SÉMINAIRE BRELOT-CHOQUET-DENY. Théorie du potentiel

EMILIA CABALLERO

Propriétés de connexité en topologie fine

Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 15 (1971-1972), exp. nº 28, p. 1-5

http://www.numdam.org/item?id=SBCD_1971-1972__15__A8_0

© Séminaire Brelot-Choquet-Deny. Théorie du potentiel (Secrétariat mathématique, Paris), 1971-1972, tous droits réservés.

L'accès aux archives de la collection « Séminaire Brelot-Choquet-Deny. Théorie du potentiel » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROPRIÉTÉS DE COMNEXITÉ EN TOPOLOGIE FINE, D'APRÈS M. FUGLEDE par Emilia CABALLERO

On expose ici les résultats de M. FUGLEDE [3] concernant les propriétés de connexité en topologie fine, dans le cadre axiomatique de M. BRELOT [1].

L'idée directrice de cet exposé est d'arriver aux résultats de connexité le plus directement possible.

Notations et hypothèses. - Soit Ω un espace localement compact, non compact, connexe et localement connexe. On suppose que le faisceau des fonctions harmoniques dans Ω satisfait les axiomes 1, 2, 3 et D de M. BRELOT, et qu'il existe un potentiel positif sur Ω .

 $S^+(\Omega)$ dénote le cône des fonctions surharmoniques positives dans Ω , et $P_0^+(\Omega)$ le cône des potentiels finis continus et positifs sur Ω .

 Λ désigne l'adhérence fine d'un ensemble $\Lambda \subset \Omega$ et $\partial_f \Lambda$ sa frontière fine.

<u>Préliminaires</u>. - Soit $A \subseteq \Omega$. La base de A dans Ω , notée b(A), est l'ensemble des points de Ω dans lesquels A est non effilé.

On sait (voir par exemple [4]) qu'il existe $p \in P_0$ tel que, pour tout $A \subseteq \Omega$, $b(A) = \{x \in \Omega : \hat{R}_p^A(x) = p(x)\},$

où \mathbb{R}^{A}_{p} est la balayée de p sur A .

1. Propriétés des bases.

Soient $A \subseteq \Omega$, et b(A) sa base. On a les résultats suivants ([2], [4]):

- 1º A \b(A) est polaire,
- 2° $b(A) = \emptyset$ si, et seulement si, A est polaire,
- 3º Pour toute $v \in S^+(\Omega)$, $\hat{R}_v^{b(A)} = \hat{R}_v^A$ dans Ω , et $\hat{R}_v^A = v$ dans b(A),
- $4^{\circ} b(b(A)) = b(A)$,
- $5^{\circ} b(A \cup B) = b(A) \cup b(B)$,
- 6° $A \subset B \Rightarrow b(A) \subset b(B)$,

- 7° Si A est finement ouvert, on a $A \subset b(A)$,
- 8° A est finement fermé si, et seulement si, $A \supset b(A)$.

2. Propriétés des mesures balayées.

Soit μ une mesure de Radon positive à support compact dans Ω ; $A \subseteq \Omega$ et μ^A la mesure balayée de μ sur A . μ^A a les propriétés suivantes :

- 1º LA est portée par b(A);
- 2° uA = u si, et seulement si, u est portée par b(A);
- 3° Si e est polaire et $\mu(e) = 0$, alors $\mu^{A}(e) = 0$;
- 4° Soit $I_A = \{x \in \Omega : (A \text{ est effilé en } x\}$. Pour tout $E \subseteq I_A$, tel que $\mu(E) = 0$, on a $\mu^A(E) = 0$;
 - 5° Si μ est portée par b(CA), alors μ^A est portée par $\partial_f A$.

Pour la démonstration des énoncés 1°, 2°, 3° et 4°, voir [4]; pour montrer le 5°, soit B = b(CA); on a $CB = I_A$ et $\mu(I_A) = 0$, donc, d'après le 4°, $\mu^A(I_A) = 0$, c'est-à-dire μ^A est portée par B = b(CA). D'autre part, μ^A est portée par b(A), d'où μ^A est portée par $b(A) \cap b(CA) \subseteq (\partial_f A)$.

Dans tout ce qui suit, μ désignera une mesure de Radon positive à support compact dans Ω .

3. Connexité fine de l'espace Ω .

LEMME 1. - Soit $E \subset \Omega$ un ensemble tel que sa frontière fine $\partial_f E$ soit polaire.

Alors E est polaire ou bien CE est polaire.

