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Séminaire BOURBAKI
(Décembre 1957)

WC-GROUPS OVER P-ADIC FIELDS

by J. TATE

Let A be a commutative group variety defined over a field k . Let K be a
finite Galois extension of k with group G , and let AK denote the group of
points of A rational over K . F. CHKTELET [2], in case A is an elliptic
curve, and A, WEIL, [8] , in the general case, have demonstrated the importance
of the one~dimensional cohomology group H (G ’ AK) for the theory of diophantine
equations. In their honor we designate by WC(A/k) the injective limit of the
groups Hl(G ’ AK) as K ranges over bigger and bigger finite Galois extensions
of K . Although no Galois cohomology appears in [8], it is easy to show that
Weil's group of classes of principal homogeneous spaces is isomorphic to Wwe(a/x) ,
by using Chitelet's methods together with Weil's results [9] on the field of
definition of a variety. This has boen remarked by SERRE, and details are given inh

[6] .

In [6], LANG and I obtained some preliminary insights into the structure of
WC(A/k) and could determine the structure exactly in some special cases where A
has a non-degenerate specialization. Here I wish to explain a new approach based

on a certain cohomological pairing and to prove : If A 1is an abelian variety

and k a ,P-adic number field, then WC(A/k) is canonically isomorphic to the
character group A of the compact group A.k of points rational over k on the

Picard variety A of A. In the paragraph 1 we describe a reciprocity law of
LANG on which our cohomological pairing (paragraph 2) is based. For ,p-adlc k
there results (paragraph 3) a canonical homomorphism hk : WC(A/k)-—yﬁ; . The
paragraphs 4-8 copstitute the proof that hk is bijective ; the methods used,
namely counting, Kummer theory, and induction in cyclic towers, make the proof
almost a parody of theclass field ttearyn which it is based. In paragraph 9 we propose
a definition df generalized Picard varieties An , analogous to Rosenlicht's
generalized Jacobians of curves, for certains of which we are able to. compute
WC(A(\/k) for ,P—adic k . In paragraph 10, an afterthought, we suggest a better
way of looking &t the cohomological pairing of paragraph 2, and generalize it

to arbitrary dimensions. This leads to the conjecture : For finite Jj—adic Galois
K/k , HP(G, Al() is isomorphic to the character group of Hl—p(G , AK) . We
propose a method of proof invelving a spectral homomorphism belonging to the

cohomology theory of finite group extensions.
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Applying these results to the case A = 4 = J = Jacobian of 11 one can prove @
Ir {7 is an algebraic curve defined over, and with rational point in, & P—adic
fiold k , and if K/k is a finitc Galois extension with group G , then
ET?E_, CK) = 0 , where CK is the group of idele classes of the function field
K([') . The idcas are sketched in paragraph 9,

The three underlined statements in this introduction hold true if k is the
real field, end (trivially) if k is the complex field, provided we divide Kk
by its connected component in the first statement. Indeed, the third statement

for real k has been knowna long time, for it is the essential content of WITT [10].

For a number field k , the global consequences of these local results on the

completions of k have still to be investigated.

1. Lang's reciprocity law for correspondences between abelian varieties.,

If 4 1is an abelian variety we shall denote by Z(A) the group of zero cycles
of degrec 0 on A, and by Y(A) ¢ Z(A) the Albanese kernel of A . Thus an exact

sequence

S
(1) 0Y(4) 5 2(A) =540,
where S denotes summation of points on A .

Let L and B be abelian varieties. Let (L «Y(A) and b e 2(B) and suppose
D is a divisor on A x B such that the support of D does not meet the support
of UUxb . Under these circumstances the divisor D(X) = PrB(D.(f,(x B)) is
defined ; since & & Y(A) there is a function g on B such that D(&) = (g) ;
moreover g 1is defined and non-zero at each point of the support of b . We may

therefore define the symbol

(2) D(es,b) = g(b) = |1, glv)

its value being independent of the undetermined constant factor in g since b

Ordb( b)

is of degree O .
LANG [5] has proved the fundamental reciprocity law

(3) p(e, b) = *o(ly, o) for e ¥(h) , ber(n)

where tD ¢ B x A denotes the transpose of D ., This law is analogous to and
implies the by now familiar rule f{(g))= g ((f)) for relatively primo functions f
and g on a curve. LANG bases his proof on a new theorem of the hypercube. In an
appendix he reproduces a proof of CHEVALLEY of the important fact that, for given

& and b one can change an arbitrary D by a linear equivalence so that the
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WC-GROUPS OVER p-ADIC FIELDS

symbol D(, b) is defined, without leaving a given field of definition for the

objects in question.

