SÉMINAIRE BRELOT-CHOQUET-DENY. Théorie du potentiel

JEAN GUILLERME

Espaces harmoniques et processus de Markov

Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome $\,$ 14 (1970-1971), exp. nº 15, p. 1-31

http://www.numdam.org/item?id=SBCD_1970-1971__14__A7_0

© Séminaire Brelot-Choquet-Deny. Théorie du potentiel (Secrétariat mathématique, Paris), 1970-1971, tous droits réservés.

L'accès aux archives de la collection « Séminaire Brelot-Choquet-Deny. Théorie du potentiel » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

16 décembre 1971 et 6 janvier 1972

ESPACES HARMONIQUES ET PROCESSUS DE MARKOV

par Jean GUILLERME

(d'après Heinz BAUER [2])

Introduction.

On expose ici les quatre premiers paragraphes d'un cours de H. BAUER [2], faisant la liaison entre fonctions surharmoniques et fonctions excessives d'un semi-groupe.

Les paragraphes 1 à 4 sont une introduction à la théorie locale du potentiel ; l'ouvrage de base est le livre de H. BAUER [1].

Le paragraphe 5, rédigé en collaboration avec Mmes E. CABALLERO et A. MACHADO, associe une mesure à un potentiel fini ; on pourra consulter les articles de Mme R.-M. HERVÉ ([8], chap. II), de P.-A. MEYER [9] et aussi de D. SIBONY [11], en particulier pour la démonstration de la proposition 5.5.

Pour les paragraphes 6 et 7, on s'est basé sur l'article de W. HANSEN [7], et sur le livre de P.-A. MEYER [10].

1. Définition d'un espace harmonique. Premières propriétés.

On considère un espace localement compact Ω , à base dénombrable. On notera $\mathfrak U$ (resp. $\mathfrak U_{\mathbf c}$) la famille de tous les ouverts (resp. ouverts relativement compacts) de Ω .

On se donne un faisceau d'espaces vectoriels $\mathcal R$, défini sur $\mathcal U$, qui à tout ouvert $\omega\in\mathcal U$ associe un sous-espace vectoriel $\mathcal R_\omega$ de l'espace $\mathcal C(\omega\,\,;\,\mathbb R)$ des fonctions continues sur ω , à valeurs réelles. Les espaces $\mathcal R_\omega$ ($\omega\in\mathcal U$) sont supposés satisfaire aux deux conditions :

- (a) $\omega_1 \subset \omega_2$ implique $\mathcal{H}_{\omega_2} |_{\omega_1} \subset \mathcal{H}_{\omega_1}$;
- (b) Toute fonction numérique h sur ω (ω fixé dans u) telle que, pour tout $x \in \omega$, il existe un voisinage $\omega_x \in u$ ($\omega_x \subset \omega$) tel que h $\omega_x \in u$, appartient à u.

Les fonctions $h \in \mathcal{H}_{\omega}$ sont dites <u>harmoniques</u> dans ω .

<u>Définition</u> 1.1. - Un ouvert $\delta \in \mathcal{U}_{c}$, de frontière δ^* non vide, est dit <u>régulier</u> si :

- (a) Pour toute $f \in C(\delta^*; R)$, il existe une unique fonction $H_f^{\delta} \in \mathcal{H}_{\delta}$, telle que, pour tout $x_0 \in \delta^*$, $\lim_{x \in \delta, x \to x_0} H_f^{\delta}(x)$ existe, et vaut $f(x_0)$;
 - (b) H_f^{δ} est positive lorsque $f \in C(\delta^*; R)$ l'est.

Un ouvert régulier δ , tel que $\overline{\delta}$ soit contenu dans un certain $\,\omega\in\,\mathfrak{U}$, est dit régulier dans $\,\omega$.

Si δ est un ouvert régulier, et x un point de δ , l'application $f \longrightarrow H_{\mathbf{f}}^{\delta}(x)$ de $C(\delta^*)$ dans R est une forme linéaire positive, donc une mesure de Radon $\mu_{\mathbf{x}}^{\delta} \gg 0$ sur δ^* , dite mesure harmonique de δ au point \mathbf{x} .

<u>Définition</u> 1.2. - Soit $\omega \in \mathcal{U}$; une fonction $u: \omega \to)-\infty$, $+\infty)$ est dite hyperharmonique dans ω , si:

- (a) u est semi-continue inférieurement dans w;
- (b) Pour tout ouvert régulier δ dans ω , et pour tout $x\in \delta$, on a $\int u\ d\mu_x^\delta \leqslant u(x)\ .$

L'ensemble des fonctions hyperharmoniques dans $\ \omega$ est noté $\ \mathcal{H}_{\omega}^{\bigstar}$.

<u>Définition</u> 1.3. - On dit que le couple (Ω, \mathcal{H}) est un <u>espace harmonique</u> si les trois axiomes suivants sont satisfaits :

axiome 1 (de base) : Les ouverts réguliers forment une base de la topologie de Ω .

axiome 2 (de convergence): Soient $w \in \mathcal{U}$, et $(h_n)_{n \geqslant 0}$ une suite croissante de fonctions de \mathcal{H}_w ; $h = \sup_n h_n$ appartient à \mathcal{H}_w dès que h est finie sur une partie dense de w.

axiome 3 (de séparation):

- (a) \mathcal{H}_{Ω}^* sépare linéairement Ω , c'est-à-dire $\forall~x~,~y\in\Omega~,~x\neq y~,~\exists~u~,~v\in\mathcal{H}_{\Omega}^*:~u(x)~v(y)\neq u(y)~v(x)~;$
- (b) $\forall \omega \in \mathcal{U}_{c}$, $\exists h \in \mathcal{H}_{\omega}$, h > 0.

Dans toute la suite, (Ω, \mathcal{H}) sera un espace harmonique.

On pose encore une définition.

Définition 1.4. - Soit $\omega \in \mathcal{U}$.

(a) On dit que $u \in \mathcal{X}_{\omega}^{*}$ est surharmonique dans ω , si u est finie sur une partie dense de ω ; l'ensemble des fonctions surharmoniques dans ω est noté s_{ω} (on note aussi $s_{\Omega} = s$);

(b) On dit qu'une fonction $p \in \mathbb{S}_{\omega}$ est un potentiel dans ω , si p est positive, et si

Remarques.

1° Si $\omega \in \mathcal{U}$, et si $(h_i)_{i \in I}$ est une famille filtrante croissante de fonctions de \mathcal{H}_{ω} , telles que $h = \sup_{i \in \omega} h_i$ soit finie sur une partie dense de ω , alors h appartient à \mathcal{H}_{ω} .

2° Si $\omega \in \mathcal{U}$, on a $\mathcal{H}_{\omega} = \mathbb{S}_{\omega} \cap (-\mathbb{S}_{\omega}) = \mathcal{H}_{\omega}^* \cap (-\mathcal{H}_{\omega}^*)$.

3° Si v appartient à \mathcal{X}_{ω}^{*} ($\omega \in \mathcal{U}$), v appartient à \mathbb{S}_{ω} si, et seulement si, pour tout ouvert régulier δ dans ω , et tout $x \in \delta$, on a $\mu_{x}^{\delta}(v^{-1}(+\infty)) = 0$.

4° \mathcal{H}_{ω}^{*} et \mathbb{S}_{ω} sont des cônes convexes stables par enveloppes inférieures (finies). Si $(u_{\mathbf{i}})_{\mathbf{i} \in \mathbf{I}}$ est une famille filtrante croissante de fonctions de \mathcal{H}_{ω}^{*} $(\omega \in \mathcal{U})$, $\mathbf{u} = \sup_{\mathbf{i} \in \mathbf{I}} u_{\mathbf{i}}$ appartient aussi à \mathcal{H}_{ω}^{*} .

5° Pour tout $w \in \mathcal{U}$, le couple $(w, \mathcal{H}_{|w})$ est aussi un espace harmonique $[\mathcal{H}_{|w}]$ est la restriction aux ouverts contenus dans w de l'application $\mathcal{H}_{|w}$.

6° Soit f_0 une fonction de $\mathcal{C}(\Omega \; ; \; \mathbb{R})$, strictement positive. Notons $f_{\bullet}\mathcal{K}$ l'application qui, à tout ouvert $\omega \in \mathcal{U}$, fait correspondre le sous-espace vectoriel $(1/f_0)\mathcal{K}_{\omega}$ de $\mathcal{C}(\omega \; ; \; \mathbb{R})$. Alors le couple $(\Omega \; , \; f_{\bullet}\mathcal{K})$ est un espace harmonique ; d'où des notions de fonctions harmoniques (resp. hyperharmoniques), de mesure harmonique, d'ouverts réguliers dans cet espace, notions qui seront dites de fonctions f_0 -harmoniques (resp. f_0 -hyperharmoniques), de mesure f_0 -harmonique, d'ouverts f_0 -réguliers respectivement. Alors :

- (a) Les ouverts foréguliers sont les ouverts réguliers,
- (b) La mesure f_0 -harmonique d'un ouvert régulier δ , au point $x \in \delta$, est $(1/f_0(x)) \cdot f_0 \cdot \mu_x^{\delta}$,
- (c) Pour tout ouvert $\omega \in \mathcal{U}$, les fonctions f_0 -hyperharmoniques dans ω sont les fonctions $(1/f_0)u$, où u décrit \mathcal{R}_ω^* .

Ceci montre en particulier que si f_0 est surharmonique (resp. harmonique), les constantes positives sont f_0 -surharmoniques (resp. les constantes sont f_0 -harmoniques).

Afin d'arriver plus rapidement à l'essentiel, nous admettrons les propositions suivantes.

PROPOSITION 1.5. - Ω est un espace localement connexe, non compact. Toute composante connexe d'un ouvert régulier est un ouvert régulier.

PROPOSITION 1.6. - L'hyperharmonicité est une propriété locale, c'est-à-dire qu'une fonction u d'un ouvert ω (fixé) dans $)-\omega$, $+\infty$) est hyperharmonique dans ω si, et seulement si, u est s.c. i. dans ω et si tout point $x\in\omega$ admet un système fondamental de voisinages réguliers δ de x dans ω , tels que $\int u \ d\mu_x^{\delta} \leqslant u(x)$.

COROLLAIRE 1.7. - Soient $v \in \mathcal{R}_{\Omega}^{*}$, $u \in \mathcal{R}_{\omega}^{*}$ ($\omega \in \mathcal{U}$) telles que $\lim \inf_{y \neq \omega, y \to x} u(y) \geqslant v(x) \quad \text{pour tout} \quad x \in \omega^{*}.$

Alors la fonction

$$w(x) = \begin{cases} \inf(u(x), v(x)) & \underline{\text{dans}} & \omega \\ v(x) & \underline{\text{dans}} & \Omega \setminus \omega \end{cases}$$

est hyperharmonique dans Ω .

COROLLAIRE 1.8. - Soient $u \in \mathcal{R}_{\Omega}^{*}$, et δ un ouvert régulier. Alors la fonction u_{δ} , égale à $\int u \ d\mu_{X}^{\delta} \ dans \ \delta$ et à u ailleurs, est hyperharmonique; de plus, est harmonique dans δ , dès que u est surharmonique dans Ω .

Le premier corollaire se déduit facilement de la proposition 1.6, quant au second, il est une conséquence simple du premier. Si u est une fonction finie sur une partie dense de $w \in \mathcal{U}$, la proposition 1.6 donne un critère local de surharmonicité.