Démonstration. - Supposons que CE est non polaire. Comme ∂_f E est polaire, on obtient que \widetilde{CE} est aussi non polaire. Soit $x \in \widetilde{CE}$. La mesure ε_x est portée par $\widetilde{CE} \subset b(CE)$. Donc, grâce à la propriété 2.5, la mesure balayée ε_x est portée par ∂_f E.

D'autre part, $x \notin \partial_f E$, d'où $\varepsilon_x(\partial_f E) = 0$. Comme $\partial_f E$ est polaire, on obtient $\varepsilon_x^E(\partial_f E) = 0$, d'après 2.3.

Mais alors $\varepsilon_{\mathbf{x}}^{\mathbf{E}} = 0$, c'est-à-dire E est polaire.

THÉORÈME 2. - L'espace Ω est finement connexe, ainsi que toute partie $\omega \subset \Omega$ ouverte, et connexe pour la topologie initiale.

<u>Démonstration</u>. - Supposons qu'il existe $A \subseteq \Omega$ tel que A et CA soient ouverts pour la topologie fine. Alors $\partial_f A = \emptyset$, donc $\partial_f A$ est polaire. Il s'ensuit, d'après le lemme 1, que A ou CA est polaire, ce qui implique que A ou CA est polaire, puisque un ensemble finement ouvert et polaire est nécessairement vide.

Pour $\omega \subseteq \Omega$, une partie ouverte et connexe pour la topologie initiale, on a que les fonctions harmoniques sur ω satisfont aux axiomes 1, 2, 3 et D, qu'il existe un potentiel > 0 sur ω , et que la topologie fine sur ω est la topologie induite par celle de Ω .

LEMME 3. - Soient A et B deux ensembles tels que
$$b(A) \subset b(B)$$
. Alors

1º pour toute $u \in S^+(\Omega)$, $\hat{R}_u^A = \hat{R}_u^A = \hat{R}_u^A$;

2º $(u^A)^B = u^A = (u^B)^A$:

3°
$$\mu^{A} = \mu^{B}$$
 si, et seulement si, μ^{B} est portée par $b(A)$.

Démonstration.

1° Soit $u \in S^+(\Omega)$; $\hat{R}_u^B = u$ sur $b(B) \supset b(A)$, d'où $\hat{R}_u^A = \hat{R}_u^A$ sur Ω . D'autre part, $\hat{R}_u^B = \hat{R}_u^A$ sur b(B), donc $\hat{R}_u^B = u$ sur $b(A) \subset b(B)$, d'où $\hat{R}_u^A \geqslant \hat{R}_u^A$, et on obtient ainsi l'égalité cherchée.

 2° C'est une conséquence immédiate du 1° .

3º D'après le § 2, 2º,
$$\mu^B$$
 est portée par $b(A) \iff \mu^B = (\mu^B)^A = \mu^A$.

LEMME 4. - Soient U une partie finement ouverte, et F finement fermée telles que $U \subseteq F$. Si μ ne charge ni A , ni l'ensemble polaire $e = (F \setminus U) \setminus b(F \setminus U)$, on a $\mu^F = \mu^{(F \setminus U)}$.

<u>Démonstration</u>. - μ^F est portée par b(F), d'après 2, 1°. Comme $\mu(U \cup e) = 0$, on a, grâce à 2, 3° et 2, 4°, que $\mu^F(U \cup e) = 0$, puisque U est contenu dans l'intérieur fin de F, et e est polaire.

 μ^{F} est donc portée par $C(U \cup e) \cap b(F) \subseteq b(F \setminus U)$. En appliquant le lemme3, 3°, on obtient le résultat cherché.

4. Locale connexité de la topologie fine.

THEOREME 5. - L'espace Ω est localement connexe pour la topologie fine.

<u>Démonstration</u>. - Soient $x \in \Omega$, et U un voisinage fin de x. On sait que la topologie fine est régulière [2], donc il existe un voisinage V de x, $V \subset U$, et V finement fermé. Soit B = b(CV), $B \supset CV$, puisque CV est finement ouvert et, en outre, $x \notin B$, parce que $x \notin CV \supset B$.

Considérons la famille :

$$\mathcal{E} = \{ \mathbf{E} \subset \Omega : \mathbf{E} = \mathbf{b}(\mathbf{E}) , \mathbf{E} \supset \mathbf{B} \text{ et } \mathbf{\varepsilon}_{\mathbf{x}}^{\mathbf{E}} = \mathbf{\varepsilon}_{\mathbf{x}}^{\mathbf{B}} \}$$
.

