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A CLASS OF ELLIPTIC DIFFERENTIAL EQUATIONS

WITH DISCONTINUOUS COEFFICIENTS

Charles B. MORREY, Jr

Séminaire BRELOT-CHOQUET-DENY
(Théorie du Potentiel)
6e année, 1962, n° 4 29 mars 1962

1. Introduction.

We shall discuss equations of the form

in which G is a bounded domain in v dimensional space, the coefficients

b03B1 , c03B1 , and d are bounded and measurable, e and f are 

u for each domain D for which D (the closure of D ) c G , and the

équation is supposed to hold for ail Lipschitz functions v with compact sup-

port. A function u E if and only if u and its "distribution deriva-

tives", which we dénote by u , a = 1 , ... , y , e L (D) ; that is to say
u e L(D) and ’ there are functions p y a = 1 , ... , v , alsoin Lp(D) ,
such that

for every function g of class C on D and having compact here,

of course, g 
,a. 

dénotes the ordinary partial derivative. Thèse spaces are weil

known but are discussed rather completely in [7J (see the bibliography at the

end) .

In case the function u is of class e2(G) , the coefficients a a{3 , ba ,
. and e a e d and f e thon one sees that u satisfies

(1.1) for ail the v mentioned above if and only if u satisfies the d.iffleren-

liai équation
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However, if the coefficients are not smooth, examples show that there may not be

any solution u of the équation (1 . 1 ) which is in let alone C2(G) ;
in such cases, of course, it is not legitimate to write the differential equa-
tion (1.3).

Equations of the form (1.1) with "rough" coefficients arise in attempting to
prove the differentiability of the solutions of variational problems. For

example y suppose that a function z minimizes an intégral of the form

among all admitted func tions having the same boundary values (in a generalized
sensé). Then, ifthefunction f(x ~ z , p , ... , p ) is of

class C in its arguments and satisfies a set of inequalities, too long to
write here (but see [7J), one can proceed as f ollows : first, if ç is any

Lipschitz function with compact supporta then z + 7~ has the same boundary
values as z for any 03BB and so the function

has a minimum for À = 0 and the first step in the derivation of the Euler

equation can be carried through to yield

for any Lipschitz function ç with compact support ; here

this point, ail we know about z from the existence theory ( see the notes
[7J referred to above) is that it belongs to some space To obtain

more information about z, we next apply a difference-quotient procédure to the

equation (1.6) as follets : be any Lipschitz function with compact
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support in G. Then thereis an and a, D’ with D* cG such that

the support of the function Ç (x - he ) c D ’ for ail h with 0  )h[ h~
and each 03B3 , 1  03B3  03BD , e being the unit vector in the x y direction.

Forafixed y and h , 0  1 hl  hO ’ letusdefine

is inserted in (1.6)~ if next the integral is written as a sum of two

integrals one for each term then the obvious change of variables is

made in the intégral involving 03B6(x = he ) , and if finally the integrals are

recombined, one obtains 
,

where

B h being the corresponding différence of f . Uxing the intégral form of the
the orem of the mean, ve may write

for almost every x ; of course the other coefficients are given by correspon-

ding formulas. Since we have the solution, we may regard the coefficients as

known and we see that z h satisfies an équation of the form (1~1) ; but of

course the coefficients are known only to be measurable and, in the général
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cases considered in the Notes [7]~ are not even known to be bounded. However,
in case f "has degree 2k at infinity", i. e, satisfies

and the other inequalities i n equation (3.1) of the it is possible,
by using interior boundedness properties something like those proved in § 3, to
show tha t we may le t h 1 0 and conclv.de that the derivatives Py and the

function U = V 
k /2 ( see (1 .9) ) (D) for each D with D ~ G and that

the derivatives p satisfy the differentiated equa,tions

and the coefficients b a c a d , e03B103B3 , and f y a re all bounded and

measurable and satisfy

By setting ~ = §p~ ( ~ Lipschitz with compact support in D ) in équations
(1.10) (this 03B6 is not Lipschitz but technical lemmas allov its use) and sunming
with respect to y , it can be shown the function U = V mentioned
above has the following propertr :

There is a number 03BB , 1  À  2 , such that the function W = U satisfies
the differential inequality
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for with ~(x)~0 ~ Lip (G) denoting the set of Lipschitz
having compact support in G.

