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WC-GROUPS OVER p-ADIC FIELDS

by J. TATE

Seminaire BOURBAKI
(Décembre 1957)

Let A be a commutative group variety defined over a field k . Let K be a

finite Galois extension of k with group G, and let AK denote the group of

points of A rational over K . F. [2] , in case A is an elliptic

curve, and A. WElL, [ 8] , in the general case, have demonstrated the importance
of the one-dimensional cohomology group H1(G ~ A~) for the theory of diophantine

equations. In their honor we designate by we (A/k) the injective limit of the

groups H1(G , A.,) as K ranges over bigger and bigger finite Galois extensions

of K . Although no Galois cohomology appears in [8] , it is easy to show that

Wail’s group of classes of principal homogeneous spaces is isomorphic to WC(A/k) ~

by using Chatelet’s methods together with Weil’s results [9] on the field of

definition of a variety. This has been remarked by SERRE, and details are given in

[6] .

In [6 ] , LANG and I obtained some preliminary insights into the structure of

WC(A/k) and could determine the structure exactly in some special cases where A

has a non-degenerate specialization. Here I wish to explain a new approach based

on a certain cohomological pairing and to prove : If A is an abelian variety

and k a number field, then WC(A/k) is canonically isomorphic to the

character group A* of the compact group Âk of points rational over k on the

Picard variety A of A. In the paragraph 1 we describe a reciprocity law of

LANG on which our cohomological pairing (paragraph 2) is based. For f -adic k

there results (paragraph 3) a canonical homomorphism hk : The

paragraphs 4-8 constitute the proof that hk is bijective ; the methods used,

namely counting, Kummer theory, and induction in cyclic towers, make the proof
almost a parody of the class fu1.d theory on which it is based. In paragraph 9 we propose
a definition bf generalized Picard varieties analogous to Rosenlicht’s

generalized Jacobians of curves, for certains of which we are able to. compute

for f-adic k . In paragraph 10, an afterthought, we suggest a bettor

way of looking 4t the cohomological pairing of paragraph 2, and goneralize it

to arbitrary dimensions. This leads to the conjecture : For finite f-adic Galois
K/k ~ AK) is isomorphic to the character group of H "~(G ~ A,.) . We
propose a method of proof involving a spectral homomorphism belonging to the

cohomology theory of finite group extensions.



Applying these results to the case A = A = J = Jacobian of 0393 one can prove :

If F is an algebraic curve defined over, and with rational point in~ a p-adic
fiold k ~ and if K/k is a finite Galois extension with group G , then

H(G~C~)=0 ~ where C is the group of idele classes of the function field

K(D . The ideas are sketched in paragraph 9,

The three underlined statements in this introduction hold true if k is the

real field, and (trivially) if k is the complex field, provided we divide Ak
by its connected component in the first statement. Indeed, the third statement
for real k has been knowna long time, for it is the essential content of WITT [10] .

For a number field k, the global consequences of these local results on the

completions of k have still to be investigated.

1. Lang’s reciprocity law for correspondences between abelian varieties.

If A is an abelian variety we shall denote by Z(A) the group of zero cycles
of degree 0 on A , and by Y(A) c Z(A) the Albanese kernel of A . Thus an exact

sequence

where S denotes summation of points on A .

Let A and B be abelian varieties. Let f ;Y(A) and b c Z(B) and suppose

D is a divisor on A x B such that the support of D does not meet the support
Under these circumstances the divisor D(t~ ) : B)) is

defined ; 3 since Y(A) .there is a function g on B such that D( Ct) = (g) ;

moreover g is defined and non-zero at each point of the support of b We may
therefore define the symbol

...,._ _ __ , ~ /  B

its value being independent of the undetermined constant factor in g since b
is of degree 0 .

LANG [5J has proved the fundamental reciprocity law

where D c B x A denotes the transpose of D . This law is analogous to and

implies the by now familiar rule f((g))= g ((f )) for relatively primo functions f

and g on a curve. LANG bases his proof on a new theorem of the hypercube. In an

appendix he reproduces a proof of CHEVALLEY of the important fact that, for given
a and b one can change an arbitrary D b,y a linear equivalence so that the



symbol D( b ) is defined, without leaving a given field of definition for the
objects in question.