2. Des outils de la théorie du potentiel. Le théorème de Riesz. Les principes du minimum.

<u>Définition</u> 2.1. - Soit $w \in \mathcal{U}$. Une fonction $v : w \rightarrow -\infty$, $+\infty$) est dite presque hyperharmonique dans w, si

- (a) v est localement bornée inférieurement,
- (b) $\int_{-\infty}^{\infty} v d\mu_{x}^{\delta} \leq v(x)$ pour tout ouvert régulier δ dans ω , et pour tout $x \in \delta$.

Une fonction presque hyperharmonique dans $\,\omega\,$ est dite <u>presque surharmonique</u> si elle est finie sur une partie dense de $\,\omega\,$.

PROPOSITION 2.2. - Soit v une fonction presque hyperharmonique dans $w \in U$.

Alors la régularisée s. c. i. v de v est hyperharmonique dans v et

$$\hat{v}(x) = \sup_{\delta \in \mathcal{B}_{x}} \int_{x}^{*} v \, d\mu_{x}^{\delta} \quad \underline{pour \ tout} \quad x \in \omega .$$

où B est la famille des ouverts réguliers dans w contenant x.

Démonstration. - Soit δ un ouvert régulier dans ω . Montrons que la fonction $x \xrightarrow{-} \int_{-\infty}^{\infty} v \ d\mu_{x}^{\delta}$ est hyperharmonique dans δ .

Si g est une fonction bornée dans ω^* , on a

$$\int_{-\infty}^{\infty} g \, d\mu_{x}^{\delta} = \inf_{\ell \text{ sci} \geq g, \ell \text{ bornée}} \int_{-\infty}^{\infty} \ell \, d\mu_{x}^{\delta} \, dans \, \delta.$$

Enfin, pour une telle fonction ℓ , on a

$$\int \ell d\mu_x^{\delta} = \sup_{h \leq \ell, h \text{ continue}} \int h d\mu_x^{\delta} dans \delta$$
.

L'axiome de convergence montre successivement l'harmonicité (dans δ) des fonctions $x \to \int \ell \ d\mu_X^{\delta}$, puis de $x \to \int g \ d\mu_X^{\delta}$, donc des fonctions $x \to \int v_n \ d\mu_X^{\delta}$. La remarque 4° du § 1 permet alors de conclure à l'hyperharmonicité (dans δ) de $x \to \int v \ d\mu_X^{\delta}$; en particulier, cette fonction est donc s. c. i. Or on a les inégalités:

$$v(x) \geqslant \int^{*} v d\mu_{x}^{\delta} \geqslant \int v d\mu_{x}^{\delta} dans \delta$$
.

On en déduit

$$v(x) \geqslant \int v d\mu_x^{\delta} dans \delta$$
,

et θ est donc hyperharmonique dans ω (δ étant un ouvert régulier, dans ω , arbitraire), et l'on a évidemment

$$\phi(x) \ge \sup_{\delta \in \mathcal{B}_X} \int_{x}^{x} v d\mu_{x}^{\delta}$$
 pour tout $x \in \omega$.

(Toujours, puisque $x \to \int_{-\infty}^{\infty} v d\mu_{x}^{\delta}$ est s. c. i. dans δ).

Soit $x \in \omega$ fixé, montrons l'inégalité inverse. Pour cela, soit $\alpha < \vartheta(x)$; il existe un voisinage V de x , $V \in \mathfrak{U}_{\mathbb{C}}$, et une fonction $h \in \mathcal{H}_{V}$ telle que h > 0 et h(x) = 1 (d'après l'axiome de séparation). Ainsi $\alpha h(x) < \vartheta(x)$, donc ϑ étant s. c. i., il existe un voisinage δ , régulier de x , $\overline{\delta} \subseteq V$, tel que l'on ait encore $\alpha h(y) < \vartheta(y)$ pour tout $y \in \overline{\delta}$. On a alors

$$\alpha = \alpha \int h d\mu_{X}^{\delta} \leqslant \int v d\mu_{X}^{\delta} \leqslant \int v d\mu_{X}^{\delta}$$
,

ce qui achève la démonstration de la proposition.

On déduit alors très simplement de cette proposition un corollaire.

COROLLAIRE 2.3.

1° Si v , v₁ et v₂ sont des fonctions presque hyperharmoniques et si $\lambda \in \{0, +\infty[$

les fonctions λv et $v_1 + v_2$ sont presque hyperharmoniques, et $\lambda v = \lambda v$, $v_1 + v_2 = v_1 + v_2$.

2° Si $(v_n)_n$ est une suite croissante de fonctions presque hyperharmoniques, $v = \sup_n v_n$ est presque hyperharmonique, et $v = \sup_n v_n$.

3º Si $(v_i)_{i \in I}$ est une famille localement bornée inférieurement de fonctions presque hyperharmoniques, $v = \inf_i v_i$ est presque hyperharmonique, et v_i est la plus grande minorante hyperharmonique de la famille $(v_i)_{i \in I}$.

4° Si v est une fonction presque hyperharmonique, et si δ est un ouvert régulier, la fonction v_{δ} , égale à $\int_{x}^{x} v d\mu_{x}^{\delta} \frac{dans}{dans} \delta$ et à v ailleurs, est presque hyperharmonique.

Définition 2.4. - Un ensemble $\mathfrak F$ de fonctions surharmoniques dans $\,\omega\in\,\mathfrak U\,$ est dit saturé dans $\,\omega$, si

- (a) 5 est filtrant décroissant,
- (b) Pour tout ouvert régulier δ dans ω , et pour tout $v \in \mathfrak{F}$, v_{δ} appartient encore à \mathfrak{F} (v_{δ} est défini au corollaire 1.8).

PROPOSITION 2.5. - Soit $^{\$}$ un ensemble saturé de fonctions de $^{\$}_{\omega}$ · Alors, si $h = \inf_{\mathbf{v} \in \mathbb{F}} \mathbf{v} \quad \underline{\text{est}} \quad > -\infty$ sur une partie dense de ω , h est harmonique dans ω .

C'est une conséquence immédiate du corollaire 1.8 et de l'axiome de convergence.

THEORÈME 2.6 [RIESZ]. - Soit $u \in {}_{+}^{S}\Omega$ une fonction surharmonique positive dans Ω . u s'écrit d'une seule manière sous la forme u = p + h, où p est un potentiel dans Ω , et h une fonction harmonique dans Ω . h est la plus grande minorante sousharmonique de u.

<u>Démonstration</u>. - Une fonction v est dite sousharmonique si - v est surharmonique. Soit $\mathfrak F$ l'ensemble des minorantes sousharmoniques de u; - $\mathfrak F$ est saturé, donc, d'après la proposition précédente, $h = \sup_{v \in \mathfrak F} v$ est harmonique (et $h \in \mathfrak F$). Soit p = u - h; p est un potentiel car, si $t \in \mathcal H_\Omega$ est $\leqslant p$, t + h est $\leqslant u$, donc $t + h \in \mathfrak F$, et t = 0 d'après la définition de h.

Supposons que l'on ait p + h = u = p! + h! avec $p, p! \in \mathcal{P}_{Q}$ et $h, h! \in \mathcal{H}_{Q}$.

On a alors

 $p\geqslant h^{\bullet}-h \ \ \text{et} \ \ p \ \ \text{est un potential, donc} \ \ h^{\bullet}-h\leqslant 0$ $p^{\bullet}\geqslant h-h^{\bullet} \ \ \text{et} \ \ p^{\bullet} \ \ \text{est un potential, donc} \ \ h-h^{\bullet}\leqslant 0 \ \ .$

Il en résulte h = h' et p = p'.

COROLLAIRE 2.7. - Soit $p \in {}_{+}S_{\Omega}$. Alors p est un potentiel si, et seulement si, $u \in \mathcal{R}_{\Omega}^{*}$, et $u + p \geqslant 0$ implique $u \geqslant 0$.

Démonstration.

1° On suppose que p est un potentiel, et $u \in \mathcal{R}_{\Omega}^*$, $u+p \geqslant 0$. Soit $u' = \inf(u \ , \ p) \ ;$

alors - u' est une minorante sousharmonique de p , donc - u' est ≤ 0 ; par suite, u est ≥ 0 .

2º Soit h la partie harmonique de p, et supposons

$$\{u \in \mathcal{H}_{\Omega}^{*}, u + p \geqslant 0 \Rightarrow u \geqslant 0\}$$
;

en prenant pour u la fonction - h , on obtient - h \geqslant 0 , donc h = 0 et p est un potentiel.

PROPOSITION 2.8.

- (a) @ est un cône convexe stable par enveloppes inférieures (finies).
- (b) $\underline{\text{Si}}$ (p_n)_n est une suite de potentiels, et si p = $\sum_{n\geqslant 0}$ p_n est fini sur une partie dense de Ω , p est un potentiel.

<u>Démonstration</u>. - On a évidemment $\lambda P \subseteq P$ $(\lambda \geqslant 0)$ et $\inf(P, P) \subseteq P$.

Plaçons-nous sous les hypothèses (b). p est alors surharmonique; soient h la partie harmonique de p et $D = \{x \in \Omega \mid p(x) < + \infty\}$. On a :

$$-h + p = -h + \sum_{n \ge 1} p_n + p_0 \ge 0$$

et p_O est un potentiel. D'après le corollaire précédent, il s'en suit que

$$-h + \sum_{n \ge 1} p_n \ge 0.$$

On voit de même que, pour tout $n_0 \geqslant 0$, $-h + \sum_{n \geqslant n_0} p_n \geqslant 0$. Or, pour tout $x \in D$ et pour tout $\epsilon > 0$, il existe $n_0 \geqslant 0$ tel que $\sum_{n \geqslant n_0} p_n(x) \leqslant \epsilon$; donc h(x) est $\epsilon \in S$ sur D, pour tout $\epsilon > 0$. Ainsi h = 0 sur D qui est dense dans Ω ; comme h est continue (car harmonique), $h \equiv 0$, et p est un potentiel; (b) est démontré.

On en déduit $P + P \subseteq P$, ce qui achève la démonstration de la proposition.

THEORÈME 2.9: Les principes du minimum. - Soit $u \in \mathcal{H}_{\omega}^*$ ($\omega \in \mathcal{U}$) tel que lim inf $u(x) \ge 0$ pour tout $y \in \omega^*$.

- (a) $\underline{\text{Si}} \quad \omega \in \mathcal{U}_{c}$, $\underline{\text{alors}} \quad u \quad \underline{\text{est}} \geqslant 0 \quad (\underline{\text{dans}} \quad \omega)$,
- (b) S'il existe un potentiel p tel que u + p soit $\geqslant 0$ sur ω , alors u est $\geqslant 0$ (dans ω).

Nous ne démontrerons pas le critère (a). Quant au critère (b), il se déduit des corollaires 1.7 et 2.7 en considérant la fonction égale à $\inf(u, 0)$ dans w, et à 0 ailleurs.

Si u est hyperharmonique, nous désignerons par C(u) le "support harmonique" de u, c'est-à-dire le complémentaire du plus grand ouvert dans lequel u est harmonique.

COROLLAIRE 2.10 : Principe de domination.

- (a) Soit $u \in \mathcal{H}_{\Omega}^*$, et soit p un potentiel continu sur Ω . Alors $(u \ge p$ sur C(p)) implique $(u \ge p$ dans Ω).
- (b) Si 1 est surharmonique, et si p est un potentiel continu sur Ω , on a l'égalité

$$\sup p(C(p)) = \sup p(\Omega)$$
.