This inequality is interesting, because if all functions are smooth, it is

equivalent to the inequality

for 0 from which one concludes that

In case a ’ == 5 ’ (the Kronecker delta) and b 
" 

= ca = d = 0 , (1.13) implies
that W is sub-harmonic. In § 4, it is shown (not quite in ail détail) using
the method of that U is bounded on each domain D with TC c G . This

implies that z is Lipschitz and that ail the p Y are bounded on such D . Then

since V is bounded, we soe that the équations (1.10) assume the form (1.1) ;
in fact, we ray absorb the terms b p Y and dp Y into ea and f, repectively.
For such equations, we show in § 5 (not incomplete détail) that the solutions

are Hölder continuous on interior domains. Then, if the second derivatives
of f are Hôlder continuous, the coefficients in (1.10) are Hölder continuous
and this implies that the derivatives P A are Hölder continuous, so that the

second derivatives of z 3.re Hölder continuous (in the case v = 2 , this result
has been known a long Higher differentiability can be deduced

by repeating the différence-quotient procédure and using the other theorems.

Some of the techniques used in studying the équations (1.1) are useful even the
coefficients are smooth. For example one of -the siraplest ways of proving the

existence of the solutions of the équation (.ï~3) is to show first the existence

of the solutions of the corresponding équations using the result of § 2~
and then applying the difference-quotient procédure illustrated above together
with the interior baundedness theorem of § 3 to show that the second derivatives

of u are Then the Hölder continuity theorems of § 5 show that the

f irst derivatives of u are Hölder continuous and the classical results show

that the second derivatives are.

We are presenting thèse results bef ore this semimar with the hope that the
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solutions will satisfy some or ail of the axiome of abstract potential theory.

We believe, however, that the theorems which are necessary for this purpose have

not ail been proved.

2. Thé existence theory.

We shall consider the équations (1 .1) in which the coefficients b03B1 ,
and d satisfy (l.li) but we sheJl allow ea and f to be the

domain G will always be bounded. We shall not assume that = or that

= a03B103B2 ; this makes no différence in the proofs and is useful in studing
certain non-linear équations of the form

which have the same form as the Euler équations for the intégral (1.4) except

that we do not assume that = f and hence don’t assume that
P0152

We are looking for a solution u of (1.1) which "bas given boundary values".

This has, originally, to be interpreted (since we bave abandoned continuity 
in

using the spaccs H12 ) to mean that u - 1.1* E H120(G) , u* being a given func-

and denoting the closure of the set Lipschitz

fonctions with compact support in G . This implies that u e 1£ (G) and so has

finite Dirichlet intégral. Smoothness. on the interior and at the boundary is

considered later, but we shall not présent any such results hereo But solutions

of (1.1) will be shown in § 3 and § 4 to have boundedness properties on interior

domains even if they are not in H12 over the whole domain G.

It is clear that our problem may be reduced, by setting U = u - u* ( u*

given), to that where our desired solution H120(G) ; the resulting terms invol-
ving u* can be absorbed into the non-homogeneous terms e 

0152 
and f . Moreover,

for well-known reasons, we shall modify (1.1) by allowing the functions u , v ,

e~ , and f to be complex-valued (keeping the others real), replacing v by

its conjugate v , and adding the term 03BBuv in the intégral (A complex). This

last has the effect, in the smooth case, of replacing the équation (1.3) by

lu - AU = tp , where Lu and 03C6 denote the left and right sides of that équation.
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We now define

ble shall assume that u a.nd v E H120(G) a.nd shall use as inner product, the ex-

preision

This is legitimate since we have (see the Notes [7])*

LEMMA 2.1 (Poin.caré’s c B(x0 , R) , then

R) denotes ball with center Xo and radius R

In terms of this notation our altered equations (1.1) become

that (2.4) holds for all v in does for is

évident from the fact that LiPc(G) is dense in X§~(G) .
We first prove :

THEDBEM 2.1. - There is a real number 03BB0 such that
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where ~u~1 and ~u~0 dénote the norms in respectively ;
we may take Xo = M(1 + 2:tvI/m) . ..

Proof. - If we write u = u. + the first inequality follows from (1.11)~
since

The second and third inequalities are irmnediate conséquences of (1.11) and the
Schwarz inequality (and the fact that |03A3 b03B1v03B1|03A3 |b03B1|2)1/2 (l iv |2)1/2 ,
etc.). Thé fourth follovs by setting v = u in the third inequality and using
the C auc hy inequality 

’

THEOREM 2.2 (Lemna of Lax and Milgram) [2] -. Suppose, in a Hilbert space  ,
v) is linear in u for each v and conjugate linear v for each

u and suppose

Suppose the transformation Ta is defined by the condition
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Then To and T-10 are operators with bounds M1 and mî1 , respectively.
Proof.... It is clear that T0 is a linear operator with bound M1 . From (2.6)

(ii) and (2.7) , we see that

so that

It follows easily that the range of Ta is closed. If the range were not the

whole space, there would be a v such that v) = U , v) = a for

every u * by setting u = v , it follows from (ii) that v = 0 . Thus

Ta is a bounded operator with norm  m-11 .

