Séminaire Brelot-Choquet-Deny. Théorie du potentiel

KOHUR GOWRISANKARAN

On minimal positive harmonic functions

Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 11 (1966-1967), exp. nº 18, p. 1-14

http://www.numdam.org/item?id=SBCD_1966-1967_11_A10_0

© Séminaire Brelot-Choquet-Deny. Théorie du potentiel (Secrétariat mathématique, Paris), 1966-1967, tous droits réservés.

L'accès aux archives de la collection « Séminaire Brelot-Choquet-Deny. Théorie du potentiel » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON MINIMAL POSITIVE HARMONIC FUNCTIONS

by Kohur GOWRISANKARAN

Let Ω be a locally compact connected Hausdorff space with a countable base for its open sets. Let there be a harmonic system of Brelot on Ω satisfying the axioms 1, 2 and 3. Let there be a potential >0 of this system on Ω . We shall consider here the poles on any compactification of Ω corresponding to minimal harmonic functions, and give some applications. Let S^+ and H^+ be respectively the positive superharmonic functions and harmonic functions on Ω . Let Λ be a compact base (in the T-topology) of S^+ , and Λ_1 the set of minimal harmonic functions contained in Λ .

1. Minimal harmonic functions and their poles.

Let $\overline{\Omega}$ be a compact metrizable space containing Ω as a dense open subspace. Let Γ be the boundary of Ω , viz. $\Gamma = \overline{\Omega} - \Omega$. Let w > 0 be a fixed harmonic function on Ω , and μ_w its canonical measure on Λ (carried by Λ_1). Corresponding to each $w \in \mathbb{H}^+$, w > 0, let Σ_w be the class of all lower bounded w-hyperharmonic functions on Ω . The following minimum principle is proved easily by standard methods.

LEMMA 1. - For any
$$v \in \Sigma_w$$
, the condition

$$\lim_{x \to z} v \in \Sigma_w$$
, for all $z \in \Gamma$ implies that $v \ge 0$.

This shows that the set of traces of all filters of neighbourhoods of the points of Γ is associated to Σ_{W} [1]. Let us consider the associated Dirichlet problem. Let us denote, corresponding to any extended real valued function f on Γ , the upper (resp. lower) solution of this problem by $\overline{\Gamma}_{f}^{W}$ (resp. $\underline{\Gamma}_{f}^{W}$). Any of these functions, if finite, will be a w-harmonic function on Ω . A resolutive function for this problem will be called Γ^{W} -resolutive, and the solution denoted by Γ_{f}^{W} . Corresponding to each $x \in \Omega$, let $\Gamma_{x,W}$ be the Daniell measure associated to this problem.

LEMMA 2. - For any $A \subseteq \Gamma$, if ϕ_A is the characteristic function of A, then

$$w \overline{\Gamma}_{\phi_{A}}^{W} = \inf_{i \in I} R_{w}^{V_{i} \cap \Omega}$$
,

where $\{V_i\}_{i \in I}$ is the family of all open sets in $\overline{\Omega}$ containing A.

<u>Proof.</u> - Consider any such open set V_i . Then, $\frac{1}{w} R_w^{V_i \cap \Omega}$ is in Σ_w , and further the lim inf of this function majorises φ_A on Γ , and hence we get

$$\mathbf{w} \ \widetilde{\Gamma}^{\mathsf{W}}_{\boldsymbol{\varphi}_{\mathsf{A}}} \leqslant \inf_{i \in \mathsf{I}} \mathbf{R}^{\mathsf{V}_{i} \cap \Omega}_{\mathsf{W}}$$

On the other hand, if v belongs to the upper class corresponding to ϕ_{A} and if $\epsilon>0$, then we can find an open set V such that

$$V \supset A$$
 and $v > 1 - \varepsilon$ on $V \cap \Omega$.

Hence,

$$\frac{WV}{1-\varepsilon} \geqslant \mathbb{R}_{W}^{V \cap \Omega}$$

Now, by varying $\varepsilon > 0$, and then v, in the upper class defining Γ^{W}_{Φ} , we get the required opposite inequality. This proves the lemma.

COROLLARY. - For any compact set $K \subset \Gamma$, we can find a sequence $\{V_n\}$ of open sets of $\overline{\Omega}$ such that :

(i)
$$V_n \supset V_{n+1}$$
 for every $n \ge 1$
(ii) $\cap V_n = K$,
(iii) $\overline{\Gamma}_{\phi_K}^w = \frac{1}{w} \lim_{n \to \infty} R_w^{n \cap \Omega}$.

Let $A \subset \Gamma$ and $\{V_i\}_{i \in T}$ be the open sets as in the above.