Ce corollaire est une conséquence facile du principe du minimum (b).

3. Notion de réduite. Théorème d'approximation.

Définition 3.1. - Soit f une fonction numérique définie sur Ω . On appelle réduite de f sur Ω , et l'on note $R_{\mathbf{f}}$, l'enveloppe inférieure des majorantes hyperharmoniques de f . Si A est une partie de Ω , on appelle réduite de f sur A, la fonction, notée $R_{\mathbf{f}}^{A}$, égale à $R_{\mathbf{f} \cdot \mathbf{1}_{A}}$.

Le corollaire 2.3 montre donc que, pour toute fonction f, localement bornée inférieurement, la réduite $R_{\mathbf{r}}$ est une fonction presque hyperharmonique.

Notons S(f) le support de la fonction numérique f.

PROPOSITION 3.2. - Soit f une fonction s.c.i. $\geqslant 0$ sur Ω , admettant une majorante surharmonique. Alors la réduite R_f est surharmonique $\geqslant 0$, harmonique dans le complémentaire du support de f (c'est-à-dire $C(R_f) \subseteq S(f)$) et continue

aux points où f est continue.

Nous nous bornerons à remarquer que la surharmonicité de $R_{\bf f}$ résulte du fait que f est s. c. i. et de la proposition 2.2, et que l'inclusion $C(R_{\bf f})\subseteq S(f)$ résulte de ce que l'ensemble des $u\in S_\Omega$, $u\geqslant f$ sur Ω , est saturé dans $\Omega\setminus S(f)$ et de la proposition 2.5.

Définition 3.3. - On dit que l'espace (Ω, \mathcal{H}) est fortement harmonique si, pour tout $x \in \Omega$, il existe un potentiel p tel que 0 < p(x).

Si (Ω, \mathcal{X}) est un espace fortement harmonique, pour tout $x \in \Omega$, il existe un potentiel p tel que $0 < p(x) < +\infty$; cela résulte de ce que, si p est un potentiel tel que 0 < p(x), on a $p(x) = \sup_{\delta \in \mathcal{B}_{X}} p_{\delta}$ (proposition 2.2) et de ce que chaque p_{δ} est lui-même un potentiel.

On peut montrer que pour tout $w \in \mathcal{U}_{c}$, l'espace (w , $\mathcal{H}_{|w})$ est fortement harmonique.

Notons ${}^{\mathbb{C}}_{\mathbf{c}}(\Omega)$ l'ensemble des fonctions continues à support compact, et ${}^{\mathbb{C}}_{\mathbf{c}}(\Omega)$ l'ensemble des fonctions continues tendant vers 0 à l'infini.

Dans la suite de ce paragraphe, nous supposerons toujours que $(\Omega$, $\mathcal{X})$ est <u>fortement harmonique</u>.

Comme conséquences de la proposition précédente, nous avons, par exemple, les résultats suivants.

COROLLAIRE 3.4. - Soit
$$f \in C_c^+(\Omega)$$
 . Alors
$$R_f \in \mathcal{P} \cap C(\Omega) \text{ et } C(R_f) \subseteq S(f) \text{ .}$$

<u>Démonstration</u>. - S(f) étant compact, et (Ω, \mathcal{R}) fortement harmonique, on peut trouver un nombre fini de potentiels p_1 , ..., p_n tels que $p = p_1 + \dots + p_n$ soit > 0 sur S(f); il existe alors λ > 0 tel que $\lambda p \ge f$; donc $R_f \in \mathcal{P}$. La proposition 3.2 termine la démonstration.

COROLLAIRE 3.5. - Il existe un potentiel continu strictement positif. De plus, si 1 est surharmonique, il existe un potentiel continu strictement positif et borné.

 $\begin{array}{c} \underline{\underline{\text{D\'emonstration}}} \bullet - \text{Soit } \left(\omega_n \right)_{n \geqslant 1} \quad \text{une suite d'ouverts de r\'eunion } \Omega \text{ , et tels que} \\ \underline{\overline{\omega}} \quad \underline{c} \quad \underline{\omega}_n \quad \bullet \quad \text{Pour tout } n \geqslant 1 \text{ , soit } f_n \in \mathbb{C}^+(\Omega) \quad \text{avec } f_n = 1 \quad \text{sur } \omega_n \text{ , et} \\ \underline{S(f)} \quad \underline{c} \quad \underline{\omega}_{n+1} \text{ , et soit } p_n^! = R_f \quad \bullet \quad \text{En outre, choisissons } \lambda_n > 0 \quad \text{de telle mani\`ere} \\ \underline{que} \quad \underline{p}_n = \lambda_n p_n^! \quad \text{satisfasse à nup } \underline{p(\omega_{n+1})} = 1 \quad \bullet \quad \text{Alors } p = \sum_{n \geqslant 1} 1/n^2 p_n \quad \text{r\'epond à} \\ \underline{la} \quad \underline{question} \quad \underline{comme} \quad \underline{on le} \quad \underline{v\'erifie} \quad \underline{facilement} \quad \underline{gr\'ace} \quad \underline{au} \quad \underline{corollaire} \quad 3.4, \, \underline{a} \quad \underline{la} \quad \underline{proposition} \\ \end{array}$

2.8, et au principe de domination (corollaire 2.10) lorsque 1 est surharmonique.

LEMME 3.6 (*). - Soit $p \in \mathcal{P} \cap \mathcal{C}(\Omega)$ un potentiel continu. Il existe une suite décroissante $(p_n)_{n \ge 1}$ de potentiels continus tels que

$$\forall n \ge 1$$
, $p - p_n \in C_c^+(\Omega)$ et inf $p_n = 0$.

On déduit de ces inégalités que $p=p_n$ sur $\Omega\setminus S(f_n)$, donc que $p-p_n$ appartient à $\mathcal{C}_c^+(\Omega)$. D'autre part, $C(p_n)$ est inclus dans $S((1-f_n)p)\subseteq \Omega\setminus \omega_n$, c'est-à-dire que p_n est harmonique dans ω_n ; comme $p_{n+1}\leqslant p_n$ et U_n $\omega_n=\Omega$, inf p_n est harmonique dans Ω , donc inf $p_n=0$.

THÉORÈME 3.7: Théorème d'approximation. - Soit \mathcal{C}_{c} l'ensemble des potentiels continus sur Ω , à support harmonique compact. Alors

$$(\mathcal{C} - \mathcal{C}) \cap \mathcal{C}(\Omega)$$

<u>Démonstration</u>. - Pour tout ouvert $\omega \subset \Omega$, soit

$$Q_{\omega} = \{d \in (P_{C} - P_{C}) \cap C_{C}(\Omega) \mid S(d) \subset \omega\}$$
.

O possède les deux propriétés suivantes :

(a) Si d , d $_2$ \in 0 , alors $\sup(d_1$, d $_2)$ et $\inf(d_1$, d $_2)$ appartiennent aussi à 0 ,

(b)
$$\forall$$
 x , y \in ω (x \neq y) , \forall α , $\beta \in \mathbb{R}$, \exists d \in \mathbb{Q}_{ω} : $d(x) = \alpha$ et $d(y) = \beta$.

La propriété (a) résulte des égalités

$$\sup(d_1, d_2) = \frac{1}{2}(d_1 + d_2 + |d_1 - d_2|)$$

$$\inf(d_1, d_2) = \frac{1}{2}(d_1 + d_2 - |d_1 - d_2|)$$

et si $d \in Q_{\omega}$, $d = p_1 - p_2$, $|d| = p_1 + p_2 - 2 \inf(p_1, p_2)$.

Pour montrer la propriété (b), on utilise l'existence d'un potentiel strict continu ([1], p. 75), d'où l'on déduit (grâce au corollaire 4.6 ci-après) que, pour

^(*) Il n'est pas nécessaire de supposer (Ω, \mathcal{H}) fortement harmonique.

 $x\neq y$ (x , y \in $\omega)$, il existe d \in 0 $_{\omega}$ tel que d(x) > 0 et d(y) = 0 . On obtient alors immédiatement la propriété (b).

Le théorème découle alors de la proposition 2 de N. BOURBAKI ([3], p. 54).

4. L'ordre spécifique. Le théorème de partition.

On définit sur S⁺, la relation < en posant :

$$(u_1, u_2 \in S^+, u_1 \prec u_2) \iff (\exists v \in S^+: u_2 = u_1 + v)$$
.

Cette relation est une relation d'ordre sur S^+ , ordre appelé ordre spécifique sur S^+ .

THÉORÈME 4.1. - S+ est complètement réticulé pour l'ordre spécifique.

Nous renvoyons à [4], p. 89, pour la démonstration de ce théorème.

Des propriétés de l'ordre spécifique ou du théorème précédent, on déduit facilement les énoncés suivants ;

1° Soient v, v_1 , $v_2 \in S^+$ (resp. P),

$$(v < v_1 + v_2)$$
 $\Rightarrow (\exists u_1, u_2 \in S_+ \text{ (resp. P) tels que } v = u_1 + u_2, u_1 < v_1, u_2 < v_2).$
2° Soient $v, u \in S^+$ et w un ouvert de Ω .

 $(v < u \text{ et } u \text{ harmonique dans } w) \Rightarrow (v \text{ harmonique dans } w)$.

3º Soient u_1 , $u_2 \in S^+$, $u_1 = p_1 + h_1$, $u_2 = p_2 + h_2$ les décompositions de u_1 et u_2 en somme d'un potentiel et d'une fonction harmonique (théorème 2.6). Alors

$$(u_1 < u_2) \iff (\{p_1 < p_2 \text{ et } h_1 < h_2\})$$
.

Pour une famille $(u_i)_{i\in I}$ de fonctions de s^+ , désignons par $\sup_s u_i$ $(i\in I)$ lorsqu'elle existe (resp. $\inf_s u_i$ $(i\in I)$) la borne supérieure (resp. $\inf_s u_i$), pour l'ordre spécifique, de la famille $(u_i)_{i\in I}$.

On a alors les énoncés suivants.

PROPOSITION 4.2. - Soit $(u_i)_{i \in I}$ une famille de fonctions de S^+ . Si $u=\sup_{s} u_i$ existe (ce qui est le cas, d'après le théorème 4.1, lorsque la famille $(u_i)_{i \in I}$ est majorée pour l'ordre spécifique), et si chacune des fonctions u_i est harmonique dans un même ouvert $w \in \mathcal{U}$, alors u est harmonique dans w.

PROPOSITION 4.3. - Soit (u_i)_{i∈I} une famille de fonctions de gt.

(a) Si la famille $(u_i)_{i \in I}$ est filtrante croissante pour l'ordre spécifique, et majorée pour l'ordre naturel par une fonction de s^+ , on a

$$\sup_{s} u_{i} = \sup_{i \in I} u_{i} \quad (\in S^{+}) ;$$

(b) Si la famille (u_i)_{i∈I} est filtrante décroissante pour l'ordre spécifique, on a

$$\inf_{s} u_{i} = \widehat{\inf}_{i \in I} u_{i} (\epsilon s^{+});$$

en outre, en tout point x tel que inf_{iel u}(x) soit fini, on a

$$\inf_{\substack{s \\ i \in I}} u_i(x) = \inf_{\substack{i \in I}} u_i(x) .$$

La proposition 4.2 se démontre en écrivant $u=u_i+v_i$ $(v_i\in S^+)$ pour tout $i\in I$; d'où, pour un ouvert régulier δ dans ω :

$$u_{\delta} = u_{i} + (v_{i})_{\delta}$$
, ce qui implique $u_{\delta} > u$;

donc $u = v_{\delta}$, u est harmonique dans δ , puis dans ω .