THEOREM 2.3. - Suppose the transformation U is define d on by the

condition that

Then U is a completely continuous operator.

Proof. - That U is an operator follows from Poincaré’s inequality (lemma 2.1)
since

suppose un ~ u (locale convergence) in H120(G) . Then un ~ u (strongly)
in I:2 ([7J, theorem 1.10 (d)) and

so that U is compact.
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THEOREM 2.4. - If X is not in a set C , which has no points in the

plane, the equation (2.4) bas a unique solution u in ~20~~ f or each given
e and f j~ I~(G) . If there are solutions of (2.4) in which 
and e = f = 0 , but the manifold of thèse is f inite dimensional. If 03BB0 is

defined as in theorem 2,1, then no real number B &#x3E; ÀO is in e.

Proof. - Let us define ÀO as in theorem 2*1 and BG by

and define Ta by (2,7). Then, équation (2.4) is équivalent to

L being a linear functional. Moreover, from theorem 2.1, it follows that B0
satisfies the conditions of the lemma of Lax and Milgram with ml = m/2 .
Accordingly T~ has a bounded inverse so (2.10) is équivalent to

Since T" U is compact, the theorem follows from the Riesz theory of linear

operators.

As an immédiate conséquence of the theorems of this section and Poincaré’s ine-

quality we obtain the following theorem :

THEOREM 2 . 5 . (Local exi s te nc e and uniqueness theorem). - There i s an R &#x3E; 0 ~
depending only on m and M such that if 0  R  R and G R) ,
then 03BB = 0 is not in the set C of theorem 2.4 and, in fact if u is the

solution of (~ ~4~ ~ then

3. First interior boundedness and approximation theorems.
In this section, we continue to assume that the coefficients ca ,

and d satisfy (1.11) and that G is bounded a nd R) .
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THEOREM 3.1 (Interiorboundedness in K~). - Suppose that u, e asd

and that foreach D with D c G and satisfies (1.1) for
each v E which vanishes in G - D for some D c G . Then there is a

constant C depending only on m and M R ) such that

being thé distance from D .~o 6G (the boundary of G ).

Notations. - 1  0 , |~u|2 = a12; ~~u~0,D dénotes the L2 norm

2014.2014.20142014 a , ,

of |~u| over D .

Proof. - Let us define 11(x) = 1 on D , 11(X) = 1 - 26-1 d(x , D) for

0. d (x , D) (the distance of x from D )  6 /2. , and 11 (x) = 0 otherwise ;

and let us define

and substitute that v in our équation (1 .1) as altered to (2.4) with 03BB = 0

and take real part. Then U e and we have

and our equation becomes

Using theorem 2.1 for U and relations like

and then the Cauchy inequality to eliminate the terms involving the ü a in the

remaining intégrale we see that
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from which thé theorem follows easily.

THEOREM 3~2 (Approximation theorem). - Suppose that thé coefficients 

b03B1n , c03B1n , and d satisfy (1.11) for each n on G and converge almost every-
where on G to b03B1 , c03B1 , and d y reapectively, apd suppose that e  e

and f  f in that un  u in H12(G) and that u isa
20142014 n 20142014 ~ 2014-20142014201420142014’2014 n 20142014 ~ 201420142014201420142014 n 20142014

solution of (1.1) for each n . Then u is a solution of (1.1)~

Notation. - dénotes weak convergence.

Proof. - For each v e H~~(G) ~ we see that

in (G) ( ~ denotes strong or ordinary convergence) so that

4. Interior boundedness.

Suppose that a function u E R) 1 . Then there is a lemma of SOBOIEV

([9]~ [7]) which states that u E R)] and that

in the case v = 2 , u still need not be bounded. The function U , mentioned in

§ 1 , E ~(G) and to x§ (D) for each D with If U also satisfies

the conditions near (1 . 12) , then U ~ L2(D) and it turns out that we can

conclude that Us ~ H12 (A) for each A with A c D . Indeed, it is possible to

prove the following lemma :
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4.1. - Suppose tha.t U is real, U(x)  1 , and satisfies the underlined
conditions near and including (1.12) and, in addition that

for some where we assume that B(xO’ R + a) cG anc’ 0  a  R . Then
w E R)] .and

where Ci dépends only on v, m y 

Proof. - A technical lemma allows us to substitute

in (1.12), U L being the truncated function, defined by

and 11 being defined by 11 (x) = 1 on B (xO ’ R) , equal ta (1 x - j 1 - R)
for R 5 ’ B x - x0| F + a and 0 otherwise. Since UL,a = 0 almost everywhere

on the set where U(x)  L , we see that

the inequality (1.12) becomes (again using =0 on 

where we have abbreviated 1 8?l3 U to ba. U 
a. 