LEMMA. - Each $V_i \cap \Omega$ being an open subset of Ω , the set \mathcal{E}_i of all points of Δ_1 , where $V_i \cap \Omega$ is not thin, is a Borel subset [4]. Let

$$\mathcal{E}_{\mathbf{A}} = \bigcap_{i \in \mathbf{I}} \mathcal{E}_{i}$$

It is clear then that $\mathcal{E}_{\mathbf{A}} \subset \mathcal{E}_{\mathbf{B}}$ for $\mathbf{A} \subset \mathbf{B} \subset \Gamma$ and that $\mathcal{E}_{\mathbf{\Gamma}} = \Delta_1$.

LEMMA 3. - For every compact set
$$K \subset \Gamma$$
, the set \mathcal{E}_{K} is Borel, and further
 $w \overline{\Gamma}_{\phi_{K}}^{w} = \int_{\mathcal{E}_{K}} h \mu_{w}(dh)$.

<u>Proof.</u> - We can find a sequence $\{V_n\}$ of open sets of $\overline{\Omega}$ such that $V_n \supset \overline{V}_{n+1}$ for every $n \ge 1$ and $\cap V_n = K$. It is easy to verify that

$$\mathcal{E}_{\mathrm{K}} = \bigcap_{n=1}^{\infty} \mathcal{E}_{n}$$
,

where ξ_n is the set of all points of Δ_1 where $V_n \cap \Omega$ is not thin. Hence, ξ_k is a Borel subset of Δ_1 . Further,

$$w \overline{\Gamma}_{\varphi_{K}}^{W} = \lim_{n \to \infty} \mathbb{R}_{W}^{V_{n} \cap \Omega}$$
,

and this limit (being a decreasing limit) is nothing but

$$\lim_{\varepsilon_n}\int_{w_w}^{\varepsilon_n}(dh),$$

the greatest harmonic minorant of $\mathbb{R}_{W}^{V_{n}\cap\Omega}$ [4], and we deduce the required result. This proves the lemma.

COROLLARY 1. - Let C and D be compact subsets of Γ satisfying: (i) $C \subset D$, (ii) $\overline{\Gamma}_{\mathcal{O}_{D}}^{W} \neq 0$.

Then,

$$w_D \overline{\Gamma}^w_{\phi_C} = w \overline{\Gamma}^w_{\phi_C}$$
, where $w_D = w \overline{\Gamma}^w_{\phi_D}$

By the above lemma, the canonical measure $\mu_{W_{\rm D}}$ of ${}^W_{\rm D}$ is nothing but μ_{W} restricted to ${}^E_{\rm D}$, and hence we get

$$w_{\mathrm{D}} \overline{\Gamma}_{\varphi_{\mathrm{C}}}^{\mathrm{W}_{\mathrm{D}}} = \int_{\mathcal{E}_{\mathrm{C}}} h \ \mu_{w_{\mathrm{D}}}(\mathrm{d}h) = \int_{\mathcal{E}_{\mathrm{C}}} h \ \mu_{w}(\mathrm{d}h) = \int_{\mathcal{E}_{\mathrm{C}}} h \ \mu_{w}(\mathrm{d}h) = w \ \overline{\Gamma}_{\varphi_{\mathrm{C}}}^{\mathrm{W}}$$

COROLLARY 2. - If $u_1 , u_2 \in H^+$, then, for any compact set $K \subset \Gamma$, we have $(u_1 + u_2) \overline{\Gamma}_{\varphi_K}^{u_1 + u_2} = u_1 \overline{\Gamma}_{\varphi_K}^{u_1} + u_2 \overline{\Gamma}_{\varphi_K}^{u_2}$.

THEOREM 1. - The following four statements are equivalent :

$$(\Re^{\Gamma}_{W}(1))$$
 Every finite continuous function on Γ is Γ^{W} -resolutive ;
 $(\Re^{\Gamma}_{W}(2))$ The characteristic functions of compact subsets of Γ are Γ^{W} -resoluti-
ve ;

 $(\mathfrak{R}^{\Gamma}_{W}$ (3)) For any two disjoint compact subsets C and D of Γ ,

$$\overline{\Gamma}^{w}_{\phi_{C}\cup D} = \overline{\Gamma}^{w}_{\phi_{C}} + \overline{\Gamma}^{w}_{\phi_{D}} \quad ;$$

 $(R_w^{\Gamma}(4))$ For any two disjoint compact subsets C and D such that $w_D = w \overline{\Gamma}_{\phi_D}^{W} \neq 0$, $\overline{\Gamma}_{\phi_C}^{W_D} \equiv 0$.