Montrons par exemple la propriété (a) de la proposition 4.3.

Soient i_0 choisi quelconque dans I, et I_0 l'ensemble des $i \in I$, pour lesquels $u_i > u_i$. Pour tout $i \in I_0$, soit $v_i \in S^+$ tel que $u_i = u_i + v_i$; il s'ensuit l'égalité :

$$\sup_{i \in I_0} u_i = u_{i_0} + \sup_{i \in I_0} v_i$$

Mais d'après les hypothèses, $\sup_{i \in I_0} u_i = \sup_{i \in I} u_i$ appartient à S^+ ainsi que $\sup_{i \in I_0} v_i$. Cela montre donc l'inégalité

$$\sup_{i \in I} u_i > u_i$$
 (pour tout $i_0 \in I$).

Le théorème 4.1 permet de conclure $\sup_{i \in I} u_i > \sup_{s} u_i$ ($i \in I$). L'inégalité inverse est triviale (ou plus exactement l'inégalité $\sup_{s} u_i \geqslant \sup_{i \in I} u_i$).

Nous allons maintenant énoncer un théorème, dû à R.-M. HERVÉ, sous une forme légèrement affaiblie.

THEOREME 4.4 ([1], p. 155). - Soit $u \in S^+$, et soit ω un ouvert de Ω . Il existe deux fonctions PH_u^{ω} et RS_u^{ω} appartenant à S^+ telles que

$$u = PH_{u}^{\omega} + RS_{u}^{\omega} \underline{dans} \Omega$$
,

 $PH_{u}^{\omega} = \sup_{s} \{v \mid v \in S^{+}, v < u, v \text{ harmonique dans } \omega\}, \text{ donc } PH_{u}^{\omega} \text{ est harmo-}$

nique dans ω , c'est-à-dire $C(PH_{11}^{\omega}) \subseteq \Omega \setminus \omega$.

 RS_{u}^{ω} est harmonique dans $\Omega \setminus \overline{\omega}$, c'est-à-dire $\mathrm{C}(\mathrm{RS}_{u}^{\omega}) \subseteq \overline{\omega}$.

On dit que RS_u^{ω} est la restriction spécifique de u à ω . D'après les propositions 4.2 et 4.3, on a aussi :

$$PH_{\mathbf{u}}^{\omega} = \sup\{\mathbf{v} \mid \mathbf{v} \in \mathbf{S}^{+}, \mathbf{v} \prec \mathbf{u}, \mathbf{C}(\mathbf{v}) \subseteq \Omega \setminus \omega\}$$
.

COROLLAIRE 4.5 : Propriété de décomposition. - Soit $(w_i)_{1\leqslant i\leqslant n}$ un recouvrement ouvert fini de Ω , et soit $u\in S^+$. Il existe des fonctions u_1 , ..., u_n appartenant à S^+ telles que

$$u = u_1 + \dots + u_n = \underbrace{et} C(u_i) \subseteq \omega_i \qquad (i = 1, \dots, n)$$

Appliquons le théorème de partition à u et w_1^{\bullet} :

$$u=v_1+v_1^*\ ,\ C(v_1)\subset\overline{\omega}_1^*\ ,\ C(v_1^!)\subset\Omega\smallsetminus\omega_1^!\ (v_1=RS_u^1\ ,\ v_1^*=PH_u^1)\ ,$$
 puis à v_1^* :

$$v_1^i = v_2^i + v_2^i$$
, $c(v_2) \subseteq \overline{\omega}_2^i$, $c(v_2^i) \subseteq \Omega \setminus \omega_2^i$;

mais $v_2^{\bullet} < v_1^{\bullet}$ implique que v_2^{\bullet} soit aussi harmonique dans ω_1^{\bullet} ; donc

$$C(v_2) \subseteq \Omega \times (\omega_1 \cup \omega_2)$$
.

Après n applications du théorème de partition, on obtient donc des fonctions \boldsymbol{v}_1 , ... , \boldsymbol{v}_n , \boldsymbol{v}_n^t telles que

$$\mathbf{u} = \mathbf{v}_1 + \dots + \mathbf{v}_n + \mathbf{v}_n^{\mathbf{i}} \quad \text{et} \quad \mathbf{C}(\mathbf{v}_{\underline{\mathbf{i}}}) \subseteq \overline{\mathbf{w}}_{\underline{\mathbf{i}}}^{\mathbf{i}} \qquad (\mathbf{i} = 1 , 2 , \dots , n)$$

$$\mathbf{C}(\mathbf{v}_n^{\mathbf{i}}) \subseteq \Omega \times (\mathbf{w}_1^{\mathbf{i}} \cup \dots \cup \mathbf{w}_n^{\mathbf{i}}) = \emptyset ,$$

donc v_n^* est harmonique dans Ω . Alors les fonctions $u_1 = v_1$,..., $u_{n-1} = v_{n-1}$, $u_n = v_n + v_n^*$ remplissent les conditions souhaitées.

COROLLAIRE 4.6. - Tout potentiel p est l'enveloppe supérieure (pour les ordres naturels et spécifiques) d'une suite croissante (pour \prec) de potentiels p \prec p $\overset{\grave{a}}{=}$ supports harmoniques compacts.

 $q = \inf_{n \to \infty} PH_{p}^{n}$, q est harmonique dans Ω et < p (qui est un potentiel), donc q = 0; or, $p = \sup_{n \to \infty} RS_{p}^{n} + \inf_{n \to \infty} PH_{p}^{n}$; d'où le résultat grâce à la proposition 4.

5. Mesure associée à un potentiel.

Nous supposerons, pour plus de généralités, que (Ω, \mathcal{H}) est un espace harmonique n'ayant pas nécessairement une base dénombrable; on remplace alors l'axiome 2, par l'axiome 2!:

axiome 2: Soient $\omega \in \mathcal{U}$, et $(h_i)_{i \in I}$ une famille filtrante croissante de fonctions harmoniques dans ω ; $h = \sup_{i \in I} h_i$ est harmonique dans ω dès que h est finie sur une partie dense de ω .

Les propriétés du paragraphe 4 précédent restent vraies, mis à part les corollaires 4.5 et 4.6 (qui font intervenir une base dénombrable).

Pour tout potentiel p et pour toute partie e de Ω , on pose :

$$PH_{p}^{e} = \sup_{s} \{PH_{p}^{\omega} \mid \omega \text{ ouvert } \supset e\}$$
;

$$RS_p^e = \inf_{s} \{ RS_p^w \mid w \text{ ouvert } \supset e \}$$
.

Alors

$$p = PH_p^e + RS_p^e,$$

 PH_p^e est harmonique dans e^o (intérieur de e), $c^*est-à-dire$ $C(PH_p^e) \subset Ce^o$,

RS $_{p}^{e}$ est harmonique dans \overline{Ce} , c'est-à-dire $C(RS_{p}^{e}) \subseteq \overline{e}$.

[Il est évident que $e_{1} \subseteq e_{2}$ implique $PH_{p}^{1} > PH_{p}^{2}$ et $RS_{p}^{e_{1}} < RS_{p}^{e_{2}}$.]

L'harmonicité de PH dans e résulte de la remarque 2° suivant le théorème 4.1. D'autre part, si x $\notin \overline{e}$, il existe des voisinages ouverts δ et w_0 , de x et w_0 est par suite, w_0 est harmonique dans w_0 , donc dans w_0 ; alors w_0 est harmonique dans w_0 , donc dans w_0 ; par suite, w_0 est harmonique dans $w_$

LEMME 5.1. - Soient p_1 , p_2 deux potentiels, e une partie de Ω . Alors

$$PH_{p_1+p_2}^e = PH_{p_1}^e + PH_{p_2}^e ; RS_{p_1+p_2}^e = RS_{p_1}^e + RS_{p_2}^e .$$

Démonstration. - Faisons la démonstration dans le cas où e est un ouvert $\pmb{\omega}$ de Ω .

$$PH_{p_1}^{\omega} + PH_{p_2}^{\omega}$$
 est harmonique dans ω , et minore spécifiquement $p_1 + p_2$; donc $PH_{p_1}^{\omega} + PH_{p_2}^{\omega} < PH_{p_1+p_2}^{\omega}$.

 $p_1^{\omega} < p_1 + p_2$; d'après la propriété de Riesz (remarque 1° suivant le théorème 4.1), il existe deux potentiels q_1 , q_2 tels que

$$PH_{p_1+p_2}^{\mathbf{w}} = q_1 + q_2$$
; donc q_1 et q_2 sont harmoniques dans \mathbf{w} , $q_1 < p_1$; $q_2 < p_2$;

par conséquent,

$$q_1 < PH_{p_1}^{\omega}$$
 , $q_2 < PH_{p_2}^{\omega}$,

d'où les égalités cherchées.

Des conséquences immédiates de ce lemme sont :

$$p_1$$
 , $p_2 \in P$; $e \subseteq \Omega$;
$$(p_1 < p_2) \Rightarrow (PH_{p_1}^e < PH_{p_2}^e \ et \ RS_{p_1}^e < RS_{p_2}^e) \ ,$$

 $p \in P$; $(p_i)_{i \in I}$ une famille filtrante croissante (pour \prec) de potentiels d'enveloppe supérieure égale à p.

Alors, pour tout w ouvert, on a l'égalité:

$$PH_{p}^{\omega} = \sup_{i \in I} PH_{p_{i}}^{\omega} .$$

LEMME 5.2. - Soient p un potentiel, et
$$\omega$$
 un ouvert. Alors
$$PH_p^{\omega} = RS_p^{C\omega}, \quad RS_p^{\omega} = PH_p^{C\omega}.$$

<u>Démonstration</u>. - Posons $K = C\omega$; on écrit $p = PH_p^K + RS_p^K$. Alors $PH_p^\omega = PH_p^\omega + PH_p^\omega + PH_p^\omega$ d'après le lemme précédent.

 RS_p^K est harmonique dans w; donc $PH_{RS}^W = RS_p^K$.

 $PH_{p}^{\mathbf{w}} = \sup_{\mathbf{S}} \{PH_{p}^{\mathbf{w}} \mid \mathbf{w}^{\mathbf{r}} \text{ ouvert } \supset K\}$ (remarque ci-dessus), or les $PH_{p}^{\mathbf{w}}$ sont harmoniques dans $\mathbf{w} \cup \mathbf{w}^{\mathbf{r}} \supset \Omega$, et sont en outre des potentiels ; par conséquent, $PH_{p}^{\mathbf{w}} = 0$.

LEMME 5.3. - Soient p, q, p, p, des potentiels.

(a) $\underline{\text{Si}}$ p < q , $\underline{\text{et si}}$ G $\underline{\text{est un ensemble contenant}}$ C(p) , $\underline{\text{alors}}$ p < RS $_{q}^{G}$.

(b) Si $p_1 < p$ et $p_2 < p$ sont tels que $C(p_1) \cap C(p_2) = \emptyset$, alors $p_1 + p_2 < p$ et même $p_1 + p_2 < RS$.

Démonstration.

