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MEASURE ALGEBRAS OF A LOCALLY COMPACT ABELIAN GROUP

by Nicholas T. VAROPOULOS

Seminaire BOURBAKI
17e annee, 1964/65, nO 282 Décembre 1964

0. Introduction and notations.

We shall denote, in what follows, by G a non discrete locally compact abelian

group, and by r = ~G its non compact dual. Also we denote by M = M(G) the com-

plex *Banach algebra of bounded Radon measures on G, where multiplication is the
convolution of measures and the involution is defined by ~ -~ ~ ; p(- x) . Let then
B(r) denote the function algebra on r of Fourier transforms ~ of the elements

~ E M(G) ; we shall also denote by = sup ~~,(X) ~ . ~ 

xer
We shall denote :

L1 = L1(G) _ {m E M(G) 3 m is absolutely continuous with respect to 
where hG is the Haar measure of G .

M , L1 are all closed *ideals of M, and we have ([3], p. 118, 5.6.9)

Now in general for any commutative *Banach algebra R , we shall denote by 
its maximal ideal space and

the set of symmetric ideals. Also for J a closed ideal of R , we set :

Then it is well known that we have the following canonical identification :

And if J is a *ideal we have for the above identification :

We state straight away the fundamental and classical fact ( ~ 1 ~, § 31 ) that we have
a canonical identification via the Fourier transform :



Finally we shall denote for any algebra R

1. The Wiener-Pitt phenomenon.
Let us apply (0.2) ~ (0.3 ) and (0.4? to h~ a M we obtain a canonical identi-

fication :

The problem we shall be concerned in this paragraph can be stated in vague terms as

follows : i

"How big is ~(M) B r and how big the asymmetric spectrum of the

algebra M(G) ". .

The answer to the above problem, properly formulated is given by :

THEOREM 1.1. - For any non discrete locally compact abelian group G , we have :

(i) §(M) ~ ~! => M(G) is a non synmetric algebra.

(ii) There exists ~ E M(G) such that ~-1 does not exist in M(G) , and yet

This theorem was proved in full generality by J. H. WILLIAMSON [14]. The particular
case G = R is due to WIENER-PITT [13]. WILLIAMSON obtained theorem 1.1 by first

proving :

THEOREM 1.2. In any non discrete locally compact abelian group G there exists

~,=~EM(G) , ~>,0 ~ 1 such that

(W ) 9 r ,~ s => (are mutu ally singular

measures).

REMARKS.

(1.(i)) An equivalent formulation of (W) is : a

Following WILLIAMSON, we prove how theorem 1.2 ==:> theorem 1.1.



Proof. - Consider)) = ~.z and X = v - v2 . Then we have, for all o 
= thus 0 , also since ( = 1, v (Q )  1 , therefore

0  ~ (Q )  I . But on the other hand, f or all r E Z ~ r ~ 1 , we have :

which gives ( i ) at once. In fact comparing  1 and = z , we see that
the Silov boundary of M is not contained in r . 

sP

Now from (1.2) we see that, for some h~ E ~( M) , we have :

but then if we let e = 6 + ~z ~ we 0 while inf ~e (X ) ~ >, 1 , and

that gives (ii). X~

N ow if we apply (0.2), (0.3) and (0.4) we see that we have

The analogous problem as the one above can then be raised and answered by :

THEOREM 1.3. - For any non discrete locally compact abelian group M~(G) is a

non symmetric algebra.

The special case of theorem 1.3, G = R was obtained by W. RUDIN [2]. In fact
the general result is a consequence of the following theorem which we have proved
recently [9], [10], [tl].

THEOREM 1.4. - If G is a compact non discrete abelian group there exists

1 ’ a family of measures such that :

REMARKS.

( 1 . (ii) ) Theorem 1 .3 follows from theorem l .4 the same vay as ve have explained
above, and ve see in fact that if X = p§ - 41 , then X = k , $ 1, ))h)) = 2.

(I . (iii) ) It might be interesting to note tha.t for some groups (e, g. G = I 
n=I 

°°°°

for p n prime numbers) ve can obtain a larger semigroup, ’ (p ) P P>° satisfying con



ditions (i), (ii), (iii) as in theorem 1.4. That is implicit in [9] although not
explicitly stated there. We do not know whether that can be done in general.