<u>Proof.</u> - The equivalence of the first two statements can be proved by standard Baire class arguments. We shall now show that these are equivalent to the last two. If we assume $(\mathcal{R}_{W}^{\Gamma}(2))$, then, from the additivity of the w-solutions, we find that $(\mathcal{R}_{W}^{\Gamma}(3))$ is true. Let us now assume $(\mathcal{R}_{W}^{\Gamma}(3))$, and show that $(\mathcal{R}_{W}^{\Gamma}(4))$ is a consequence.

Let C and D be two disjoint compact sets such that $w_D \neq 0$. From $(R_w^{\Gamma}(3))$, we get that $w_{C \cup D} = w_C + w_D$. But, from the corollary 2, lemma 3, we deduce that

$$\mathbf{w}_{C \cup D} \ \overline{\Gamma}_{\phi_{C}}^{\mathbf{w}_{C} \cup D} = \mathbf{w}_{C} \ \overline{\Gamma}_{\phi_{C}}^{\mathbf{w}_{C}} + \mathbf{w}_{D} \ \overline{\Gamma}_{\phi_{C}}^{\mathbf{w}_{D}}$$

i. e.

$$\mathbf{w}_{\mathrm{C}} = \mathbf{w}_{\mathrm{C}} + \mathbf{w}_{\mathrm{D}} \overline{\Gamma}_{\boldsymbol{\varphi}_{\mathrm{C}}}^{\boldsymbol{\varphi}_{\mathrm{D}}} \quad .$$

Since $w_{D} \neq 0$, we get that $\overline{\Gamma}_{\omega_{C}}^{W_{D}} = 0$.

Finally, let us suppose that $(\mathfrak{R}_{W}^{\Gamma}(4))$ is true. We shall show that $(\mathfrak{R}_{W}^{\Gamma}(2))$ is true. Let $K \subset \Gamma$ be a compact set. There is nothing to prove if $\overline{\Gamma}_{\varphi_{K}}^{W} = 0$. Hence, let us assume that

$$w_{K} = w \overline{\Gamma}^{w}_{\varphi_{K}} \neq 0$$

Let us first note that

$$\mathbf{w} \ \mathbf{\Gamma}_{\boldsymbol{\varphi}_{K}}^{\mathbf{W}} \geqslant \mathbf{w}_{K} \ \underline{\mathbf{\Gamma}}_{\boldsymbol{\varphi}_{K}}^{\mathbf{W}_{K}}$$

Now, $\Gamma - K$ is the limit of an increasing sequence of compact sets A_n . For each n, $\overline{\Gamma}_{\phi_A}^{W_K} = 0$, and hence, $\overline{\Gamma}_{\phi_{\Gamma-K}}^{W_K} = 0$. This implies that $\Gamma_{\phi_{\Gamma-K}}^{W_K} = 1$.

It follows that

$$\frac{\frac{w_{K}}{w}}{w} \leqslant \underline{\Gamma}_{\phi_{K}}^{w} \leqslant \overline{\Gamma}_{\phi_{K}}^{w} \leqslant \frac{w_{K}}{w}$$

We deduce that $\phi_{\!K}$ is $\Gamma^W\!-\!resolutive,$ and moreover that

$$\mathbf{w} \ \overline{\Gamma}_{\boldsymbol{\varphi}_{K}}^{\mathbf{w}} = \mathbf{w}_{K}$$

This completes the proof of the theorem.

DEFINITION 1. - The harmonic function w is said to satisfy the resolutivity axiom relative to Γ (or simply $(\mathbb{R}_{W}^{\Gamma})$), if anyone of the above four (equivalent) properties holds good for w.

The following lemma is proved easily.

LEMMA 4. - Let h be an element in Λ_1 . Then, $\overline{\Gamma}^h_{\Psi_A}$ is identically h or zero, for any $A \subset \Gamma$.

THEOREM 2. - Let $h \in \Delta_1$. If $K \subset \Gamma$ is a compact set such that $\overline{\Gamma}_{\varphi_K}^h = 1$, then there is at least an element $P \in K$ such that

$$\overline{\overline{\Gamma}}^{h} = 1$$
 φ_{P}

<u>Proof.</u> - If there exists no such point in K, we can find an open neighbourhood \mathbb{V}_Q (in $\overline{\Omega}$) of each point of K such that $\mathbb{R}_h^{\vee Q} \cap \Omega$ is a potential. Hence, we can choose a finite number of points Q_1 , ..., Q_m such that

$$V = \bigcup_{i=1}^{m} V_{Q_i}$$

covers K . We get immediately that $\overline{\Gamma}^h_{K} = 0$ from the lemma 2 and the fact that ${}^{cp}_{K}$

is a potential ; contradicting the assumption. The theorem is proved.