(a) p est harmonique dans $\Omega \setminus C(p)$; donc $p < PH_{\alpha}^{\Omega \setminus C(p)}$. Or

$$PH_{q}^{\Omega \setminus C(p)} = RS_{q}^{C(q)} < RS_{q}^{G};$$

$$C(p_{1}) \qquad C(p_{2})$$

 $PH_{q}^{\Omega \times C(p)} = RS_{q}^{C(q)} \times RS_{q}^{G};$ $C(p_{1}) \qquad C(p_{2})$ $\text{to pres (a), on a } p_{1} \times RS_{p} \qquad \text{et } p_{2} \times RS_{p} \qquad ; \text{ or } c(p_{1}) \qquad C(p_{2})$ $RS_{p} \qquad \times RS_{p} \qquad = PH_{p} \qquad ;$

en additionnant, on obtient $p_1 + p_2 < p$; mais $p_1 + p_2$ est harmonique dans $C(p_1) \cup C(p_2)$; donc (a): $p_1 + p_2 < RS_p$.

LEMME 5.4. - Soient p un potentiel, et F_1 , F_2 deux fermés de Ω . Alors $RS_{p_{C}}^{F_{1}} = RS_{p}^{F_{1}} \cap F_{2} = RS_{p}^{F_{2}} \cdot$

La démonstration, très simple se fait en utilisant le lemme 5.3 (a).

PROPOSITION 5.5. - Soient p un potentiel, K_1 et K_2 deux compacts de Ω . Alors $RS_{p}^{K_{1} \cup K_{2}} + RS_{p}^{K_{1} \cap K_{2}} = RS_{p}^{K_{1}} + RS_{p}^{K_{2}}$.

Démonstration.

(a)
$$RS_{p}^{K_{1}} + RS_{p}^{K_{2}} < RS_{p}^{K_{1} \cup K_{2}} + RS_{p}^{K_{1} \cap K_{2}}$$
.

Soient w_2 un ouvert quelconque, $K_2 \subseteq w_2$, et soit w_2^t un ouvert tel que K, c w' c w' c w .

On écrit

$$RS_{p}^{K_{1}} = PH_{K_{1}}^{\omega_{2}^{\bullet}} + RS_{K_{1}}^{\omega_{2}^{\bullet}};$$

$$RS_{p}^{1} = RS_{p}^{\bullet}$$

alors

$$c(\mathbf{PH}_{\mathbb{RS}_{p}}^{\mathbf{w_{2}^{i}}}) \subset C(\mathbf{w_{2}^{i}} \cup CK_{1}) \subset (CK_{2}) \cap K_{1}$$

$$c(RS_p^{K_2}) \subset K_2$$
,

donc. d'après le lemme 5.3,

$$PH_{RS_{p}}^{\omega_{2}^{1}} + RS_{p}^{K_{2}} < RS_{p}^{K_{1}}^{\cup K_{2}};$$

d'autre part,

$$C(RS_{RS_{p}}^{\underline{w_{2}^{!}}}) \subset C(C\overline{w_{2}^{!}} \cup CK_{1}) \subset \overline{w_{2}^{!}} \cap K_{1},$$

donc,

$$RS \frac{\mathbf{w}_{2}^{\bullet}}{RS_{p}^{\bullet}} < RS_{p}^{\bullet}^{\bullet}^{\bullet}^{\bullet}^{\bullet}.$$

Ainsi

$$RS_{p}^{K_{1}} + RS_{p}^{K_{2}} < RS_{p}^{\frac{w_{1}}{2} \cap K_{1}} + RS_{p}^{K_{1} \cup K_{2}},$$

0r

$$RS_{p}^{\overline{\omega}_{2}^{\bullet} \cap K_{1}} = RS_{p}^{\overline{\omega}_{1}^{\bullet}}$$

$$RS_{p}^{K_{1}}$$

$$RS_{p}^{1}$$

$$\times RS_{p}^{X_{2}^{\bullet}} \cdot RS_{p}^{K_{1}^{\bullet}}$$

En faisant varier
$$w_2$$
, on obtient donc
$$\begin{array}{c} K_1 & K_2 & K_2 \\ RS_p^1 + RS_p^2 \prec RS_k^2 + RS_p^1 \end{array}$$

c'est-à-dire (lemme 5.4) l'inégalité cherchée.
 (b)
$$RS_p^{K_1 \cup K_2} + RS_p^{K_1 \cap K_2} < RS_p^{K_1} + RS_p^{K_2}.$$

Soient w_1 , w_2 des ouverts quelconques contenant K_1 , K_2 respectivement. Posons $K = K_1 \cup K_2$, et $H = K_1 \cap K_2$; soient δ_1 et δ_2^* des ouverts, tels que

$$K_1 \subset \delta_1 \subset \overline{\delta}_1 \subset \omega_1 \quad \text{et} \quad H \subset \delta_2 \subset \overline{\delta}_2 \subset \omega_1 \cap \omega_2$$

Enfin, posons $\mathbf{w} = \delta_1 \cap C\overline{\delta_2}$. On écrit

$$RS_{p}^{K} = PH_{RS_{p}}^{\omega} + RS_{p}^{\omega};$$

alors

$$\begin{array}{cccc} \mathtt{C}(\mathtt{RS}^{\boldsymbol{\omega}}_{\mathbf{K}}) & \subseteq \mathtt{C}(\mathtt{C}^{\overline{\boldsymbol{\omega}}}_{\boldsymbol{\omega}} \cup \mathtt{CK}) & \subseteq \boldsymbol{\omega}_1 & \cap \; \mathtt{CH} \;\; \text{,} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

donc, d'après le lemme 5.3,

$$RS_{p}^{\omega} + RS_{p}^{H} < RS_{p}^{\omega_{1}};$$

d'autre part,

$$C(\text{PH}^{\omega}_{\text{RS}_p^K}) \subset C(\omega \cup C_K) \subset \omega_2 \text{, donc } \text{PH}^{\omega}_{\text{RS}_p^K} < \text{RS}_p^{\omega_2} \text{.}$$

Ainsi

$$RS_p^K + RS_p^H < RS_p^{\omega_1} + RS_p^{\omega_2}$$
,

et w_1 , w_2 étant quelconques, on obtient l'inégalité cherchée.

THÉORÈME 5.6. - Soient p un potentiel, et x un point de Ω , tels que $p(x) < +\infty$.

Il existe alors une mesure de Radon $\mu_x \geqslant 0$, sur Ω , caractérisée par $\mu_x(K) = RS_p^K(x) \quad \text{pour tout compact} \quad K \quad \underline{de} \quad \Omega$.

De plus, pour tout borélien B de Ω :

$$\mu_{\mathbf{x}}(\mathbf{B}) = RS_{\mathbf{p}}^{\mathbf{B}}(\mathbf{x})$$
.

Démonstration. - La fonction $K \longrightarrow RS_p^K(x)$, définie sur les parties compactes de Ω , vérifie les propriétés suivantes :

1° $0 \leq RS_p^K(x) < + \infty$ pour tout K,

2°
$$RS_p^{\Phi}(x) = 0$$
,

30 $\mathrm{RS}_{p}^{K}(x)$ est croissante, et continue à droite ; cette dernière propriété résulte de la définition même de $\mathrm{RS}_{p}^{K}(x)$, et du fait que les inf naturels et spécifiques coîncident (proposition 4.3),

40
$$RS_p^{K_1 \cup K_2}(x) + RS_p^{K_1 \cap K_2}(x) = RS_p^{K_1}(x) + RS_p^{K_2}(x)$$
.

Ces propriétés montrent ([6], p. 207) que K \longrightarrow RS $_p^K(x)$ est une mesure de Radon $\mu_x \geqslant 0$ sur Ω .

Pour montrer le reste du théorème, nous nous appuierons sur le lemme suivant.

LEMME 5.7. - Soient p un potentiel, et ω un ouvert. Alors $RS_{p}^{\omega} = \sup_{S} \{RS_{p}^{K} \mid K \text{ compact } \subseteq \omega\}.$

<u>Démonstration</u>. - Soit $g = \inf_{S} \{PH_{p}^{K} \mid K \text{ compact } \subset \omega\}$.

 $(K \subset \omega) \Rightarrow (PH_{D}^{K} > PH_{D}^{\omega})$, donc $g > PH_{D}^{\omega}$.

Soit $x \in \omega$; il existe $\omega^i \in \mathcal{U}_c$, $x \in \omega^i \subset \overline{\omega}^i \subset \omega$, donc $g < \operatorname{PH}_p^{\overline{\omega}^i} < \operatorname{PH}_p^{\overline{\omega}^i}$, et g est harmonique dans ω , et $g < \operatorname{PH}_p^{\omega}$.

Ainsi $g = PH_p^{\omega}$; comme on a les égalités :

$$p = PH_p^{\omega} + RS_p^{\omega}$$
 et $p = g + sup_s \{RS_p^K \mid K \text{ compact } \subset \omega\}$

c'est que $RS_p^{\omega} = \sup_{s} \{RS_p^K \mid K \text{ compact } \subset \omega\}$.

Terminons donc maintenant la démonstration du théorème [Soit donc à nouveau pun potentiel fini au point x].

Soit w un ouvert:

$$\begin{split} \mu_{\mathbf{x}}(\omega) &= \sup\{\mu_{\mathbf{x}}(\mathbf{K}) \mid \mathbf{K} \text{ compact } \subset \omega\} \\ &= \sup\{\mathbf{RS}_{\mathbf{p}}^{\mathbf{K}}(\mathbf{x}) \mid \mathbf{K} \text{ compact } \subset \omega\} \\ &= \sup_{\mathbf{x}}\{\mathbf{RS}_{\mathbf{p}}^{\mathbf{K}} \mid \mathbf{K} \text{ compact } \subset \omega\} \ (\mathbf{x}) = \mathbf{RS}_{\mathbf{p}}^{\boldsymbol{\omega}}(\mathbf{x}) \end{split}$$

et si B est un borélien, on a :

$$\begin{split} \mu_{\mathbf{x}}(\mathbf{B}) &= \inf\{\mu_{\mathbf{x}}(\mathbf{w}) \mid \mathbf{w} \text{ ouvert } \supset \mathbf{B}\} \\ &= \inf\{\mathbf{RS}_{\mathbf{p}}^{\mathbf{w}}(\mathbf{x}) \mid \mathbf{w} \text{ ouvert } \supset \mathbf{B}\} \\ &= \inf_{\mathbf{S}}\{\mathbf{RS}_{\mathbf{p}}^{\mathbf{w}} \mid \mathbf{w} \text{ ouvert } \supset \mathbf{B}\} \ (\mathbf{x}) = \mathbf{RS}_{\mathbf{p}}^{\mathbf{B}}(\mathbf{x}) \ . \end{split}$$

COROLLAIRE 5.8. - Soit p un potentiel. Alors, pour tout borélien B de Ω : $RS_p^B = PH_p^{\Omega \setminus B}, \quad PH_p^B = RS_p^{\Omega \setminus B}.$

Démonstration. - En tout point x , où p est fini, on a :

$$\mu_{\mathbf{v}}(\Omega) = \mu_{\mathbf{v}}(B) + \mu_{\mathbf{v}}(\Omega \setminus B)$$

c'est-à-dire $p(x) = RS_p^B(x) + RS_p^{\Omega \setminus B}(x)$, donc $RS_p^B(x) = PH_p^{\Omega \setminus B}(x)$. Ainsi les deux fonctions surharmoniques RS_p^B et $PH_p^{\Omega \setminus B}$ sont égales en dehors de l'ensemble négligeable $\{x \mid p(x) = +\infty\}$; elles sont donc égales partout.