2. The cohomological pairing.

Let A and B be abelian varieties defined over a field k. We wish to explain
how there is attached to each correspondence class (D of divisors on A x B

rational over k a pairing of WC(A/k) and the group Bk ,of points of B rational

over k into the Brauer group Br(k) .

Let a G h!C(A/k) and b E Bk . To pair a and b we first represent a by
a 1-cocycle of in l~ for a suitable finite normal extension K/k .
Next, with the exact sequence (1) in mind, represent each atT by an a e Z K (A) . Then
(~ OC)6 r - ~X~~+ ~, E Finally, select ~ ~ Zk(a) representing the
given b E Bk , and put

where D is a divisor rational over k in the given correspondence class f~ such

that the right hand side is defined. Then (c ) is a 2-cocyclc of G k in
K and represents an element ~ of the Brauer group Br(k) which we can safely
denote by the suggestive symbol

because 1( is independent of the choices of D , ~ , and b as the following remarks0
show. If we change D by X x B + A x Y + (f) then changes by the coboundary
of the l-cochain e~ _ ~( ~ x b ) . If we change a + (c - 1) with

t~~ ~ YK (A) c changes by the coboundary of e d = D( 6 , ~ ) , °
If we change b by c then, applying Lang’s reciprocity law (3)

to the cycles (~‘ a)~,~ we find that c, changes by the coboundary of
e _ - tD(y,03B103C3). The’linearity of D(03B403B1, b) in each of its three arguments
~ , b , follows now immediately from that of D ( OC ~ ~ ) ,
Let K/k be a finite separable, not necessarily normal, extension. Then we may

consider the cohomological restriction and transfer mappings ( cf . [J] )

The formal properties of our pairing with respect to these maps are given by
the following formulas, in which (0(, b) abbreviates b), (b being kept



fixed and rational over k ;

(7) (res a ~ res b) = res (0(, b) ; WC(A/k) , Bk
(8) ( ~, tr b) = tr(res a( ~ b) ; 0( E WC(A/k) , b e Bk

(9) (tr b) = res b) ; oc b Eo Bk

These rules can be established by straightforward cochain computations, using the

cochain formulas underlying the corresponding formal properties of the cup product.

3. The duality for p-adic k .

From now on we assume that A is an abelian variety defined over a p -adic number
field k and we put B = A ~ the Picard variety of A . We define a canonical

pairing a , b -a a , b> of and Bk into T by putting

(10) 03B1, b> = exp 203C0i03B8 (D(03B403B1, b )) ,

where 6 : Br(k) ~,~/~" is the canonical isomorphism of local class field theory
which attaches to each 2-dimcnsional class its numerical invariant, and where d)

is the correspondence class containing the Poincare divisors on A x B . In case

of a finite extension K,~k the formulas (8) and (9) yield simply

(11) o( ~ tr b) = res b>

(12) tr b> = res b?

because the transfer in the Brauer groups preserves the numerical invariant 8 .

Since k is a locally compact field and B is complete, Bk is a compact

topological group. Furthermore one knows (cf. paragraph 4 below) that the subgroups

mBk ~ m = 1 ~ 2 ~ 3 ~ ... are a fundamental system of neighborhoods of 0 in Bk.
Since WC is a torsion group, it follows that for each fixed 4 e WC(A/k) the

map b -~~oc~ b)’ is a continuous character of Bk . Hence our pairing yields
a canonical homomorphism

(13) hk : 
where Bk denotes the (discrete) character group of the compact group Bk. Our
aim is to show that hk is bijective.

4. Index computations.

LUTZ, in the elliptic case, and MATTUCK (,7~ , in general, have shown that

Ak contains a subgroup of finite index A. isomorphic to the direct sum of r



copies of ~k ~ the ring of integers in k ~ where r = dim A . If K/k is a

finite Galois extension with group G, a Lutz-Mattuck group AK in Ak can be

chosen so that’ the isomorphism Ai N ~ is a G-isomorphism. Using Herbrand’s

Quotient Q we conclude

Let m be a natural number. For any abelian group X, let Xm denote the

kernel of X ~ X ~ and let q(X) = (X : mX)/(X~ : 0) denote the ’trivial action’

Herbrand quotient. We find

where (C~ : m(~ )~1 is the normed absolute value of m in k ~

Since (A : 0) = m~ we conclude
m

The exact sequence 0~Am~ AA~0 , in which A is to be interpreted
as the group of points algebraic over k, gives rise to the cohomology sequence