COROLLARY. - Corresponding to each $h \in \Delta_1$, there is at least one point $P \in \Gamma$ such that $\overline{\Gamma}^h = 1$.

DEFINITION 2. - Let $h \in \Delta_1$. Any point $P \in \Gamma$ such that $\Gamma_{\varphi}^h = 1$ is called a φ_{P}^{φ} pole corresponding to h. If the set of poles corresponding to a $h \in \Delta_1$ consists of a single point, then this point is called the unique pole of h on Γ .

The following proposition is an immediate consequence.

PROPOSITION 1. - Let $h \in \Delta_1$. A point P in Γ is a pole corresponding to h if $\Omega \cap V$ is not thin at h, for every neighbourhood V of P.

PROPOSITION 2. - Let p be the projection mapping from the set of all potentials in Λ with point support (p maps each such potential to its support in Ω). Let $Q \in \Gamma$ be a pole corresponding to $h \in \Lambda_1$. The filter $p^{-1}(\mathfrak{F})$, where \mathfrak{F} is the trace on Ω of the filter of all neighbourhoods of Q, is adherent to h.

<u>Proof.</u> - Let V be any open set of Ω . Then, it can be seen easily as in [2] (using a sequence of relatively compact open sets covering V) that R_u^V (for any positive harmonic function u) is represented as an integral with a measure supported by $p^{-1}(V)$ in the compact base Λ .

Let, now, W' be an open neighbourhood of Q, and let $W = \Omega \cap W'$. Since Q is a pole of h, $R_h^{W} \equiv h$. If $p^{-1}(W)$ does not have h as an adherent point, then R_h^{W} could be expressed as an integral over some subset of $H^+ \cap \Lambda$. This is impossible in view of the fact that h is minimal (and $R_h^{W} = h$). Hence, $p^{-1}(W)$ is adherent to h. This being true for each open neighbourhood W' of Q, the proposition is proved.

THEOREM 3. - There is a unique pole on Γ corresponding to a $h \in \Delta_1$, if anyone of the following two conditions is satisfied :

- 1° $(\mathbb{R}_{h}^{\Gamma})$ is valid.
- 2° The fine filter \mathfrak{F}_h is convergent.

<u>Proof.</u> - Let the axiom (R_h^{Γ}) be valid. If P₁ and P₂ are two different poles corresponding to $h \in \Delta_1$, then

$$2 = \overline{\Gamma}^{h}_{\phi\{P_1\}} + \overline{\Gamma}^{h}_{\phi\{P_2\}} = \overline{\Gamma}^{h}_{\phi\{P_1 \cup P_2\}} \leq 1 \quad .$$

This inequality is absurd, and hence there cannot be two different poles corresponding to h. Conversely, if P is the unique pole corresponding to h, then for any two disjoint compact subsets, C and D, evidently

$$\overline{\Gamma}^{h}_{\phi_{C}} + \overline{\Gamma}^{h}_{\phi_{D}} = \overline{\Gamma}^{h}_{\phi_{C}\cup D}$$

Let us now suppose that \mathfrak{F}_h is convergent to a P (evidently $P \in \Gamma$). Then, for any $Q \in \Gamma$, $Q \neq P$, there is a neighbourhood W' such that $W = W' \cap \Omega$ is thin at h. This implies that no point of Γ , other than P, can be a pole of h. Conversely, suppose P is the unique pole corresponding to h. Let W' be an open neighbourhood of P in Ω' , and let $W = W' \cap \Omega$. We can choose an open set V in $\overline{\Omega}$ such that $V \supset \Gamma - W'$ and $\mathbb{R}_h^{V \cap \Omega}$ is a potential (theorem 2). Let

$$\mathbf{K} = \Omega - (\mathbf{V} \cup \mathbf{W}')$$

it is clear that K is compact. Hence,

$$W = \Omega - (K \cup \Omega \cap V)$$

is in \mathfrak{F}_h . This being true for all neighbourhoods of P , \mathfrak{F}_h is convergent to P . The proof is complete.

DEFINITION 3. - Let

$$\Delta_{1}^{\Gamma} = \{h \in \Delta_{1} : \text{ there is a unique pole on } \Gamma \text{ corresponding to } h\},$$
and Φ_{Γ} the mapping $\Delta_{1}^{\Gamma} \rightarrow \Gamma$ which takes each h to its unique pole on Γ .

LEMMA 5. - Let $K \subseteq \Gamma$ be a compact set. Then, the set of all points of Δ_1 for which there exists at least one pole on K is a Borel subset of Δ_1 .

