .

If for every involution x of Wt , then G is not simple.
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Here 0~, ~(x) is the largest normal subgroup of X with a normal 2-complement.

The proof is character-theoretic.

If one couples this result with work of Gorenstein, we get

THEOREM 3 (Goldschmidt).- If W is weakly closed in T and V c Z(T)~ where T

is a Sylow 2-subgroup of G , then v C 0 , (G) .
All these results are fragmentary, but given the state of finite group theory,

this is not surprising.