Remarque. - Posons, pour une fonction surharmonique $u \geqslant 0$ et pour une partie e de Ω ,

$$RS_u^e = \inf_{S} \{RS_u^\omega \mid \omega \text{ ouvert } \supset e\}$$
.

Notons α le point à l'infini du compactifié d'Aleksandrov $\overline{\Omega}$ de Ω ; pour un ensemble e $\subset \overline{\Omega}$, $\alpha \in$ e, on pose, si u = p + h (p potentiel dans Ω , h harmonique dans Ω),

$$RS_u^e = RS_p^{e \setminus \{\alpha\}} + h$$
.

Alors, la fonction $K \longrightarrow \mathbb{RS}^K(x)$ (où x est choisi tel que $u(x) < +\infty$), définie sur les compacts de $\overline{\Omega}$, vérifie les propriétés 1° à 4°, énoncées dans la démonstration du théorème 5.6.

Par conséquent, il existe une mesure de Radon $\mu_X^{\,\bullet} \geqslant 0$ sur $\overline{\Omega}$, caractérisée par la condition

$$\mu_{\mathbf{x}}^{\bullet}(\mathbf{K}) = \mathbf{RS}_{\mathbf{u}}^{\mathbf{K}}(\mathbf{x})$$
 pour tout compact \mathbf{K} de $\overline{\Omega}$.

En outre, on vérifie facilement que l'on a encore

$$RS_{u}^{\omega} = \sup_{S} \{RS_{u}^{K} \mid K \text{ compact } \subseteq \omega\}$$

(pour ω ouvert $\subseteq \overline{\Omega}$, K compact de $\overline{\Omega}$), d'où l'on déduit, comme précédemment, que

$$\mu_{\mathbf{x}}^{\bullet}(\mathbf{B}) = \mathbf{RS}_{\mathbf{u}}^{\mathbf{B}}(\mathbf{x})$$
 pour tout borélien \mathbf{B} de $\overline{\Omega}$

et que

$$RS_u^B = PH_u^{\overline{\Omega} \setminus B}$$
; $PH_u^B = RS_u^{\overline{\Omega} \setminus B}$

pour tout borélien B de $\overline{\Omega}$.

6. Noyaux et fonctions dominantes.

Soit Ω un espace localement compact à base dénombrable. On désigne par $\mathfrak T$ la tribu des boréliens de Ω , et par $\mathfrak B$ (resp. $\mathfrak B_b$) l'ensemble des fonctions numériques boréliennes (resp. boréliennes et bornées) sur Ω . $\mathfrak B_b$ est un espace de Banach pour la norme uniforme :

$$||f|| = \sup_{x \in \Omega} |f(x)|$$
, $f \in \mathcal{B}_b$.

Définition 6.1. - Un noyau sur (Ω, \mathfrak{F}) est une application V de $\Omega \times \mathfrak{F}$ dans $\overline{\mathbb{R}}$ telle que

- (a) Pour tout $B \in \mathcal{F}$, l'application $x \longrightarrow V(x$, B) de Ω dans $\overline{\mathbb{R}}_+$ est borélienne,
- (b) Pour tout $x \in \Omega$, l'application $B \to V(x, B)$ de 3 dans \overline{R} est une mesure (positive) sur Ω , mesure notée V(x, dy).

Un noyau V sur Ω est dit:

fini (resp. borné) si l'application $x \to V(x, \Omega)$ est finie (resp. bornée), sous-markovien (resp. markovien) si

$$V(x, \Omega) \le 1$$
 (resp. $V(x, \Omega) = 1$) pour tout $x \in \Omega$.

strictement positif si

$$V(x, \Omega) > 0$$
 pour tout $x \in \Omega$.

Soit V un noyau sur Ω . Pour toute fonction $f \in \mathcal{B}^+$, on pose

$$Vf(x) = \int f(y) V(x, dy)$$
 pour tout $x \in \Omega$.

En approchant f par des fonctions boréliennes étagées, on voit que Vf appartient encore à \mathfrak{G}^+ .

Ainsi l'application f -> Vf de 6 dans lui-même est additive, positivement homogène et possède la propriété:

Si $(f_n)_n$ est une suite croissante de fonctions de B^+ , on a

$$V(\lim_{n\to\infty} f_n) = \lim_{n\to\infty} V(f_n)$$
.

Réciproquement, toute application de \mathfrak{g}^+ dans \mathfrak{g}^+ qui possède ces propriétés est associée à un noyau.

Pour une fonction f quelconque dans $\mathcal B$, on définit une fonction Vf en posant $Vf = Vf^+ - Vf^-$ lorsque cette différence a un sens. En particulier, si V est borné, V est alors une forme linéaire positive sur $\mathcal B_h$.

<u>Définition</u> 6.2. - Soit V un noyau fini sur Ω . Une fonction $d \in \mathcal{B}_+$ sera dite V-dominante (ou simplement dominante s'il ne peut y avoir de confusion) lorsque :

$$(d + Vf \geqslant Vg \quad sur \quad \{g > 0\}) \quad implique \quad (d + Vf \geqslant Vg \quad partout)$$

pour toutes fonctions f , $g \in \mathcal{B}_+$.

L'ensemble de toutes les fonctions V-dominantes (resp. V-dominantes et s. c. i.) est noté Q = Q(V) (resp. Q = Q(V)).

Si V est borné, on définit en outre un sous-ensemble $Q^* = Q^*(V)$ de Q en posant :

$$Q^* = \{ d \in Q \cap B_b \mid \exists e \in Q : d + e \in \overline{V(B_b)} \}$$

(cette définition a un sens, puisque $V(\mathcal{B}_b)$ est contenu dans \mathcal{B}_b , l'adhérence étant prise dans le Banach \mathcal{B}_b).

<u>Définition</u> 6.3. - Soit V un noyau fini sur Ω ; on dit que V <u>satisfait au</u> <u>principe complet du maximum</u> (P. C. M.) si les constantes positives sont des fonctions V-dominantes.

Si V satisfait au P. C. M., il est clair que \mathbb{R}^+ + $V(\mathfrak{G}^+)$ $\subseteq \Omega$.

PROPOSITION 6.4. - Soit V un noyau continu sur Ω (c'est-à-dire tel que $V(C_c) \subset C$) strictement positif. Si d est une fonction s. c. i. telle que, pour toutes f, $g \in C_c^+$:

 $(d + Vf \geqslant Vg \quad \underline{sur} \quad \{g > 0\}) \quad \underline{implique} \quad (d + Vf \geqslant Vg \quad \underline{partout})$,

alors d est une fonction V-dominante.

<u>Démonstration</u> (Voir aussi [10], p. 251). - Soient f, $g \in B^+$ telles que $d+Vf \geqslant Vg$ sur $\{g > 0\}$. Posons

$$A_f = \{f' \mid f' \ge f \text{ et } f' \text{ s. c. i.} \},$$
 $B_g = \{g' \mid g' \le g \text{ et } g' \text{ s. c. s. bornée} \}.$

Des conséquences de la théorie de la mesure sont que

$$Vf = \inf\{Vf' \mid f' \in A_f\}$$

$$Vg = \sup\{Vg' \mid g' \in B_g\}$$

et que $Vg^{!} = \sup\{V(g^{!} \cdot 1_{K}) \mid K \text{ compact } \subseteq \{g^{!} > 0\}\}$ pour toute fonction $g^{!} \in B_{g}$. Choisissons $f^{!} \in A_{f}$, $g^{!} \in B_{g}$ quelconques, K compact quelconque, $K \subseteq \{g^{!} > 0\}$, et enfin $\epsilon > 0$ arbitraire.

Alors, puisque V est strictement positif,

$$d + V(f' + \epsilon) > V(g' \cdot 1_V)$$
 sur K .

Or $d+V(f^!+\epsilon)$ est s. c. i. tandis que $V(g^!\cdot 1_K)$ est s. c. s. (car $f^!$ est s. c. i., $g^!\cdot 1_K$ s. c. s. à support compact, et V continu); donc il existe une fonction $h\in C$ et un voisinage compact L de K tels que :

$$d + V(f' + \epsilon) > h > V(g' \cdot 1_K)$$
 sur L .

Mais il existe une suite croissante $(f_n^i)_n \subset C_c^+$, et une suite décroissante $(g_n^i)_n \subset C_c^+$, telles que :

$$f' + \varepsilon = \sup_{n} f'_{n}$$
; $g' \cdot 1_{K} = \inf_{p} g'_{p}$ et $S(g'_{p}) \subset L$.

Donc, pour un choix convenable de n et p, on a

$$\texttt{d} + \texttt{Vf}_n^{\, \bullet} \geqslant \texttt{h} \geqslant \texttt{Vg}_p^{\, \bullet} \,\, \texttt{dans} \,\, \texttt{L} \,\, \texttt{, done dans} \,\, \texttt{\{g}_p^{\, \bullet} > \texttt{0\}} \,\, \texttt{.}$$

D'après l'hypothèse faite sur d , c'est que

$$d + Vf_n^! \geqslant Vg_p^!$$
 partout.

On déduit de là que

$$d + V(f' + \epsilon) > V(g' \cdot 1_K)$$
 partout,

puis, f', g', K et ε étant arbitraires, que

On suppose maintenant que Ω est un espace harmonique. Alors on peut énoncer le résultat suivant.

THÉORÈME 6.5. - A tout potentiel fini p sur Ω , on peut faire correspondre un unique noyau V sur Ω caractérisé par les deux conditions :

- (a) V1 = p,
- (b) Pour toute fonction $f \in \mathcal{B}_b^+$, Vf est un potentiel fini sur Ω tel que $C(Vf) \subseteq S(f)$.

Démonstration.

(a) Unicité d'un tel noyau V . - Soit K un compact de Ω ; $V1_K + V1_{\Omega \setminus K} = V1 = p$, donc $V1_K \prec p$; or $C(V1_K) \subseteq K$; le lemme 5.3 montre alors l'inégalité $V1_K \prec RS_p^K$.

Pour tout borélien B de Ω , on a donc

$$V1_B < RS_p^B$$

[puisque $V1_B = \sup\{V1_K \mid K \text{ compact } \subseteq B\} \prec \sup\{RS_p^K \mid K \text{ compact } \subseteq B\} = RS_p^B$].

Or $V1_B + V1_{\Omega \setminus B} = p$ et $RS_p^B + RS_p^{\Omega \setminus B} = p$ (corollaire 5.8). Par suite, $V1_B = RS_p^B$ ce qu'on peut aussi écrire

$$V(x, B) = RS_{D}^{B}(x)$$
 $(x \in \Omega, B \in \mathfrak{F})$

relations montrant l'unicité d'un noyau V satisfaisant aux conditions (a) et (b) du théorème.

(β) Existence du noyau V. - Il faut donc montrer que l'application V, définie sur $\Omega \times \mathfrak{F}$ par V(x, $B) = RS_p^B(x)$, est un noyau, satisfaisant aux conditions (a) et (b) du théorème, que V soit un noyau (satisfaisant à (a)) résulte du théorème 5.7 (la mesure $B \to V(x$, B) étant la mesure que l'on a notée μ_x).