2. The cohomological pairing.

Let & and B be abelian varieties defined over a field k . We wish to explain
how there is attached to each correspondence class ® of divisors on A x B
rational over k apairing of WC(4/k) and the group B, of points of B rational
over k into the Brauer group Br(k) .

Let % € WC(a/k) and b ¢ B, . To pair « and b we first represent o by
a l-cocycle { } of GK/k in AK for a suitable finite normal extension K/k .
Next, with the exact sequence (1) in mind, represent each a, by an T e ZK(A) Then

(8 0() = o -0 o € Yy (A) . Finally, select b e 2 (a) represent.ing the
given b & Bk » and put
(5) C‘_,t,=D((8C{)°.’.L,,b) ’

where D is a divisor rational over k in the given correspondence class () such
that the right hand side is defined., Then {c o, is a 2-cocycle of GK/k in

K* and represents an element ¥ of the Brauer group Br(k) which we can safely
denote by the suggestive symbol

(6) Y =GX£«: ’ b)

because ¥ is independent of the choices of D 0(.‘ s and b as the following remarks

show. If we change D by X x B + A x Y + (‘f) then ¢ o

of the l-cochain e, = ‘f(q xb) . If ve change a by % ot (6 = 1) with

Y, ¢y (4) andj « 2. (&) , then Copr changes by the cOboundary of e D(B ,0) .
If we change B by B eY, (B) then, applying Lang's reciprocity law (3)

to the cycles (80() and B we find that Cr changes by the coboundary of

e D(B o, ) . The llnearity of M(§x, b) in each of its three arguments

@ o, b, follows now immediately from that of D(X,h ) .

changes by the coboundary

Let K/k be a finite separable, not necessarily normal, extension. Then we may
consider the cohomological restriction and transfer mappings (cf. [1], [3])

res : B —»B (inclusion) tr : B «— By (trace)
res : WC(4/k)—WC(A/K) tr ¢ WC(A/K) —WC(4/k)
res : Br(k)—Br(K) tr : Br(XK)— Br(k)

The formal properties of our pairing with respect to these maps are given by
the following formulas, in which (&, b) abbreviates Q) §a , b) , 0D being kept
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fixed and rational over k ;

(7) (res o, res b) = res (e, b) ; oce WC(A/k) , b e B,
(8) (ot, tr b) = tr(res «, b) ; % @ WC(A/k) , be By
(9) (tr oty b) = tr(«K, res b) ; « € WC(4/K) , b € By

These rules can be esteblished by straightforward cochain computations, using the

cochain formulas underlying the corresponding formal properties of the cup product.

3. The duality for p-adic k .

From now on we assume that A 1is ean abelian variety defined over a P—adic number
field k and we put B = A s the Picard variety of A . We define a canonical
pairing & , b—><ec, by of WC(A/k) and B, into T, by putting

(10) <X, b> = exp 2vi8 ((Ex, b)) ,

where 6 : Br(k) ~Q/Z is the canonical isomorphism of local class field theory
which attaches to each 2-dimcnsional class its numerical invariant, and where &)
is the correspondence class containing the Poincaré divisors on A x B, In case
of a finite extension K/k the formulas (8) and (9) yield simply

(11) <oty tr b = <res x, b>

(12) <tr o, b> =(x, res b>

becausc the transfer in the Brauer groups preserves the numerical invariant 6 .
Since k is a locally compact field and B is complete, Bk is a compact

topological group. Furthermore one knows (cf. paragraph 4 below) that the subgroups

mBk ,m=1,2, 3, .., are a fundamental system of neighborhoods of 0 in Bk .

Since WC is a torsion group, it follows that for each fixed o & WC(A/k) the

map b-—><&«, b> 1is a continuous character of Bk . Hence our pairing yields

a canonical homomorphism

(13) hy, : WC(A/k)— By ,

where Bl: denotes the (discrete) character group of the compact group Bk . Our

aim is to show that hk is bijective.

4, Index computations.