ta etc.
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Using the bounds for the coefficients and the inequalities of Cauchy 
and Schwarz

as usual, we conclude that

if ve now set we find (a.ga*n using ’7UL = 0 on EL ) that

It follows from (4.5) and (4.6) that

Since R + a)] , lie may let L ~ oo to obtain our resuit.

THEOREM 4.0 . - Suppose U satisfies the hypothèses of lemma 4.1 with T =1

Then U isbounded on each doraain D ~ G and

where C depends only on v , m , M , and. À..

Remark. - If V = 2 , U is bounded on interior domains but the ine-

quality in (4.8) must be replaced by

This resalt is not good enough to obtain the results in the next 
section. How-

ever, the writer proved the results in the 
next section in the case v = 2 for
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more général systems of équations many years ago [3 J, [4]. A simplified version of
this old work appears in [6]~ 4. So in the next section, we assume V &#x3E; 2.

Proof. - Let ux define

Using the lemma we conclude in turn that wl = L2(B1), w1 ~ H12(B2) ,
w2 = ws1 ~ L2(B2) , w2 ~ H12(B3) , etc. Then, using the inequalities (4.1) and (4.2)
with 03C4 = and a replaced by 2-n a , we obtain the récurrence relation

From this récurrence relation for each n ~ we conclude that

The theorem follows by letting 

5. Hölder continuity o£ the solutions.

In this section we shall assume that the remark after theorem 4.1)
and shall restrict ourselves to the spécial équations
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It was pointed out in the introduction that the type (5.2) with e and f

bounded is sufficient for the application to the caleulus of variations. The

général équations (1.1) hâve been treated in [5= by a somewhat longer méthode

We need the following two generalizations of Foincaré’ s inequality :

tE!!J}1A 5.1. - There are constal.ts ~M C~(~ ~ c) such that

for ail hère S is the set of x where u(x) =0 and

)SJ 1 is its measure.

Proof. - It is sufficient to prove thèse for R = 1 and x~ = 0 0 We prove the

seconde the first is proved similarly. Suppose the second is false. Then there

exists a séquence {u } with ~un ~1 (the full norm in ¿) =1 such that
i n n i 2014201420142014 ~

ctB(0 , 1)B 1 and

We may assume that u -- u in H12 ([7J, theorem 1.10 b) so that 1.1 ~ in

L2 ([7J, theorem 1.10 d). From (5.3) we conclude that ~un ~ 0 in L2 , so

that u ~ u Then u must be a constant d ([7J, theorem 1.1) ~0

since ~u~1 == 1 . But then

which is a contradiction. ,

Definition. - A function ve E2(D for each D with D cG is a sub-

solution of (5.1) if and only if
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lG + dx  0 for each 03B6 E 03B6(x)  0

Remarks. - This condition is formétlly équivalent to the c ondition

5.2. - Suppose that

(i) F is non-négative and convex on the interval (0 , 

(il) H = - e -F is convex on that interval,

(iii) u is a non-négative solution of (5.1) on G y

(iv) v(x) = Flu(x)1 , and
(v) v 

Then v is a sub-solution of (5.1) on G and

whe re C dépends only on 03BD , m , M , and R and Ga i s the se t of x in G

such that B(x , a) 

Proof. - First, we assume that

and that R" is bounded on (0 , 00) . Then F e C2(o , 00) , a.nd F , FI , and
F" are bounded there with F"(u)  [FI (u)J2 . Let us set Ç =,,2 FI (u) in equa-

tion (5,1) , where ~ is defined as usual. It follows that

since F" ~ (F’ 2 . Finally
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from which the inequality follows easil;y.

In the général case, H is convex H(u)  0 on (0 , (0) . It is

easy to see that H can be approximated from below by functions H having the

properties in the preceding paragraph. It follows that the functions v(x)

frombelowandhencestronglyin for

each D with D c G , on account of the inequality (5.4) which holds for each n

The inequality holds in the limit by lower-semicontinuity.

THEOREM 5.1 (Harnack type). - Suppose that

(i) u is a non-négative solution of (5.1) on B2D = 2R) and

(ii) the set S where n(x)  1 bas measure  c1|B2R| , c1 &#x3E; 0 . Then

vhere °2 dépends only and ci .