(cf. [6] for a proof that this exists and is exact for the injective limits). Hence~
exactly,

Suppose now Ak ,and B c B . Then the Galois group Gk of the algebraic
closure of k operates trivially on Am’ and consequently we have

This latter group is seen by the reciprocity law correspondence of local

class field theory to be isomorphic to Am) ~ whose order is
(k* : k*m)2r because Am ~ (Z/mZ)r . Since A C Ak and B e the m-th roots

of unity are in k (cf. paragraph 5 below) and consequently (k* : k*m) = m2/|m|k .
We conclude that the order of WC (A m /k) is This fact, together
with (15) ~ (16) ~ and the same results for B yieldsthe equalities



5, Kummer theory.

Recall that the Kummer theory of the covering B ~ B yields a non-degenerate
pairing (b ~ a)--~ em(b , a) of Bm and Am ( = Bm) into the group of m-th

roots of unity. (One takes Oc such that S( Oc ) ~ a ~ and puts ~g) ~ D( (~) wh©ro

p is a Poincaré divisor. Then therc is a function f on B such that

(f(u ))m = g(mu) , and we have e (b , a) = f(u + b)/f(u )) , LANG [5] has shown
m

if S( Oc ) ~ a and S( ~ ) = b ~ then

where D is any Poincare divisor such that the right side is defined. Incidentally,
the nondegeneracy of em shows that if Am c Ak and Bm c then the m-th

roots of unity are in k, provided, of course, r > 0 .

Using the non-degeneracy of e we can now prove the following lemma, which is
our first indication that the pairing ~0( ~ b) is non-trivial.

LEMMA 1. - Let m be a prime and suppose A c Ak and B ~ Bk . If b e Bk
is such that 03B1, b) = 1 for all 0( then b ~ mBk .

PROOF, by contradiction. - Suppose Select b’ ~. B such that mb’ = b .

Then b’ ~. Bk , so thoro is a k-automorphism o~ such that (~ .- l)b’ / 0 . Hence
there is an a E Am such that em ((~’ -- l)b’ , a) ~ 0 . Choose 0: Eo Zk(A) , b é Zk(B)
and b 8 Z(B) representing a, b , and b’ respectively, and put

Using (19) one checks that c6 ~ _ e m ((6 - 1 )b’ , a) / 1 , hence c ~ k . One
the other hand, applying (3) to the cycles mO. and mb’ - b we find that

cm :. D(mC( ~ b ) . Since the m-th roots of unity are in k ~ we conclude that

b) ’f km . From the existence theorem of local class field theory it follows
that there is a cyclic extension K/k of degree m such that b) is not

a norm from K .

Let 7 be a generator of the Galois group G of K/k. The map a is a

1-cocycle of G in Ax and represents a certain element 03B1 ~. WCm(A/k) . To complete
the proof of our lemma one uses the fact that b ) is not a norm from K to

show, by a routine cyclic cohomology computation, that ~(~a ~ b) ~ 0 ,



NOTATION. - Lot m be a fixod prime natural number. If U and V are torsion

groups and h : a homomorphism we shall denote by h-(m) : U(m) ~V(m)
the homomorphism induced by h on the m-primary components U(m) and V(m) of

U and V . Similarly we shall denote by h : the homomorphism induced

by h on the elements of order m . Notice that injectivity of h implies that

of h(m) .

Consider now our canonical homomorphism hk : which we are trying
to show is bijective (cf.(13) at end of paragraph 3.). The following proposition
is an encouraging beginning.

PROPOSITION 1. - If A C Ak and Bk then 18 bijective and

hk(m) is injective.

PROOF. - The index computation (17) shows that the domain and range of

have the same number of elements, namely (mz/~m~ k )r . On the other handt lemma 1

implies that is surjective. Thus (hk)m is bijective, and consequently
h(m) is injective.

6. Towers of cyclic extensions.

For arbitrary finite Galois K/k with group G ~ let be the homomorphism
such that the following diagram is commutative

(Here the bottom row is dual to the canonical map BK) = H°(G , BK )) .
Similarly, let h : B ) ,~°(G , be the corresponding homomorphism
obtained by interchanging the roles of A and B. (Recall that if B = A ,
then A =  , and if D C A x B is a Poincaré divisor then D = B x A is

also a Poincaré divisor).

2..- If Ak and Bk then d are bijective
for cyclic K/k.