LUTZ, in the elliptic case, and MATTUCK (7], in general, have shown that

Ak contains a subgroup of finite index '\‘l'c isomorphic to the direct sum of r
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WC-GROUPS OVER p-ADIC FIELDS

copies of (’)k , the ring of integers in k , where r =dim A4 , If K/k is a
finite Galois extension with group G , a Lutz-Mattuck group A}'( in Ak can be
chosen so that the isomorphism AI'{ 8911‘( is a G-isomorphism. Using Herbrand's
Quotient Q we conclude

(14) ale, ) 1 0) = (06, A) : 0), if K/x is cyclic,

because
- 1) = r_
Q4 = Qlad) = UOYT = 1.
Let m be a naturel number, For any abelian group X , let Xm denote the
kernel of x_’"_;x , and let q(X) = (X : mX)/(Xm : 0) denote the 'trivial action'
Herbrand quotient. We find

1

q(Ak) = Q(Alz) = q(@k)r = — >
s

where lmlAk = (O : m(q()”1 is the normed absolute value of m in k .

Since (Am :0) = m&‘ we conclude

(15) A, : mA) =(T$‘2T§>r , if A CA .

m . . .
Theexact sequence 0.4 A __34_50 , in which A is to be interpreted
as the group of points algebraic over k , gives rise to the cohomology sequence
Oh 0 A sA "5 A S SUC(A /K)—3WC(A/k)—T5 WO(A/K) —5 ...
(cf. [6] for a proof that this cxists and is exact for the injective limits). Hence,

exactly,
(16) 04, /mA, —WC(4 /k)—WC (A/k)—30 .

Suppose now Amc Ak sand Bmc Bk « Then the Galois group Gk of the algebraic

closure of k operates trivially on Am s and consequently we have

WC(An/k):a Cont Hom(Gk s Am) .

This latter group is seen by the reciprocity law correspondence Gk-% k* of local
class field theory to be isomorphic to Hom(k'/k‘m ’ Am) s Whose order is

(x* : ktm)2r because A A @/m?)r . Since Am €A and B ¢ B, , the m-th roots
of unity are in k (cf. paragraph 5 below) and consequently (k™ : k™) = mz/lmlk .
We conclude that the order. of WC(Am/k) is (mz/ ]mlk)zr . This fact, together

with (15) , (16) , and the same results for B yieldsthe equalities
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m .
(17) We_(4/k) : 0) = —— = (Bk tmB) o, if L €A and B CB

™| k!

5. Kummer theory.

Recall that the Kummer theory of the covering B —’3-)3 yields a non-degenerate
pairing (b, a)—-)em(b s a) of B, and A (= ﬁm) into the group of m-th
roots of unity. (One takes « such that S(x) = a , and puts (g) = D(¢&) where
D is a Poincaré divisor. Then therc is a function f on B such that
(£(u)™ = g(mu) , and we have em(b y a) = £f(u+ b)/f(u)) . LANG [5] hes shown
if S(x) =a and S(k)=1b, then

(19) fs) (b , a_) :M
m D(mb , )

where D is any Poincaré divisor such that the right side is defined. Incidentally,
the nondegeneracy of ey shows that if Amc_ Ak and Bmc Bk s then the m-th

roots of unity are in k , provided, of course, r> O .

Using the ,non-degcneracy of e, We can now prove the following lemma, which is

our first indication that the pairing <6<, b)> is non-trivial.

LEMMA 1. ~Let m be a prime and suppose Amc. Ak and Bmc_ Bk .If beB
is such that (o, b> = 1 for all « eWCm(A/k) , then b € mB

k
-

PROOF, by contradiction. - Suppose bg!mBk . Select b'e B such that mb' =b .,
Then b'ég Bk , S0 thero is a k-automorphism ¢ such that (o - 1)b' #0 . Hence
there is an ae A such that e (6= 1)b', a) #0 . Choose e Zk(A) s be Zk(B)
and b e 2(B) representing a , b , and b' respectively, and put

c=Dma , b)D(b -mb , ) .

Using (19) one checks that o em((o’- 1)b! , a) £1, hence cf k . One
the other hand, applying (3) to the cycles m& and mb' - b we find that
M= D(m®, b) . Since the m-th roots of wity are in k , we conclude that
D(ma&x, b) ¢ k™ . From the existence theorem of local class field theory it follows
that there is a cyclic extension K/k of degree m such that D(m&, b) is not
a norm from K .