Soit f une fonction de \mathfrak{G}_b^{\dagger} . Alors f est la limite d'une suite croissante $(f_n)_n$, les f_n étant de la forme

$$f_n = \sum_{i=1}^{p(n)} \lambda_i^n 1_{B_i^n}$$
, où $\lambda_i^n \in \mathbb{R}^+$ et $B_i^n \subseteq \{f > 0\}$;

donc $Vf_n = \sum_{i=1}^{p(n)} \lambda_i^n RS_p^{B_i}$.

 Vf_n est donc un potentiel, et $C(Vf_n) \subset \bigcup_{i=1}^{p(n)} \overline{B_i^n} \subset S(f)$. Par suite, $Vf = \sup Vf_n$

est un potentiel spécifiquement majoré par ||f||p (car Vf + V(||f|| - f) = V1 = p) et $C(Vf) \subset S(f)$.

Le noyau V satisfait donc aux conditions (a) et (b).

Enfin, de la relation

$$Vf + V(||f|| - f) = p$$
, $f \in \mathcal{B}_{b}^{+}$,

il résulte immédiatement que V est borné si p l'est, et que $V(\mathfrak{G}_b) \subseteq \mathbb{C}$ si p est continu [en outre V est strictement positif si p l'est].

COROLLAIRE 6.6. - Pour tout potentiel fini p sur Ω , son noyau associé satisfait à $V(\mathfrak{G}^+) \subset \mathcal{H}_{\Omega}^*$.

<u>Démonstration</u>. - Cela résulte immédiatement du théorème 6.5 puisque pour $f \in \mathfrak{G}^+$,

$$Vf = \sup_{n} Vf_{n}$$
,

où $(f_n)_n$ est une suite croissante dans \mathfrak{B}_b^+ .

LEMME 6.7. - Soit p un potentiel continu strictement positif. Alors son noyau
V associé est tel que:

- (a) $\mathcal{H}_{\Omega}^* \subset \mathcal{O}_{S}(V)$,
- (b) $\forall f \in \mathcal{B}_b^+$, $\inf\{d \in \mathcal{Q} \mid \forall f d \in \mathcal{C}_0^+\} = 0$.

Démonstration.

(a) Soient $u \in \mathcal{X}_{\Omega}^*$, f, $g \in C_{C}^+$ telles que

$$u + Vf > Vg \quad sur \quad \{g > 0\}$$
.

g est limite d'une suite croissante $(g_n)_n$ de fonctions de C_c^+ telles que $S(g_n) \subset \{g>0\}$. Alors, pour tout n ,

$$u + Vf \geqslant Vg_n \quad sur \quad C(Vg_n)$$

puisque $C(Vg_n) \subseteq S(g_n) \subseteq \{g > 0\}$; u + Vf étant une fonction hyperharmonique, et Vg_n un potentiel continu (car p est continu), le principe de domination (corollaire 2.10), montre que

$$u + Vf > Vg_n$$
 partout (et pour tout n).

Donc $u + Vf \geqslant Vg = \sup Vg_n$ partout, et, d'après la proposition 6.1, c'est que $u \in \mathcal{Q}_s$.

(b) est une conséquence immédiate du (a) précédent et du lemme 3.6.

LEMME 6.8. - On suppose que (Ω, \mathcal{H}) est un espace fortement harmonique et que la constante 1 est surharmonique. Il existe alors un potentiel $p \in P \cap C_b$, strictement positif, tel que l'on ait l'inclusion

$$C_{C} = O^{*}(V) - O^{*}(V)$$

pour le noyau V associé à p.

<u>Démonstration</u>. - D'après le théorème 3.7, toute fonction $f \in C$ peut être approchée uniformément par des différences u - v de fonctions de

$$\mathcal{C}_{C} = \{ p \in \mathcal{C} \cap \mathcal{C} \mid \mathcal{C}(p) \text{ compact} \}$$
;

il existe donc un ensemble dénombrable $Q = \{u_1, u_2, ...\}$ de tels potentiels $u_n^* \neq 0$ de C tel que C C Q - Q . D'après le principe de domination (corollaire 2.10), tous les potentiels de P sont bornés, et l'on peut donc poser :

$$p = \sum_{n=1}^{\infty} \frac{1}{2^n ||u_n^i||} u_n^i$$
, donc $0 .$

Alors p est un potentiel (proposition 2.8) continu et strictement positif. Soit V le noyau qui lui est associé. Pour tout $n \in \mathbb{N}$, on a (si $u_n = 1/(2^n \|u_n^i\|) u_n^i$)

$$u_n \in \mathcal{P}_c \subset \mathcal{Q}(V) \cap \mathcal{B}_b$$
 (d'après le lemme précédent)

et de même $p - u_n = \sum_{m \neq n} u_m \in P \subset Q(V)$ et $p - u_n \in B_b$. Puisque

$$u_n + p - u_n = p = V1 \in V(B_b) \subset \overline{V(B_b)}$$
,

c'est que u_n , donc u_n^{\bullet} , appartient à $\mathbf{0}^*(\mathbf{V})$. Il s'ensuit que

$$C_{c} \subset \overline{Q - Q} \subset \overline{Q^{*}(V) - Q^{*}(V)}$$
.

Rassemblons les résultats de ce paragraphe dans le théorème suivant.

THÉORÈME 6.9. - Soit (Ω, χ) un espace fortement harmonique (à base dénombrable) tel que les constantes positives soient hyperharmoniques. Il existe alors un noyau V sur Ω possédant les propriétés suivantes :

(Ko) V est borné et satisfait au principe complet du maximum,

$$(K_1)$$
 $V(B_b) \subseteq B_b \cap C = C_b$,

$$(K_3)$$
 $\forall f \in \mathcal{B}_b^+$, $\inf\{d \in \mathcal{Q} \mid \forall f - d \in \mathcal{C}_0^+\} = 0$,

$$(K)$$
 $V(B^+) \subset \mathcal{H}_{\Omega}^* \subset \mathcal{O}_{S}(V)$.

Un noyau possédant ces cinq propriétés sera dit admissible.

Il suffit de remarquer que si V est le noyau associé au potentiel p du lemme

6.8, V est un noyau admissible [il satisfait au P. C. M., car 1 $\mathcal{H}_{\Omega}^* \subset \mathbb{Q} \subset \mathbb{Q}$].

7. Semi-groupes et fonctions excessives.

Si V et W sont deux noyaux sur un espace localement compact Ω , à base dénombrable, V et W considérés comme applications de \mathfrak{G}^+ dans \mathfrak{G}^+ peuvent être composés; on obtient ainsi une application WV de \mathfrak{G}^+ dans lui-même, et qui dérive du noyau

$$(x, B) \longrightarrow \int W(x, dy) V(y, B) \qquad (x \in \Omega, B \in \mathfrak{F}).$$

Il est évident que si W et V sont tous deux (sous)-markoviens, WV est aussi (sous)-markovien.

On peut donc poser la définition suivante.

<u>Définition</u> 7.1. - Une famille $(P_t)_{t\geqslant 0}$ de noyaux (sous)-markoviens sur Ω est appelée <u>semi-groupe</u> sur Ω (de noyaux (sous-) markoviens) si

 $P_{t+s} = P_t P_s$ pour tout t, $s \ge 0$,

 P_{\bigcap} est le noyau identique I , défini par

$$I(x, B) = 1_B(x)$$
 $(x \in \Omega, B \in \mathfrak{F})$.

Pour un tel semi-groupe, il existe une classe importante de fonctions associées, qui, déjà par définition, est analogue à la classe des fonctions hyperharmoniques positives :

$$P_t f \leq f$$
,

$$\lim_{t\to 0} P_t f = f$$
.

L'ensemble de toutes les fonctions excessives sera noté $\mathcal{E} = \mathcal{E}((\mathbf{P_t})_{\mathbf{t} \geqslant 0})$

<u>Définition</u> 7.3. - Un semi-groupe $(P_t)_{t\geqslant 0}$ de noyaux sous-markoviens sur Ω est appelé semi-groupe quasi de Feller si

$$P_{t}(C_{0}) \subset C_{b} \quad (\forall t \ge 0), \qquad (7.1)$$

$$\lim_{t\to 0} \|P_t f - f\| = 0 \quad (\forall f \in C_0), \quad (7.2)$$

I p \in & \cap C b, p > 0, I q \in & \cap C telles que \forall α , $\beta \in \mathbb{R}_+^*$, $\{p \geqslant \alpha\} \cap \{q \leqslant \beta\}$ soit compact.

On peut alors démontrer ([7], p. 188) le théorème suivant.

THEOREME 7.4. - Soit V un noyau satisfaisant aux propriétés (K_0) à (K_3) (du) théorème 6.9). Alors il existe un unique semi-groupe quasi de Feller sur Ω tel que :

$$Vf(x) = \int_0^\infty P_t f(x) dt,$$

pour toute $f \in \mathcal{B}^+$ et tout $x \in \Omega$.

Comme conséquence des théorèmes 6.9 et 7.4 on a alors le théorème ci-après.

THÉORÈME 7.5. - Soit V un noyau admissible sur un espace fortement harmonique Ω pour lequel les constantes positives sont hyperharmoniques, et soit $(P_t)_{t\geqslant 0}$ le semi-groupe quasi de Feller qui lui correspond. Alors on a les égalités :

$$\mathcal{X}_{\Omega}^* = \Omega_s(V) = \mathcal{E}((P_t)_{t \geqslant 0})$$
.

<u>Démonstration</u>. - Nous savons déjà (par définition d'un noyau admissible) que $\mathcal{H}_{\Omega}^* \subset \mathcal{O}_{S}(V)$.

Montrons $\mathfrak{Q}_s(V) \subset \mathcal{E}$; Pour cela, soit $d \in \mathfrak{Q}_s(V)$. d étant une fonction dominante, la théorie des résolvantes ([10], p. 246, et aussi [5]) montre que P_t $d \leqslant d$ $(t \geqslant 0)$; d étant s. c. i., il existe une suite $(f_n)_n \subset \mathcal{C}_c^+$, croissante, et d enveloppe supérieure égale à d; alors la relation (7.2) montre que, pour tout n, on a

$$f_n = \lim_{t\to 0} P_t f_n \leqslant \lim_{t\to 0} P_t d \leqslant d$$
;

en passant à la limite, on obtient $\text{d} = \lim_{t \to 0} \text{P}_t \text{d}$, donc $\text{d} \in \mathcal{E}$.

Montrons & \subset \mathcal{H}_{Ω}^{*} ; Soit $u \in \mathcal{E}$. La théorie des semi-groupes montre ([10], p. 242-243, T 64 - T 65) qu'il existe une suite $(f_n)_n \subset \mathcal{B}^+$ telle que la suite $(Vf_n)_n$ soit croissante et admette u pour enveloppe supérieure. Puisque $V(\mathcal{B}^+) \subset \mathcal{H}_{\Omega}^{*}$, $u \in \mathcal{H}_{\Omega}^{*}$ (remarque 4°, § 1), le théorème est donc démontré.

Esquisse de la démonstration du théorème 7.4.

(A) On appelle résolvante sur (Ω , \Im) , une famille (V_{λ}) $_{\lambda>0}$ de noyaux sur (Ω , \Im) telle que :

$$(R) \qquad \qquad V_{\lambda} - V_{\mu} = (\mu - \lambda) \ V_{\lambda} \ V_{\mu} \ ; \quad V_{\lambda} \ V_{\mu} = V_{\mu} \ V_{\lambda}$$

pour tout λ , μ > 0 , μ > λ .