<u>Proof.</u> - The lemma follows immediately by observing that the set in question here is nothing but \mathcal{E}_{K} considered in the lemma 3.

The proof of the following theorem is exactly as in the chapiter V, 6, and we omit it.

THEOREM 4. - The set Δ_1^{Γ} is a Borel subset of Δ_1 , and Φ^{Γ} : $\Delta_1^{\Gamma} \to \Gamma$ is a Borel mapping.

We have the following corollary [7].

COROLLARY. - The image by Φ_{Γ} of every Borel subset of Δ_1^{Γ} is universally measurable for all Borel measures on Γ .

THEOREM 5. - <u>A necessary and sufficient condition in order that</u> (\mathbb{R}^{l}_{u}) <u>be valid for</u> a $u \in H^{+}$ is that

$$\mu_{u}(\Delta_{1} - \Delta_{1}^{\Gamma}) = 0$$

18-08

<u>Proof.</u> - For any two compact sets, C and D, of Γ , if $u_{C} = u \overline{\Gamma}_{\varphi_{C}}^{u}$, then

$$\mu_{C} \overline{\Gamma}_{\phi_{D}}^{u_{C}} = \int_{\mathcal{E}_{D}} h \mu_{u_{C}}(dh) = \int_{\mathcal{E}_{D}} h \mu_{u}(dh) .$$

Let $(\mathbb{R}^{\Gamma}_{u})$ be valid. Then, for any two disjoint compact sets C and D, $\mu_{u}(\mathcal{E}_{C} \cap \mathcal{E}_{D}) = 0$,

i. e. the set of all points of Δ_1 which can have a pole simultaneously in C and D is of measure zero. Now (chap. V,), $\Delta_1 - \Delta_1^{\Gamma}$ can be expressed as a countable union of sets of the form $\mathcal{E}_C \cap \mathcal{E}_D$, where C and D are disjoint compact sets. We deduce that $\mu_u(\Delta_1 - \Delta_1^{\Gamma}) = 0$.

Conversely, if $\mu_u(\Delta_1 - \Delta_1^{\Gamma}) = 0$, then, for any two disjoint compact sets C and D, since $\mathcal{E}_C \cap \mathcal{E}_D \subset \Delta_1 - \Delta_1^{\Gamma}$, we get $\mu_u(\mathcal{E}_C \cap \mathcal{E}_D) = 0$. Hence $(\mathcal{R}_u^{\Gamma}(4))$ is true. The proof is complete.

THEOREM 6. - Let $(\mathbb{R}^{\Gamma}_{u})$ be true for u. Then $\Gamma_{x,u}$, which are Radon measures on Γ , are precisely the image by Φ of the measures $\frac{h(x)}{u(x)} d\mu_{u}(h)$, for every $x \in \Omega$. Hence, for all Γ^{u} -resolutive functions (or equivalently $\Gamma_{x,u}$ summable functions) on Γ , the Γ^{u} -solution is given by

$$u(\mathbf{x}) \Gamma_{\mathbf{f}}^{\mathbf{u}}(\mathbf{x}) = \int (\mathbf{f} \circ \Phi)(\mathbf{h}) \frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \mu_{\mathbf{u}}(\mathbf{d}\mathbf{h}) \quad .$$

<u>Proof.</u> - Let K be a compact set in Γ , and ϕ_{K} its characteristic function. Then,

$$\Gamma^{u}_{\phi_{K}}(z) = \int \phi_{K}(z) \Gamma_{x,u}(dz)$$
,

for all $x \in \Omega$. But, from the last theorem and the lemma 3, we get

$$\begin{split} \Gamma^{u}_{\phi_{K}}(\mathbf{x}) &= \int_{\mathcal{E}_{K}} \frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{u}(\mathrm{d}\mathbf{h}) = \int_{\mathcal{E}_{K}} \mathcal{D}_{1}^{\Gamma} \frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{u}(\mathrm{d}\mathbf{h}) \\ &= \int_{\Delta_{1}^{\Gamma}} (\phi_{K} \circ \Phi)(\mathbf{h}) \, \frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{u}(\mathrm{d}\mathbf{h}) \\ &= \int \phi_{K}(\mathbf{z}) \, \Phi[\frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{u}] \, (\mathrm{d}\mathbf{h}) \quad . \end{split}$$

This is true for all the compact sets $K \subset \Gamma$, and hence the two Radon measures $d \Gamma_{x,u}$ and $d \Phi(\frac{h(x)}{u(x)} \mu_u)$ are identical. This is again true whatever be the point

 $\mathbf{x} \in \Omega$. The rest of the proof follows by a standard theorem in the theory of Radon measures [7].