Let T be a generator of the Galois group G of K/k . The map ’t’)_wa is a
l-cocycle of G in Ay and represents a certain element « € WCm(A/k) . To complete
the proof of our lemma one uses the fact that D(md, ®) is not a norm from X to
show, by a routine cyclic cohomology computation, that @(8«, b) #0 ,
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WC-GROUPS OVER p-ADIC FIELDS

ie. oly, B £ 1.

NOTATION, — Let m be a fixed prime natural number. If U and V are torsion
groups and h : U—3V a homomorphism we shall denote by hé{m) : U(m) —V(m)
the homomorphism induced by h on the m-primary components U(m) and V(m) of
U and V . Similarly we shall denote by hm H Um—? Vm the homomorphism induced
by h on the elements of order m . Notice that injectivity of hm implies that
of h(m) .

Consider now our canonical homomorphism hk : WC(4/ k).-;Bl’: which we are trying
to show is bijective (cf.(13) at end of paragraph 3.). The following proposition

is an encouraging beginning.

PROPOSITION 1, —-E Amc Ak and Bmc. Bk then (hk)m 18 bijective and
hk(m) is injective.

PROOF. — The index computation (17) shows that the domain and range of
* _ *
(by), : WC (4/k)—(B",) = (B /mB,)

have the same number of elements, namely (m2/ lmlk)r « On the other hand, lemma 1
implies that (hk)m is surjective. Thus (hk)m is tijective, and consequently

h(m) is injective.

6. Towers of cyclic extensions.

For arbitrary finite Galois K/k with group G , let hK/k be the homomorphism
such that the following diagram is commutatkve

m(, AK) £ e (A/x)

By /x by

1@ , B — B;
(Here the bottom row is dual to the canonical map B, -3 (Bk/tr B ) 1 , By ) .
Similarly, let hK/k : H (G , B )"7H (G, AK) be the correspondlng homomorphi sm

obtained by intcrchanging the roles of A and B . (Recall that if B = ﬁ »

then A =8, and if D CA x B is a Poincaré divisor then D= *DcB x & is

also a Poincaré divisor).

A
LEMA 2. - If A < A and B CB,_ then hK/k(m) and hK/k(rn) are bijective
for cyclic K/k .
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PROOF. - hK/ (m) is injective becausc inflation is 1nJect1ve, hy (m) is
injective (prop051t10n 1), and (20) is commutative, Similarly hK k(m) is injective.
On the other hand, the m-primary part of the index equality (14) shows that the

domain of hK/k(m) has the same number of elements as the range of hK/k(m) ,

and similarly vice versa. The surjectivity of hK/k(m) and of hK/k(m) now
follows by counting.

LEMMA 3. - Suppose ke K ¢ L with K/k cyclic and L/k arbitrary finite Galois.
N
11 hK/k(m) , hK/k(m) , and hL/K(m) are bijective, then hL/k(m) is bijective,
PROOF. - We simply apply the five lemma to the m-primary part of the following
diagram
. G
1 1 -
o—>it(k/k , 4) 22 whr/k , ) 25 uM (/K , &) V8 HR(k/x , A)% HO(K/K , A )
AN%
by /e l hL/kl bk B /e J/
o - -1
0= H°(K/k , B)*—5H°(L/k , B)y[H (1/k , B)*) 9_,7, 1k , B)® ~ HYN(K/X , B)T

in which the bottom row is dual to

tr
0&B/tr By B /tr; )\ B o [B/tr o B ] c.“*& € B ltr b =0} /(s ~ 1)By
Here we have used the following notations :

H(K/k , &) = Hr(G-K/k , AK) , ete. ;
inf

res = restriction from k to K ;

inflation from X to L 3

"

"

cyclic Galois group of K/k ;
tg = transgression (cf. [4]) ;
-3

cyclic cohomology isomorphism lowering dimension by 2

corresponding to a chosen generator o of G 3

tr

U-F

trK/k = trace from K to k ;

character group of U (as always, except for U = k).

The unlabled arrows are natural homomorphisms., It is well known that the top row
is exact. The exactness of the bottom row follows from the trivially verifiable
exactness of the sequence of which it is the dual. Commutativity of the first
square is trivial. Commutativity of the sccond square follows from definitions,
that of the third squarec from (11) ; that of the fourth square can be proved

by cochain computations in which Lang's reciprocity law is used once more.
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PROPOSITION 2, — If A CA and B < B, then h /k(m) is bijective for
arbitrary finite Galois L/k .