On dit que la résolvante $(V_{\lambda})_{\lambda>0}$ est <u>sous-markovienne</u> si tous les noyaux λV_{λ} sont sous-markoviens.

A une résolvante $(V_{\lambda})_{\lambda>0}$, on peut associer (grâce à (R)) un nouveau noyau

 $V_0 = \sup_{\lambda} V_{\lambda}$, et l'équation résolvante (R) est encore vraie avec $\lambda = 0$. Inversement, on a le théorème ci-après.

THÉORÈME A. - Soit V un noyau borné sur (Ω, \mathfrak{F}) satisfaisant au principe complet du maximum. Alors il existe une unique résolvante $(V_{\lambda})_{\lambda>0}$, sous-markovienne, telle que $V_0 = V$. En outre, pour tout $\lambda > 0$, $V_{\lambda}(\mathfrak{G}_b) \subseteq \mathfrak{G}_b$.

(B) Soit X un espace de Banach ordonné par un cône convexe fermé.

Un opérateur A sur X est dit sous-markovien si $\|A\| \leqslant 1$ et si A est positif.

Un semi-groupe sous-markovien sur X est une famille $(P_t)_{t\geqslant 0}$ d'opérateurs sous-markoviens sur X telle que :

$$P_{t} \cdot P_{s} = P_{t+s}$$
 pour tout t, $s \ge 0$
 $P_{0} = I$ (identité de $L(X)$).

On dit que le semi-groupe est fortement continu si

$$\lim_{t\to 0} \|P_t \times - \times\| = 0$$
 pour tout $x \in X$.

Une résolvante sous-markovienne sur X est une famille $(V_{\lambda})_{\lambda>0}$ d'opérateurs sur X , telle que les opérateurs λV_{λ} soient sous-markoviens et satisfaisant l'équation résolvante

$$V_{\lambda} - V_{\mu} = (\mu - \lambda) V_{\lambda} V_{\mu}$$
 pour tout λ , $\mu > 0$.

Une telle résolvante est dite fortement continue si

$$\lim_{\lambda \to \infty} ||\lambda V_{\lambda} \times - x|| = 0$$
 pour tout $x \in X$.

A tout semi-groupe sous-markovien fortement continu $(P_t)_{t\geqslant 0}$, sur X, on peut faire correspondre une résolvante sous-markovienne fortement continue $(V_{\lambda})_{\lambda>0}$, sur X, en posant, pour tout $\lambda>0$:

$$V_{\lambda} x = \int_{0}^{\infty} e^{-\lambda t} P_{t} x dt$$
 pour tout $x \in X$.

La réciproque est le théorème d'Hille-Yosida:

THEORÈME B. - Soit $(V_{\lambda})_{\lambda>0}$ une résolvante sous-markovienne fortement continue sur X . Alors il existe un unique semi-groupe sous-markovien fortement continu $(P_{t})_{t\geqslant0}$ sur X dont la résolvante est $(V_{\lambda})_{\lambda>0}$, c'est-à-dire tel que, pour tout $\lambda>0$:

$$V_{\lambda} x = \int_{0}^{\infty} e^{-\lambda t} P_{t} x dt$$
.

Nous énoncerons aussi les résultats suivants. Soit $(v_{\lambda})_{\lambda>0}$ une résolvante sous-markovienne sur X .

LEMME B.1. - $V_{\lambda}(X_1)$ est indépendant de X_1 si X_1 est un sous-espace vectoriel de X_1 stable par les V_{λ} (c'est-à-dire $V_{\lambda}(X_1) \subseteq X_1$ pour tout $\lambda > 0$)

LEMME B.2. - Pour tout $x \in V_{\lambda}(X)$, $\lim_{\lambda \to \infty} ||\lambda V_{\lambda} \times - x|| = 0$.

 $(V_{\lambda})_{\lambda>0}$ est fortement continu si, et seulement si, $\overline{V_{\lambda}(X)} = X$.

LEMME B.3. - Soit $X_0 = \overline{V_{\lambda}(X)}$. Alors $V_{\lambda}(X_0)$ est indépendant de λ , et $\overline{V_{\lambda}(X_0)} = X_0$.

(C) Soit donc V un noyau sur (Ω, \mathfrak{F}) satisfaisant aux propriétés (K_0) à (K_3) .

D'après (K_0) et le théorème A, il existe une unique résolvante sous-markovienne $(V_{\lambda})_{\lambda>0}$ sur $(\Omega$, $\mathfrak{F})$ telle que $V_0=V$.

D'après (K_1) , la restriction des noyaux à $\mathcal{B}_0 = \overline{V(\mathcal{B}_b)}$ forme une résolvante sous-markovienne sur le Banach \mathcal{B}_0 (et pour tout λ , $\mathcal{B}_0 = \overline{V_{\lambda}(\mathcal{B}_b)}$); cette résolvante, sur \mathcal{B}_0 , est fortement continue d'après les lemmes B.2 et B.3.

Il existe donc, d'après le théorème d'Hille-Yosida, un semi-groupe fortement continu $(P_t)_{t \ge 0}$ sur \mathfrak{B}_0 , sous-markovien et tel que

$$V_{\lambda} f = \int_{0}^{\infty} e^{-\lambda t} P_{t} f dt$$
 pour tout $f \in \mathcal{B}_{0}$ et tout $\lambda > 0$.

L'idée de la démonstration est de prolonger le semi-groupe $(P_t)_{t\geqslant 0}$ en un semi-groupe de noyaux sur $(\Omega$, $\mathfrak F)$ tel que $(V_\lambda)_\lambda$ soit la résolvante de ce semi-groupe de noyaux.

Un prolongement du semi-groupe est possible car $\mathbf{c}_{\mathbf{c}} \subset \mathbf{s}_{\mathbf{0}}$ (donc $\mathbf{c}_{\mathbf{0}} \subset \mathbf{s}_{\mathbf{0}}$).

Montrons donc $C_c \subset \mathcal{B}_0$: Soit $d \in \mathcal{Q}^*$, et soit $e \in \mathcal{Q}$ tel que $f = d + e \in \mathcal{G}_0$. Puisque d et e sont des fonctions V-dominantes, elles sont surmédianes pour $(V_{\lambda})_{\lambda \geq 0}$ ([10], p. 246), c'est-à-dire

$$\lambda V_{\lambda} d \leqslant d$$
 et λV_{λ} e \leqslant e pour tout λ

d'où l'on déduit :

$$0 \leqslant d - \lambda V_{\lambda} d \leqslant f - \lambda V_{\lambda} f$$
;

mais $f \in \mathcal{B}_{0}$, donc (lemme B.2)

$$\lim_{\lambda \to \infty} ||\lambda V_{\lambda} f - f|| = 0$$
.

Par suite, $\lim_{\lambda \to \infty} \|\lambda V_{\lambda} d - d\| = 0$, ce qui montre que $d \in \mathcal{B}_{0}$. Par conséquent, $0^* - 0^* \subset \mathcal{B}_{0}$, et la propriété (K_2) implique donc $C_c \subset \mathcal{B}_{0}$.

Notons $(\overline{P}_t)_{t\geqslant 0}$ le semi-groupe de noyaux sur $(\Omega$, $\mathfrak F)$ qui coîncident avec $(P_t)_{t\geqslant 0}$ sur C_c , donc sur C_0 . Terminons cette ébauche de démonstration en montrant que

$$(\overline{P}_t)_{t\geqslant 0}$$
 et $(P_t)_{t\geqslant 0}$ coîncident sur \mathbb{G}_0 .

(a) Soit $h \in \mathcal{B}_0^+$; donc $h \in \mathcal{C}_b^+$ (d'après (K_1)), et il existe une suite croissante $(h_n)_n$ dans \mathcal{C}_c^+ d'enveloppe supérieure égale à h. Alors :

$$\overline{P}_t$$
 h = $\sup_n \overline{P}_t$ h_n = $\sup_n P_t$ h_n $\leq P_t$ h .

(b) Soit $f \in \mathcal{B}_b^+$, et soit $d \in \mathcal{D}$ telle que $Vf - d \in \mathcal{C}_0^+$. Comme $\mathcal{C}_0 \subset \mathcal{B}_0$, la fonction

$$d = Vf - (Vf - d)$$

appartient à Bo.

Puisque $d \in \mathbb{Q}$, dest surmédiane pour $(V_{\lambda})_{\lambda > 0}$ et puisque $d \in \mathbb{G}_{0}$,

$$\lim_{\lambda \to \infty} \|\lambda V_{\lambda} d - d\| = 0;$$

d est donc excessive pour $(v_{\lambda})_{\lambda>0}$, et aussi pour $(P_t)_{t>0}$ ([10], p. 243) c'est-à-dire :

 $P_t d \leq d$ pour tout $t \geqslant 0$ et $\lim_{t\to 0} P_t d = d$.

On a alors, pour tout t > 0,

$$\overline{P}_t$$
 Vf $\geqslant \overline{P}_t$ (Vf - d) = P_t (Vf - d)
= P_t Vf - P_t d $\geqslant P_t$ Vf - d .

D'après la propriété (K_3) , on a donc : \overline{P}_t $\forall f \geqslant P_t$ $\forall f$; le (a) implique alors \overline{P}_t $\forall f = P_t$ $\forall f$. Par suite $\overline{P}_t = P_t$ sur $\forall (\mathcal{B}_b)$, donc sur \mathcal{B}_O .

BIBLIOGRAPHIE

- [1] BAUER (H.). Harmonische Raüme und ihre Potential Theorie. Berlin, Springer-Verlag, 1966 (Lecture Notes in Mathematics, 22).
- [2] BAUER (H.). Harmonic spaces and associated Markov processes, Centro internazionale matematico estivo: Potential theory [1969. Stresa], p. 23-67. -Roma, Cremonese, 1970.
- [3] BOURBAKI (N.). Topologie générale. chap. X. Paris, Hermann, 1961 (Act. scient. et ind., 1084; Bourbaki, 10).
- [4] BRELOT (M.). Lectures on potential theory. Bombay, Tata Institute, 1960 (Tata Institute of fundamental Research, Lectures in Mathematics, 19)

- [5] CAIROLI (R.). Produits de semi-groupes de transition et produits de processus, Publ. Inst. Stat. Univ. Paris, t. 15, 1966, p. 311-384.
- [6] CHOQUET (G.). Theory of capacities, Annales Inst. Fourier, Grenoble, t. 5, 1953/54, p. 131-296.
- [7] HANSEN (W.). Konstruktion von Halbgruppen und Markoffschen Prozessen, Inventiones Math., Berlin, t. 3, 1967, p. 179-214.
- [8] HERVE (Rose-Marie). Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Annales Inst. Fourier, Grenoble, t. 12, 1962, fasc. 1, p. 415-571.
- [9] MEYER (P. A.). Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Annales Inst. Fourier, Grenoble, t. 13, 1963, fasc. 2, p. 357-372.
- [10] MEYER (P. A.). Probabilités et potentiel. Paris, Hermann, 1966 (Act. scient. et ind., 1318, Publ. Inst. Math. Univ. Strasbourg, 14).
- [11] SIBONY (D.). Cônes de fonctions et potentiels, Cours de 3e cycle à la Faculté des Sciences de Paris, 1967/1968, et à l'University McGill de Montréal, été 1968.

(Texte reçu le 30 mai 1973)

Jean GUILLERME
19 rue Emile Zola
94130 NOGENT SUR MARNE