PROOF. - injective because inflation is injective, hk(m) is

injective (proposition 1), and (20) is commutative. Similarly k/k(m) is injective. °
On the other hand, the m-primary part of the index equality (14) shows that the

domain of has the same number of elements as the range of 
and similarly vice versa. The surjectivity of hK/k(m) and of hK/k(m) now

follows by counting.

LEMMA 3. - Suppose k c K c L with K/k cyclic and L/k arbitrary finite Galois.
Il h K/k (m) ~ and ~/K (m) are bijective, then is bijective.

PROOF. - We simply apply the five lemma to the m-primary part of the following
diagram

in which the bottom row is dual to

Here we have used the following notations :

lf(K/k , A) = AK) , etc. ;
inf = inflation from K to L ; 3
res = restriction from k to K ;
G = = cyclic Galois group of K/k ;
tg = transgression (cf. ( 4~ ) ; 3
6 = cyclic cohomology isomorphism lowering dimension by 2

corresponding to a chosen generator 03C3 of G ; 3

tr = trK/k = trace from K to k ;
U~ = character group of U (as always, except for U = k).

The unlabled arrows are natural homomorphisms. It is well known that the top row

is exact. The exactness of the bottom row follows from the trivially verifiable

exactness of the sequence of which it is the dual. Commutativity of the first

square is trivial. Commutativity of the second square follovs from definitions,
that of tho third square from (11) ; that of the fourth square can be proved
by cochain computations in which Lang’s reciprocity law is used once more.



PROPOSITION 2. - If A m G Ak and Bm ~ Bk then hL/k(m) is bijective for

arbitrary finite Galois L/k.

PROOF. - Since local Galois groups are solvable this folLovs immediately by
induction from lemmas 2 and 3.

7. Surjectivity of 

By imitating the proof of the existence theorem of local class field theory we
can now prove

PROPOSITION 3. - is surjective for arbitrary k.

PROOF. - We first treat the case A C A , B ( Bk . By proposition 2 the
image of h-~(m) is the m-primary part of B )~ , for arbitrary finite
Galois L/k. Since is the inductive limit, for larger and larger L,
of the isomorphisms hr/i..(~) ~ we conclude that the image of is the

m-primary part of (Bj/Uk) , where U = ~ B~ is the group of ’universal
traces’ in Surjectivity of will therefore follow if we prove

°

In any case, we know from the surjectivity of (proposition l) that
is in the image of h.(m) . Hence mBk ’ and by the same token

~K for each finite extension K of k. On the other hand I contend

~K for each ° Namely, Uk ’ the sets (b) 
are compact and have the finite intersection property, as L ranges over all

finite extensions of K . We now know Uk c trK/k UK C mU, = mtrK/k U.. ,each b &#x26; U. , the compact (finite) sets 1 mb ~ trk/k Uk
have the finite intersection property, and this shows finally that U,C 
and consequently for ~=r 1 , 2 , 3 , ... as we wanted to show.

Now let k be arbitrary, and let K = k(A , B ) . The diagram

is commutative by (12). Moreover res* is surjective because it is dual to the
injective inclusion res : BK . We have just proved the surjectivity of

because and and the surjectivity of h,(m) follows.



8. Conclusion of the demonstration.

We now know that hk(m) is surjoctive for all p-adic k over which A is

defined (proposition 3) and that hk(m) is injective for those k such that

Ak and B C Bk (proposition 1). In order finally to get rid of A and
B m we prove

LEMMA 4. - Suppose K/k cyclic, group G . If hK(m) and ~h~~(m) are injective,
then hk(m) and are injective.

PROOF. - Chasing around the following exact and commutative diagram

we find that hK/k(m) is surjective because hk(m) is surjective and hK(m)
injective. Si.milarly, transposing A and B ~ we find is surjective.
Just as in the proof of lemma 2 it now follows from the index equality (14) that

and are injective as well. Chasing around the diagram again
we see that the injectivity of follows now from that of hK(m) and

that of h~/,(m) . Similarly for hk(m) .
Now climbing down in cyclic steps from k(Am’ Bm) to k ~ we see that 

is bijective for each k . Since m was an arbitrary prime we have proved our

THEOREM. - hk is bijective for all ,p-adic fields of definition k of A ;

we have (Ak)~‘ canonically.