COROLLARY 1. - For any extended real valued function
$$f$$
 on Γ ,
 $\overline{\Gamma_{f}^{u}}(x) = \int f(z) \Phi[\frac{h(x)}{u(x)} \mu_{u}] (dz)$.

Proof. - We know that

$$\int f(z) \, \Phi\left[\frac{h(x)}{u(x)} \, \mu_u\right] \, (dz) \ge \overline{\Gamma}_f^u(x) \quad .$$

On the other hand, let $v \in \Sigma_{11}$ and satisfy

The function v in Ω continued by its lim inf on the boundary is lower semicontinuous, and this function $\psi \ge f$ on Γ . Hence, we get

$$\mathbf{v}(\mathbf{x}) = \overline{\Gamma}^{\mathbf{u}}_{\psi}(\mathbf{x}) = \int \psi(\mathbf{z}) \, \Phi\left[\frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{\mathbf{u}}\right] \, (\mathrm{d}\mathbf{z}) \geq \int \mathbf{f}(\mathbf{z}) \, \Phi\left[\frac{\mathbf{h}(\mathbf{x})}{\mathbf{u}(\mathbf{x})} \, \boldsymbol{\mu}_{\mathbf{u}}\right] \, (\mathrm{d}\mathbf{z})$$

This is true for all such $\,v$, and the required opposite inequality follows.

COROLLARY 2. - A set
$$\mathbf{A} \subset \Gamma$$
 is $\Gamma^{\mathbf{u}}$ -negligible (i. e. $\Gamma^{\mathbf{u}}_{\varphi_{\mathbf{A}}} \equiv 0$), if $\mu_{\mathbf{u}}^{*}[\Phi^{-1}(\mathbf{A})] = 0$.

In particular, $\Gamma - \Phi_{\Gamma}(\Delta_1^{\Gamma})$ is Γ^{u} -negligible.

<u>Remark.</u> - A real valued function f on Γ is Γ^{u} -resolutive (u as in the theorem), if $f \circ \Phi$ is μ_{u} -summable.

2. The case of "proportionality".

Let us now assume that the axiom of proportionality is valid in addition for the system on Ω , i. e. the potentials with the same point support are proportional to each other. In this case, Ω can be identified homeomorphically with the set of extreme potentials on Λ [2]. Let $\overline{\Omega}$ be the closure of Ω in Λ , Δ the boundary (i. e. Martin boundary). Then $\Delta \supset \Delta_1$, and Δ consists only of harmonic functions. We shall show that the axiom of resolutivity is valid in this case (for all u > 0).

THEOREM 7. - Let u > 0, $u \in H^+$, and $K \subset \Delta$ any compact set. Then, there exists a measure λ on Δ , supported by K, satisfying

$$u(x) \overline{\Delta}^{u}_{\phi_{K}}(x) = \int h(x) \lambda(dh)$$

<u>Proof.</u> - The existence of the measure is proved by the method of Martin, and the adaptation of the proof is exactly as in [2]. We have only to note the fact that any open set V of Ω is the increasing union of a sequence of relatively compact open sets δ_n , and R_u^V is the limit of $R_u^{\delta_n}$.

THEOREM 8. - For every $h \in \Delta_1$, the fine filter \mathfrak{F}_h is convergent to h.

<u>Proof.</u> - Let ω^i be an open neighbourhood of $h \in \Delta_1$, and $\omega = \omega^i \cap \Omega$. We have to show that $\Omega - \omega$ is thin at h. For this, it is enough to show that $\overline{\Delta}_{\varphi_K}^h = 0$, where $K = \Delta \cap C\omega^i$.

Suppose $\overline{\Delta}_{\Psi_{K}}^{h} \neq 0$; then this function is $\equiv 1$ (lemma 2). Hence there exists at least one pole h' $\in K$ for the function h. Hence $\overline{\Delta}_{\Psi_{\{h'\}}}^{h} = 1$. But, by the last theorem, we get that

$$h(x) \overline{\Delta}^{h}_{\varphi_{h'}}(x) = \alpha h^{\dagger}(x)$$
, i.e. $\alpha h^{\dagger} \equiv h$.

This is impossible, since h and h' belong to the same base and are not proportional. The proof is complete.

COROLLARY 1. - Every $h \in \Delta_1$ has a unique pole (i.e. h) on Δ . COROLLARY 2. - The axiom (\mathcal{R}_u^{Δ}) is valid for all $u \in H^+$, u > 0.

(Consequence of the theorem 5.)

•

<u>Remark.</u> - In this case (of proportionality), it is easily seen that the axiom (R_u) introduced in [2] is valid for all $u \in H^+$. In other words, we have shown here that the axiom D is not needed for proving the validity of this result.