PROOF. - Since local Galois groups are solvable this follass immediately by

induction from lemmas 2 and 3.

7. Surjectivity of hk(m) .

By imitating the proof of the existence theorem of local class field theory we

can now prove
PROPOSITION 3, - hk(m) is surjective for arbitrary k .

PROOF. — We first treat the case AmC Ak » B ¢ Bk + By proposition 2, the
image of hy /k(m) is the m-primary part of (B]/trL /x BL)' , for arbitrary finite
Galois L/k . Since hk(m) is the inductive limit, for larger and larger L ,
of tho isomorphisms hy k(m) s we conclude that the image of hk(m) is the
m~primary part of (Bl/Jk)‘ sy where U = nL trL /K BL is the group of 'universal
tracesd') in Bk « Surjectivity of hk(m]f will therefore follow if we prove
Uk C ‘{;1 mY B .

In any case, we know from the surjectivity of (hk)m (proposition 1) that
(Bk/mBk)" is in the image of hk(m) - Hence U, ¢ mB, , and by the same token
UK < mBK for each finite extension K of k . On the other hand I contend
U, € trK/k U; for each such K . Namely, if b e Ug » the sets trg}k (v) ntrL /K(BL)
are compact and have the finite intersection property, as L ranges over all
finite extensions of K . We now know Ukc trK/k UK c 'c.rK /k mUk = mtrK /x UK ’
for each K ., Thus, for each b e Uk
have the finite intersection property, and this shows finally that UkC mUk ’
and consequently Ukc. mka for =1, 2, 3, ... as we wanted to show.

s L A
» the compact (finite) sets =b trK/k Ug

Now let k be arbitrary, and let X = k(Am , Bm) . The diagram
t
wc(a/x)J,wc(a/k)
hy By l
L res* »
B ——— B

is commutative by (12). Moreover res® is surjective because it is dual to the
injective inclusion res : Bk—) BK . We have just proved the surjectivity of
hK(m) because A C A and B c By , and the surjectivity of hk(m) follows.
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8. Conclusion of the demonstration.

We now know that hk(m) is surjective for all ,p~adic k over which A is
defined (proposition 3) and that hk(m) is injective for those k such that
Ac A and B C B (proposition 1). In order finally to get rid of 4 end
Bm we prove

LEMMA 4. - Suppose K/k cyclic, group G . If hK(m) and /ﬁK(m) are injective,
then hk(m) and ﬁk(m) are injective.

PROOF. ~ Chasing around the following exact and commutative diagram

0H G, A ) —WC (&/k) 25 WC (A/K)
by /x hy by

0—H°(G , B)" SBY By

we find that hK/k(m) is surjective because h (m) is surJectlve and h.K(m)
injective. Similarly, transposing A and B , we find A k(m) is surjective.
Just as in the proof of lemma 2 it now follows from the index equality (14) that
h}{/k(m) and ’}\IK/ (m) are injective as well. Chasing around the diagram again
we see that the injectivity of hy (m) follows now from that of hy (m) and
that of h'K/k(m) . Similarly for hk(m) .

Now climbing down in cyclic steps from k(Am , Bm) to k , we see that h.k(m)

is bijective for each k . Since m was an arbitrary prime we have proved our

THEOREM, - hk is bijective for all ,p—adlc fields of definition k of A ;
we have WC(4/k)x (Ak) canonically.

For an arbitrary finite (not necessarily Galois) extension FE/k , let WC(4/k , E)
denote the kernel of res : WC(A/k) »WC(A/E) ; it is easy to seé that this
kernel is isomorphic to the group of classes of principal homogengous spaces over

A , rational over k , and having a rational point in E .
COROLLARY 1. - WC(A/k , E) x (A/tr AE)’* canonically.
PROOF. - The kernel of res is dual to the cokernel of tr , by (11).

9. Applications to generalized Picard varieties and idele classes.

Let X be a complete non-singular variety and let A be the Picard variety
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WC-GROUPS OVER p-ADIC FIELDS

of X . Suppose we arc given a finite set of points Xg s e+e > X, OD X, to
each of which there is assigned a zero-dimensional ideal n, in the local ring
0. of X, on X . We can use these data, just as in the case X is a curve,

i
to construct exact sequences

(21) 03B —SAs A 50
n
(22) 0— Gm"’igo /(1 +ny) .»En__)o

where A_ 1is the group of divisors algebraically equivalent to zero and not
meeting any of the points X; on X , modulo the divisors of functions f on X
such that f - 1e A for each i , and where Ui is the group of units in 0i .
Presumably, one can endow A[1 with an algebraic group structure and thereby define
generalized Picard varietics of X . However for the following cohomological

considerations the algebraic structure is of course inessential.