For an arbitrary finite (not necessarily Galois) extension let E)

denote the kernel of res : it.is easy to see that this

kernel is isomorphic to the group of classes of principal homogeneous spaces over

A , rational over k, and having a rational point in E .

COROLLARY 1. - E) ~ (Ak/tr AE)’~ canonically.

PROOF. - The kernel of res is dual to the cokernel of tr, by (11).

9. Applications to generalized Picard varieties and idele classes.

Let X be a complete non-singular variety and let A be the Picard variety



of X . Suppose we are given a finite sot of points x~ , ... , xn on X, to

each of which there is assigned a zero-dimensional ideal n. 1 in the local ring

0. of xi on X . We can use these data, just as in the case X is a curve,

to construct exact sequences

where A is the group of divisors algebraically equivalent to zero and not

meeting any of the points xi on X, modulo the divisors of functions f on X

such that f - 1 E ~ for each i , and where U. is the group of units in 0..
Presumably, one can endow A with an algebraic group structure and thereby define
generalized Picard varieties of X . However for the following cohomological
considerations the algebraic structure is of course inessential.

Let now b1 , ... , bn be distinct non-zero points on an abelian variety B

and apply the preceding construction to the case X = B , x~ = 0 , xi = bi for

i ~ 0 , and, = the maximal ideal in Oi for each i. We obtain an exact

soquence (21) in which A = B and in which E M. where M. = Ui/(1 + mi)
is a copy of the multiplicative group G m for each i ? 0 .

If k is any field of definition for B, and bi E Bk , then the part of (21)
rational over the separable closure of k leads to an exact sequence

n

and one readily verifies that for WC(A/k) we have 8a = 03A3 (« , b.) .
For ,p -adic k, we conclude from the main theorem that WC(A /k) is isomorphic

to (B./F) ~ where F is the closure of the subgroup of B k generated by our
chosen elements b. , and in particular we have WC(A/k) = 0 if the b. generate
an everywhere dense subgroup of Bk. 

Finally, let r be an algebraic curve of genus g > 0 with rational point in
k and apply this result to the case B = A = J = the Jacobian of f . . Take only
sets of points which lie on the canonical image of r in J, and which break

up into prime rational O-cycles 9 over k . By taking such bi in sufficient

number so that the points S( ) generate Bk we can prove the third underlined

statement in the introduction to this expose ~ namoly that WC(C/k) = 0 , where
C is the group of idele classes on F . The idea is that C is the inverse limit

of the generalized Jacobians of r and these generalized Jacobians are isomorphic



to the generalized Picard varieties ~,~ _ ~ of J which are defined by modules

n whose support lies in the canonical image of r in J. One can also deduce that

WC(C/k) = 0 by working entirely in the function field of g and showing that the

map is an injection whose image is the kernel of

10. Higher dimensional cohomology groups.

After writing paragraph 1--8~ I realized that the cohomological pairing (paragraph
2) can be generalized. For finite Galois K/k with group G one pair ~ 6. HP{G , AK)
and 03B2 ~ Hq(G , BK) into (03B1 , 03B2) ~ Hp+q+1 (G , K*) for arbitrary integers p

and q in the following way. Take a p-cochain a of G in XK(A) and a

q-cochain b of G in XK(B) such that S( a-) is a cocycle representing «
and s( b) is a cocycle representing ~ ; then define ( ~ ~ ~) as the class of
the (p + q + 1) cocycle

(Here U denote cup product with respect to @ , and D has been extended into

Y(A) ~ Z(B) by linearity so that = D(~ , ~ ) , and similarly for
tD). Lang’s reciprocity law (3) shows that we have in fact c = (D/tD) (~ (c~ v b )) ~
with suitable definitions, and hence that (6) should be replaced by some notation

like

The validity of (7) , (8) , and (9) for all p ~ q is now obvious, following from

the corresponding rule for the cup product and the commutativity of tr and res

with S.

For J3-adic k and B = A we have therefore canonical maps

, which generalize the map h0k = of (20). The natural conjecture that hP
is bijective for all p can probably be proved as follows f From the main theorem

WC(A/K) we find

Now it is not unreasonable to seek homomorphisms

for which one can prove that hP o ± 1 and o hP = ± 1 ,
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if we identify the extremes, of (24). For example, t° induces the transgression

used in proving lemma 3, and in general, the tP in question should be related

to the d in the spectral sequonce [4] associated with the group extension
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