L'ensemble $Bx = \bigcup_{E \in \mathcal{E}} E$ vérifie les conditions suivantes :

 1° $B_{x} \in \mathcal{E}$,

2° x ∉ B_x,

 3° CB_x est finement connexe;

Lorsqu'on aura montré cet énoncé, on aura **a**ussi montré le théorème, car $CB_{\mathbf{x}}$ est un voisinage fin de \mathbf{x} , contenu dans \mathbf{U} , et finement connexe.

Démonstration du 1°. - Soient E_1 , $E_2 \in \mathcal{E}$; alors $E_1 \cup E_2 \in \mathcal{E}$. En effet, $b(E_1 \cup E_2) = b(E_1) \cup b(E_2) = E_1 \cup E_2$

et, pour tout $v \in P_{\cap}$, on a

$$\hat{R}_{\mathbf{v}}^{\mathbf{E}_{1} \cup \mathbf{E}_{2}}(\mathbf{x}) = \hat{R}_{\mathbf{v}}^{\mathbf{B}}(\mathbf{x}) .$$

Ainsi la famille $\{\hat{R}_v^E\}_{E\in\mathcal{E}}$ est filtrante croissante, et la fonction $w=\sup_{E\in\mathcal{E}}\hat{R}_v^E$ est surharmonique $(\leqslant\hat{R}_v^B)$.

Ensuite $w \geqslant \hat{R}_v^E = v$ sur E pour tout $E \in \mathcal{E}$, d'où $w \geqslant v$ sur B_x . On en conclut $\hat{R}_v^B = \sup_{E \in \mathcal{E}} \hat{R}_v^E$.

Au point x , on a (pour tout $v \in P_0$)

$$\hat{R}_{\mathbf{v}}^{B}(\mathbf{x}) = \sup_{\mathbf{E} \in \mathcal{E}} \hat{R}_{\mathbf{v}}^{E}(\mathbf{x}) = \hat{R}_{\mathbf{v}}^{B}(\mathbf{x})$$
, c'est-à-dire $\varepsilon_{\mathbf{x}}^{B} = \varepsilon_{\mathbf{x}}^{B}$.

Ceci implique que $b(B_x) \in \mathcal{E}$. Finalement, $b(B_x) \supset b(E) = E$ pour tout $E \in \mathcal{E}$, donc $b(B_x) \supset B_x$, d'où $b(B_x) = B_x$, et $B_x \in \mathcal{E}$.

Démonstration du 2°. - Elle est évidente.

$$F = V_2 \cup B_x$$

est finement fermé, F > V_2 , et $\epsilon_x[(F \ V_2) \ b(F \ V_2)] = 0$. On peut donc appli-

quer le lemme 4 aux ensembles F , V , et à la mesure $\epsilon_{_{\mathbf{X}}}$. On obtient

$$\varepsilon_{\mathbf{x}}^{\mathbf{F}} = \varepsilon_{\mathbf{x}}^{\mathbf{F} \setminus \mathbf{V}_2} = \varepsilon_{\mathbf{x}}^{\mathbf{B}} = \varepsilon_{\mathbf{x}}^{\mathbf{B}} = \varepsilon_{\mathbf{x}}^{\mathbf{B}} \text{ et } b(\mathbf{F}) \in \mathcal{E}$$
.

Mais $B_{x} \subset b(F)$, $d^{\dagger}où$

$$B_{x} = b(F) = b(V_{2}) \cup b(B_{x}) = b(V_{2}) \cup B_{x}$$

c'est-à-dire $B_x \supset b(V_2) \supset V_2$ (V_2 ouvert fin). Comme on avait supposé que

$$V_2 \subset CB_x$$
,

on conclut que $V_2 = \emptyset$.

BIBLIOGRAPHIE

- [1] BRELOT (M.). Axiomatique des fonctions harmoniques. Montréal, Les Presses de l'Université, 1966 (Séminaire de Mathématiques supérieures, 14. Eté 1965).
- [2] BRELOT (M.). On topologies and boundaries in potential theory. Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 175).
- [3] FUGLEDE (M.). Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, Grenoble, t. 21, 1971, fasc. 3, p. 227-244.
- [4] HERVÉ (Rose-Marie). Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 415-571 (Thèse Sc. math. Paris, 1961).

(Texte reçu le 8 juin 1972)

Emilia CABALLERO 44 rue Beaubourg 75003 PARIS