Let now bl 9 eee s bn be distinct non-zero points on an abelian variety B
and apply the preceding construction to thc case X =B, Xy = o, Xy = bi for
i) 0, and, ‘(]1 =‘((\i = the maximal ideal in Oi f?lr each i . We obtain an exact
soquence (21) in which A = B and in which Enz,i=1 M, , where M, = Ui/(l .mi)

is a copy of the multiplicative group Gm for each 1> 0.

If k is any field of definition for B, and b, € B, , then the part of (21)

rational over the separable closure of k leads to an cxact sequence
n
(23) 0—yWC(A /k) —yWC(A/k) — 2= Br, (k) ,

n
and one rcadily verifies that for & & WC(A/k) we have Oa = E (e, bi) .

For p-adic k , we conclude from the main theorem that WC(A /k) is isomorphic
to (-Bk/F)‘ , where F is the closure of the subgroup of Bk generated by our
chosen elements b, , and in particular we have WC(A“/k) =0 if the b, generate

an everywhere dense subgroup of Bk .

Finally, let r be an algebraic curve of genus g > 0 with rational point in
k and apply this result to the case B = A = J = the Jacobian of [ . Take only
sets of points bi which lie on the canonical image of F in J, and which break
up into prime rational O-cycles (( over k . By taking such bi in sufficient
number so that the points S(¢) generate B, we can prove the third underlined
statement in the introduction to this exposé , namely that WC(C/k) = 0 , where
C is the group of idele classes on [' . The idea is that C is the inverse limit

of the generalized Jacobians of [T and these generalized Jacobians are isomorphic
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to the generalized Picard varieties AX\= .];n of J which are defined by modules
n whose support lies in the canonical image of [° in J. One can also deduce that
WC(C/k) = 0 by working entirely in the function field of [ and showing that the
map WC(C/k) -WC(J/k) is an injection whose image is the kernel of

h wc(J/k) J]’:

X H

10. Higher dimensional cohomology groups.

After writing paragraph 1-8, I realized that the cohomological pairing (paragraph
2) can be generallzed. For finfte Galois K/k with group G one pair o e HP(G , A )
and P € 1, B ) into (%, D) e gPra+l (¢, K*) for arbitrary integers p
and q in the follcwmg way. Take a p-cochain & of G in XK(A) and a
q-cochain & of G in XK(B) such that S(¢r) is a cocycle representing o
and S(b) is a cocycle representing f* ; then define (x,{) as the class of
the (p + q + 1) cocycle

¢ = D(Saub)/ @y v o 1°

(Here U denote cup product with respect to @ , and D has been extended into
Y(A) ® Z(B) by linearity so that Dy @X) =D(Y, %) , and similarly for

). Lang's reciprocity law (3) shows that we have in fact ¢ = (D/tD) S(xvbw) ,
with suitable definitions, and hence that (6) should be replaced by some notation
like

y=(,P) =080 vp) .
The validity of (7) , (8) , and (9) for all p , q is now obvious, following from

the corresponding rule for the cup product and the commutativity of +tr and res
with § .

n
For ,P—adic k and B = A we have therefore canonical maps
| J 1-p *
epe t B (G, 4) 5 [H7P(6, B ]
which generalize the map h}t/k = K/k of (20). The natural conjecture that nP

is bijective for all p can probably be proved as follows § From the main theorem
ng WC(4/K) we find

(24) (5P, B) 1™ = ©2(c , BY) = #P3(G , WO(W/K) .
KFow it is not unroasonable to seek homomorphisms

tP=2 . P2 1 p

72 1 WP, M (WK ) 5 HP(e , &)

for which one can prove that nP o tp-Z =*1 and tp—2 o nP = *r1l,
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if we identify the extremes, of (24). For cxample, t° induces the transgression
used in proving lemma 3, and in general, the tP in question should be related
to the d, in the spectral sequence [4] associated with the group extension

GK/k = kaGK .
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