3. A sufficient condition for the proportionality of potentials with same point support.

Let us now go back to the general case. We shall give a sufficient condition in order that the potentials with the same point support are proportional.

18-10

Proof.

<u>Case</u> 1: K polar. Then $R_h^K = 0$. Let u be a positive harmonic function on $\Omega - K$ (which is connected) satisfying 0 < u < h. Then, $\frac{u}{h}$ is a bounded h-harmonic function on $\Omega - K$, and it can be extended to a h-harmonic function u' on Ω such that $0 < u' \leq 1$ [1]. It follows that hu' is proportional to h on Ω , and hence u is proportional to h on $\Omega - K$. This shows that h restricted to $\Omega - K$ is a minimal harmonic function.

<u>Case</u> 2 : K is such that $\Omega - K$ is connected (and K not polar). Let $\omega = \Omega - K$. We shall show that

$$\mathbb{G}_{h^{\dagger}} = \{ E \subset \omega : (\mathbb{R}_{h^{\dagger}}^{\omega - E})_{\omega} \neq h^{\dagger} \}$$

is a filter on ω (in fact equal to $\mathfrak{F}_{h} \cap \omega$). Then it follows that h' is a minimal harmonic function on ω [3].

Consider $E \subseteq \omega$ and $E \in \mathfrak{F}_h$. Then $F = K \cup CE$ is such that CF belongs to \mathfrak{F}_h . Hence, there exists a $v \in S^+$, $v \ge h$ on $K \cup CE$, and such that v(y) < h(y) at some $y \in E$, and $v \le h$ on Ω . Let $p = \mathfrak{R}_h^K = \mathfrak{R}_V^K$. Consider v - p on ω . The function v - p > 0, superharmonic on ω , and $v - p \ge h - p = h^*$ on $\omega - E$. But $(v - p)(y) < h^*(y)$, and hence $E \in \mathfrak{F}_h^*$.

To prove the opposite inclusion, let us consider a relatively compact open neighbourhood δ of K. Let $q = R_h^{\delta}$; this function is a potential on Ω . Using the minimum principle [5], it is easy to see that the greatest harmonic minorant in ω of the function q is $R_h^K = R_q^K$. Hence, $q - R_h^K$ is a potential on ω , and $q - R_h^K = h - R_h^K$ on $\delta \cap \omega$. Now, if $E \in \mathbb{G}_h$, then, $E \cap (\omega - \delta)$ also belongs to \mathbb{G}_h^* . For,

$$(\widehat{\mathbf{R}_{h}^{A}})_{\omega} \leqslant (\widehat{\mathbf{R}_{h}^{\omega-E}})_{\omega} + (\widehat{\mathbf{R}_{h}^{\omega\cap\delta}})_{\omega}$$
,

where $\mathbf{A} = (\omega - \mathbf{E}) \cup (\omega \cap \delta)$; and it is clear that $\mathbf{E} \cap (\omega - \delta)$ also belongs to $\mathfrak{G}_{\mathbf{h}}^{\epsilon}$.

Now, there exists a superharmonic function $v \ge 0$ on ω such that $v \ge h'$ on $(\omega - E) \cup (\omega \cap \delta)$, $v \le h'$ and v'(y) < h'(y) for some $y \in E$. It is clear that the function $w = v + \frac{A}{R_h}$ in ω and w = h on K belongs to S^+ . Further, $w \le h$ majorises h on $(\omega - E) \cup \delta$, and $w \ne h$ on Ω . Hence $\Omega - E$ belongs to \mathfrak{F}_h . This shows that $\mathfrak{F}_h = \mathfrak{F}_h \cap \omega$, completing the proof of the theorem in this case.

<u>General case</u>: As in the case 2, we can show that $\mathfrak{F}_h \cap \mathfrak{w} = \mathfrak{G}_h$, is a filter (where $\mathfrak{w} = \Omega - K$). But as in [3], we can see easily that there exists a unique connected component \mathfrak{w}_m of \mathfrak{w} (note that the connected components of \mathfrak{w} are at most countable) such that $\mathfrak{w}_m \in \mathfrak{F}_h$ (and hence $V = \bigcup \mathfrak{w}_n$ is thin at h). Now, $n \neq m$

$$h^{*} = h - R_{h}^{K} = h - R_{h}^{V \cup K}$$
 in ω_{m}

is minimal harmonic on w_m , and the fine filter corresponding to h^* on w_m is precisely $\mathfrak{F}_h\cap w_m$.

The proof is complete.

Let us now take a point P in Ω such that $\omega = \Omega - \{P\}$ is connected. Let $\overline{\Omega}$ be the Alexandroff compactification of Ω with A the point at infinity. $\overline{\Omega}$ is also a compactification of ω .