Proof. - There is a k , 1  k  2 , such that = (l/2)c~ 
Then l S n 1 ~I .. Let us define F(u) = max[- log(u +~) , OJ ,
where 0  8  1 . It is easy to see that F satisfies the hypothèses of lemma

5 . 1 . Conseqv.ently

Since v(x) = 0 on n lBR1 &#x3E;,. (c1/2)|BkR| , it follows from lemia 5.1
that

The the orem f ollows from this and theorem 4.1.

Notation. - u E C°,G) if and only if u satisfies a uniform Hölder condition

with exponent  0: G; U E if if u E for each D

with D c G .
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THEOREM 5.2. - Suppose u is a solution of (5.1) on G. Then u e C (G)
where 0  0  1 and 0 dépends only on 03BD , m , and M. 

0

More precisely

where

and C depends only on v , and 

Proof. - It is sufficient to prove the inequality. It follows from theorem 4.1

that

Let us define m* and .;i* as the essential inf and sup of u(x) on B-.
and let us choose m (unique) so that JS") ~ )Bp)/2 ~ S and S- being the

sets of points x e Bp for which u(x) &#x3E; TE and u(x)  respectively.

If m*  Iii  1"1* , the functions [l-1* - u(x) ] /(1~4* - ’E) and [u(x} - m*]/(S - m*)
satisfy the hypothèses of theorem 5. 1 on B R with c1 = 1/2 . It follows that

u(x)  M1 for x E BR/2 , where

C2 being the constant of theorem 5.1 with °1 =: 1/2 . same results hold if

m=m or or bo th.

let 

= [ ess sup u(x)] - [ ess Ínf for x ~Bn , r  Rr

We conclude from the preceding paragraph that
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Thus

log cp(r) 1 log S - log h + (n + 1) log h  log(S/h) - (log h)/(log 2) log(R/r) ,

if n log 2 j log(R/r)  (n + 1) log 2 .

From this it follows that

THEOREM 5.3. - There are constants R1 &#x3E; 0 and C which dépend only on 03BD ,

m , and 1’1, suc h that

for each R , 0R~R. ~ and each solution of (5~) with 00 .

Proof. - Evidently we suppose that the average value of u = 0 . From

lemma 5.1, we conclude that

From theorem 5.2, we then obtain

We define ~ as usual with a, G , and D replaced by r, and

r) , respectively, and put
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in (5.1) . Me obtain

Thé theorem follows easily by using (5.5) and the inequalities of Cauchy and

Schwarz.

’ 

THEOREM 5.4. - Suppose that u E 4 (G) and is a solution of (5.2) there,

where- f is bounded and es L2(G) and satisfies

R0 being the nimber in theorem 2.5. Then u ~ C (G) and, in fact, satisfies a

condition of the form

for ail x0 , r and R as above.

Proof. - Let V be thé potential of f . It is well known that V is of class

C1 with $ Cp max)f(x)t with tB(0 y p)) = |G| . Also

so équation (5.2) is équivalent to another such with 0 and e replaced by

e ! which satisfies a condition (5.7) with a different L . Moreover, by

vertue of a old theorem of the writer ([7], theorem 1.12) it is sufficient to

prove (5.P) for some K .

Since we have assumed that R  R0 , we conclude from theorem 2.5 that u= U+H

on BR == B(x0 , R) , where lj is the solution of (5.2) which e and H

is solution of (5.1) such that conclude 



where we hâve chosen a fixed bail R) c G and will dénote the 12 norm

of 03C8 on B == r) by ~03C8~ r . Then it follows from theorem 5.3 that

let us define (p(s) = L-1 sup ~~U~Ss for ail e which satisfy (5.7) with

Li replaced by L , R replaced by S ~ R , U being the solution of (502)
e H120(BS) . Next, choose an arbitrary e which satisfies (5.7) ( L1 replaced

by . L ). We may write U = IL on BS Us is thé solution of (5.2)

E H120(BS) . Obviously e satisfies

Thus, using the ideas of (5.9) and the définition of 2p , we conclude that

Since e is arbitrary, we conclude (setting s = r/R , t = S/R ) that

Obviously (p is monotone and q&#x3E;( 1) Z.. So let us choose o ! 

Then, obviously

Using (5.10) with N  o and t = o" s ~ we obtain



4-23

() 5.11 s03C4-+  , where Si = So () 1 + Z3 w , W = o 0-  .

Since (5.11) holds for o2  s  1 . Using (5.10) with o4  s  02
and t = 0 

-2 
s, we conclude that

By repeating the argumenta we obtain

from which the theorem follows immediately.
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