(1.(iv)) The measures of theorem 1.4 can be given simple constructive

descriptions 3 e. g. for G = T = R/Z , they can be given by Riesz products, more
explicitly : let and such that :

then we have all the conditions of theorem 1.4 satisfied if we set :

t E T an integration variable and the limit taken for the vague topology of measu-

res, and h~ the normalised Haar measure of T .

2. Symbolic calculus.

We shall, in this paragraph, assume that G is an infinite compact group since

the corresponding results for any other group can be deduced from the compact case

by using simple and classical devices.

DEFINITION. - Let L (G) c A c M(G) be any algebra, not necessarily complete,
we shall say that ~ a complex function defined in (- 1 , 1~ operates in A if

We then denote the element of M(G) such that (~ [a] )" _ ~ Ca~ .

The following results on the problem are by now classical (~3~, Chapter 6, due to
HELSON-KAHANE-KATZNELSON-RUDIN).

THEOREM 2.. 1. - ~ operates in L1 (G) ==~> ~ is analytic in some neighbourhood

of 0.

THEOREM 2.2. - 03A6 operates in M(G) => 03A6 is the restriction of an entire

function to (- 1 , 1) .

REMARKS.

(2.(i)) Theorem 2.2 provides a link of this paragraph with the problems conside-

red in § 1, for, it implies that r c 3H(M) is a ’~ small" subset.

We have recently proved [10], [11J.



THEOREM 2.3. - 03A6 operates in => 03A6 coincides with an entire function

at some neighbourhood of 0 .

To illustrate some of our methods, we give the proof of theorem 2.3 for the spe-
cial case G = H x K for H, K non discrete compact subgroups. The consideration
of that particular case is justified by the fact that its proof contains the key
idea required to solve the general problem.

Proof of theorem 2.3 for G = H x K . - We only prove the result that, if ~ ope-
rates in I~(G) ,then ~ coincides with an entire function at some neighbourhood ’of
0 , for the result in the other direction is trivial. We split the proof in 10 steps.

(A) Using theorem 1.4, we see that there exists ~ E such that p ’

are mutually singular

Also using remark see that there exists 6 E MQ(H) such

(B) We know, from theorem 2.1~ that as soon operates in since
it also operates in L1(G) , that there exists some 0  8 ,, 1 such that

(C) Let now R > 0 be arbitrary, we proceede to prove that a. = which
will prove the result. Towards that, using (A) and raising e to an appropriate
positive power and then multiplying that by an appropriate positive constant, we see
that there exists such that and 

Thus, there exists j0  1 such that j  jp implies $. (3 2 R)j.
(D) from (C) we can find g such that 1

and g)i ~ (~- R)~ , and then, approximating g uniformly on H by real
Fourier transforms of elements of we can find f. = f. = L (H) such that

(For a E M(G) and f E C(G) , ~e denote ~a , f~ - ~ f(g) da(g) ,)

(E) For j and f . as in (D) ~ we can find M> j such thatJ



(F) Now since 03B40, P , / , .. o , are orthogonal (mutually singular)
measures of K , ve can find disjoint compact sets of K , C0 = C2,..., CM-1
such that C , supports the "best" part of j for 0 $ j 5 M - 1 .J

Thus, ve can find p , e L1 (I) such that

(G) Now, since 1 and ~ ~ = 1 it follows that for all p 5. 0 ,
)~ ~ ~ i ~ I thus also by (E)

(H) Putting (F) and (G) together, we see that

(I) Now denote by ~ = v ® ~ E Mo(G) , we have ~ _ ~ , 
so we see that

(J) From (D), (F) and (I), it follows that

and from that and (H), it follows that

and from that and ~D) ~ it. follows that

which implies the required result

Q.E.D.

We finish this paragraph by observing the fact that we know of no "universal

proof" of theorem 2.3. The way we prove it is, by first obtaining the result for

some special cases (like the one above), and then deducing the general result using
structure theorems for compact abelian groups.



3. The symmetric ideals and ositive forms.

We would like in this third paragraph to discribe without proofs some results

which we have obtained very recently on the algebras M(G), M c .(G) and MO(G) .
We have seen in § 1 that ~(M) ~ J1t(M) so the following theorem answers a

very natural question :

THEOREM 3.1. - For every non discrete locally compact abelian group , 0393 ~ S(M0),
and a fortiori r ~ ~ (M) .