LEMMA 6. - <u>A minimal harmonic function</u> u > 0 on w has a pole at <u>A</u> if, and only if, there is a $h \in A_1$ such that u is proportional to $h - R_h^{\{P\}}$ on w.

<u>Proof.</u> - The proof is trivial if {P} is a polar set. Let us assume that {P} is not polar. The last theorem shows that the condition is sufficient. It remains to prove the necessity of the condition. By the proposition 2, we know that there is a sequence $\{x_n\}$ of elements of ω , converging to A such that there is a potential q_n on ω with support at x_n (and belonging to a compact base of the condition S^+_{ω}) with $q_n(x) \rightarrow \alpha u(x)$ for all $x \in \omega$. But every such q_n is a constant multiple of $p_n - R_{p_n}^{\{P\}}$, where $p_n \in \Delta$, p_n supported by x_n . Suppose

$$q_n = \beta_n (p_n - R_{p_n}^{\{A\}})$$
.

But, by the compactness of Λ , we can find a subsequence of $\{p_n\}$ which converges to a harmonic function h on Ω (since the supports \mathbf{x}_n of p_n converges to infinity). From this subsequence, we can choose yet another subsequence such that $R_n^{\{P\}}$ converges to a potential p with support at P. It is seen easily that u_{p_n} is equal to V(h - p). Now, using the minimum principle, it can be shown that $p = R_h^{\{P\}}$. Hence, u is a constant multiple of $h - R_h^{\{P\}}$ in ω . If h is not minimal, suppose $h = h_1 + h_2$ with h_1 and h_2 not proportional, then

$$u = C[h_1 - R_{h_1}^{\{P\}} + h_2 - R_{h_2}^{\{P\}}]$$
,

and this is impossible. The proof is complete.

COROLLARY. - Every minimal (positive) harmonic function on ω has a unique pole (either at P or A).

<u>Remark.</u> - The proof shows that, even if $\Omega - \{P\}$ is not connected, a minimal harmonic function on any connected component with a pole at the Alexandroff point of Ω comes necessarily from an element of Δ_1 . The same proof applies to minimal harmonic functions on the connected components of $\Omega - K$, where K is a compact set of Ω .

THEOREM 10. - Let $\{P\}$ be a polar set of Ω . Then the set of extreme potentials on Ω with support at P have the same cardinality as the set of positive minimal harmonic functions on $\Omega - \{P\}$ with pole at P.

<u>Proof.</u> - Since $\{P\}$ is polar, there is a one-one correspondence between the minimal harmonic functions on ω (= Ω - $\{P\}$) and the extreme potentials on Ω with support at P. The proof is easily completed.

THEOREM 11. - Let $P \in \Omega$ be such that {P} is not polar, and $\Omega - \{P\}$ connected. If the set of positive minimal harmonic functions on $\Omega - \{P\}$ with a pole at P consists of a single element, then the potentials on Ω with support at P are proportional to each other.

<u>Proof.</u> - Let u be the unique positive minimal harmonic function on $\Omega - \{P\}$ having a pole at P. Let p_1 and p_2 be potentials on Ω with support at P. The canonical measure of the harmonic function p_1 on $\Omega - \{P\}$ does not charge the set of elements of the form $h - R_h^{\{P\}}$ where $h \in \Delta_1$. Hence, both p_1 and p_2 are constant multiples of u on $\Omega - \{P\}$. Hence, p_1 and p_2 are proportional to each other on the whole of Ω . The proof is complete.

<u>Remark.</u> - An example of N. BOBOC and A. CORNEA shows that the converse of this theorem is not true.

BIBLIOGRAPHY

- [1] BRELOT (M.). Lectures on potential theory. Bombay, Tata Institute of fundamental Research, 1960 (Tata Institute of fundamental Research. Lectures on Mathematics, 19).
- [2] GOWRISANKARAN (Kohur). Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, Grenoble, t. 13, 1963, Fasc. 2, p. 307-356.
- [3] GOWRISANKARAN (Kohur). Extreme harmonic functions and boundary value problems, II, Math. Z., t. 94, 1966, p. 256-270.

- [4] GOWRISANKARAN (Kohur). Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, Grenoble, t. 16, 1966, Fasc. 2, p. 455-467.
- [5] HERVE (Rose-Marie). Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 415-571. (Thèse Sc. math. Paris, 1961).
- [6] NAIM (Linda). Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble, t. 7, 1957, p. 183-281 (Thèse Sc. math. Paris, 1957).
- [7] SCHWARTZ (Laurent). Radon measures on general topological spaces (to appear).