This theorem is a very easy corollary of the following :

THEOREM 3.2. - In a very non discrete locally compact abelian group G, there

exists such that supp J..l is compact and the subgroup gene-
rated in G by supp  , Gp(supp J.L) = Gp{ x ; x E supp } is of Haar measure zero.

Theorem 3.2 was obtained for G = R by R. SALEM [4]. A. B. SIMON [5] obtained
theorem 3.1 for G = R . We have recently obtained ~12~ the proof of theorem 3.2
in general, and from that, we can deduce theorem 3.1 at once.

Let us now introduce the :

DEFINITICN. - Let P c G be a subset of the abelian group G, we shall say that

P is strongly independent, if, for any NEZ, N ~ 1 , and any family of N dis-

tinct points of P (p. E P)Nj=1 , and any family of N integers (n. e Z)Nj=1 such

that 03A3 nj pj = OG , we have can now state:

THEOREM 3.3. - If G is any non discrete metrisable locally compact abelian group,
then G contains P a perfect, strongly independent subset, such that for some

e Mo(G) , we have supp  ~ P .

That theorem, for G = R , was deduced from theorem 3.2 by W. RUDIN [2J. We were
able to prove it in general using our general theorem 3.2. We remark that the

condition of metrisability is essential and that the theorem becomes false without

it.

It might be worth noting that theorem 3.3 implies a weaker version of theoreml.4 ,
[2]. But what, in our view, is the most interesting application of theorem 3.3 is
the following ~12~.



THEOREM 3.4. - If G is a non discrete locally compact abelian group then :

(i) is an infinite dimensional Banach space ;

(ii) is an infinite dimensional Banach space 3

(iii) If in addition G is metrisable, then

While not attempting in any sense to give proofs of theorems 3.2, 3.3 and 3.4

(which incidentally are extremely technical), we would like to justify the title of
this paragraph, by pointing out straight away, that theorem 3.4 implies that M 

c

and M0 qua Banach algebras, have plenty of discontinuous positive forms. For a
closer analysis of the positive forms of M and y via theorem 3.4, we can

refer the interested reader to [8J.

Finally, we would like to give some indication how theorem 3.4 follows from3.3.

Towards that we proceed to explain without proofs and details a general construc-

tion on M(G) .

Let P be a perfect strongly independent subset of G which, for simplicity,
is assumed compact ; 3 and let us denote by

and by T = B ~ B ® ... ® B the tensor product of B with itself n times ; 3 let

us also denote by

T can be turned into a Banach algebra canonically, the "Tensor Banach algebra on

B ".

Now the canonical injection

induces a canonical map

which turns out to be a norm decreasing Banach algebra homomorphism. If we tensor

that homomorphism with the canonical injection ~(G) -~ M(G) , we obtain the Banach

algebra homomorphism

The kernel of that homomorphism can be studied and can be given an explicit and



agreeable form, but what is more to the point in our case, are the facts listed

below without proofs :

(a) We have

Im 03C0r and Im 1C s are (complex) bands in M(G) and are mutually orthogonal (sin-

gular Im 03C0r  Im 03C0s .

(b) From (a) it follows that

is a (complex) band in M(G) and a closed subspace.

(c) n c M (G) and if I c M (G) is the orthogonal complement in M (G) of

n for the Riesz-Lebesgue decomposition, then I is an ideal in M(G) .

From those facts,taken for granted,we have from (c) the direct decomposition o

and then it follows from ( a) , (c) and (3.1) that :

and (3.2), if combined with theorem 3.3, implies with no difficulty at all theo-
rem 3.4.

Another application of the above decomposition (3.1) is the identification of

eA) = h(I) c ~.(M) ; that identification is well worth doing since eA)
has a very simple description in terms of the unit ball of B’ = ( ~(p))r
and r the Bohr compactification of r, namely we can identify canonically

It is with that last application in mind, that A. B. SIMON ~131 ~ ~14~~ has
worked out some of the details of the above construction (namely the above stated
fact (c)) for a special class of groups (I-groups) and a more restrictive defi-

nition of strongly independent sets.
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