SÉMINAIRE BRELOT-CHOQUET-DENY. Théorie du potentiel

PAUL-ANDRÉ MEYER

Théorèmes fondamentaux du calcul des probabilités (suite)

Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 5 (1960-1961), exp. nº 2, p. 1-9

http://www.numdam.org/item?id=SBCD 1960-1961 5 A3 0>

© Séminaire Brelot-Choquet-Deny. Théorie du potentiel (Secrétariat mathématique, Paris), 1960-1961, tous droits réservés.

L'accès aux archives de la collection « Séminaire Brelot-Choquet-Deny. Théorie du potentiel » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Séminaire BRELOT-CHOQUET-DENY (Théorie du Potentiel) 5e année, 1960/61, nº 2

THEOREMES FONDALENTAUX DU CALCUL DES PROBABILITES (suite)

par Paul-André MEYER

III. Probabilités et espérances mathématiques conditionnelles.

A. Définition des espérances conditionnelles.

THÉORÈME 3.1. - Soient p une loi de probabilité sur un espace mesurable (Ω, F) , X une variable sléatoire numérique sur Ω , p-intégrable, et T une sous-tribu de F. Il existe une variable aléatoire Y, et une seule à une équivalence près, T-mesurable, p-intégrable, et telle que pour tout ensemble B de T, on ait :

$$\int_{B} Y(\omega) dp(\omega) = \int_{B} X(\omega) dp(\omega)$$

Une telle variable aléatoire Y est appelée espérance mathématique conditionnelle de X par rapport à T : on la note E(X|T), ou parfois $E^T(X)$.

DÉMONSTRATION. - Commençons par supposer X de carré sommable : comme l'espace des fonctions T-mesurables de carré sommable est un sous-espade fermé de l'espace de Hilbert $L^2(\Omega, F, p)$, X admet une projection sur cet espace : soit Y cette projection, elle satisfait aux propriétés demandées.

Remarquons maintenant que si X est positive, Y est positive : il suffit de prendre pour B l'ensemble $\{Y < 0\}$ dans la formule (3.1.1) pour le voir. Il en résulte que si maintenant $X \in L^1(\Omega_1, F_1, p)$, et si $X \ge 0$ presque sûrement (p. s.), les projections Y_n des variables aléatoires $X_n = \inf(X_1, n)$ croissent p. s. : elles convergent donc vers une variable aléatoire Y qui satisfait à (3.1.1) Il ne reste plus qu'à appliquer ce résultat à X^+ et X^- , si X est quelconque, pour obtenir le théorème.

Reste l'unicité de Y . Elle est triviale, car si Y_1 et Y_2 sont deux solutions, en prenant pour B dans (1) les ensembles $\{Y_1-Y_2>0\}$, $\{Y_1-Y_2<0\}$, on obtient l'égalité p. s. de Y_1 et Y_2 .

B. Propriétés fondamentales des espérances conditionnelles.

1° Si X est une constante, $E^{T}(X) = X$ p. s. L'application $X \rightarrow E^{T}(X)$ est linéaire.

2° Si X est positive, $E^{T}(X) > 0$ p. s.

3° Si X est T-mesurable, $E^{T}(X) = X$ p. s.

$$4^{\circ} E[E^{T}(X)] = E(X)$$
.

5º Supposons que Y soit T-mesurable, et par exemple bornée : on a V X:

$$E^{T}(XY) = Y \cdot E^{T}(X)$$
 p. s.

(Commencer par supposer X et Y positives, le prouver pour Y étagée, puis passer à la limite en utilisant une suite croissante de Y étagées).

6° Si U est une sous-tribu de T, on a :

$$E^{U} E^{T}(X) = E^{U}(X) p_{\bullet} s_{\bullet}$$

NOTATIONS. - Si T est la tribu engendrée par une famille de fonctions $\{f_i\}_{i\in I}$, nous écrirons : $E(X|f_i$, $i\in I)$.

Si X est la fonction caractéristique d'un ensemble A , la fonction E(X|T) prend le nom de <u>probabilité conditionnelle de l'événement</u> A par rapport à T , et se note P(A|T) ou $P^T(A)$: il importe de se rappeler qu'une probabilité conditionnelle est une classe de variables aléatoires équivalentes, et non pas un nombre !

C. Définition de l'indépendance conditionnelle.

Soit (Ω, F, p) un espace muni d'une loi de probabilité, et soient B_1 , i=1,2,3, trois sous-tribus de F: nous dirons que B_1 et B_3 sont condition-nellement indépendantes relativement à B_2 (si B_2 était la tribu engendrée par une application f, on dirait : f étant donnée) si, pour tout couple de variables aléatoires Y_1 (i=1,3) B_1 -mesurables, et de carré sommable, on a la relation

$$(1) \qquad \qquad \mathbb{E}\left(\mathbb{Y}_{1} \mid \mathbb{Y}_{3} \mid \mathbb{B}_{2}\right) = \mathbb{E}\left(\mathbb{Y}_{1} \mid \mathbb{B}_{2}\right) \cdot \mathbb{E}\left(\mathbb{Y}_{3} \mid \mathbb{B}_{2}\right) \qquad \bullet$$

Il suffit évidemment que cette égalité ait lieu lorsque Y₁ et Y₃ sont des fonctions caractéristiques d'ensembles.

THÉORÈME 3.2. - Pour que B_1 et B_3 soient conditionnellement indépendantes relativement à B_2 , il faut et il suffit que, B_{12} étant la tribu engendrée par B_1 et B_2 , on ait :

(2)
$$E(Y_3|B_{12}) = E(Y_3|B_2)$$

pour toute variable aléatoire intégrable Y3, B3-mesurable.

DEMONSTRATION.

(2) \Longrightarrow (1): $E^{B_2}(Y_1 Y_3) = E^{B_2}(E^{B_12}(Y_1 Y_3))$ puisque $B_2 \subset B_{12}$ (propriété 6°) = $E^{B_2}(Y_1 E^{B_{12}}(Y_3))$ (Y₁ est B_{12} -mesurable propriété 5°) = $E^{B_2}(Y_1 E^{B_2}(Y_3))$ d'après la relation (2) = $E^{B_2}(Y_1) E^{B_2}(Y_3)$ (propriété 5°).

C. Q. F. D.

(1) \Longrightarrow (2) : il suffit de vérifier que les deux membres de (2) ont même intégrale sur tout ensemble de la forme $A_1 \cap A_2$ de B_{12} , où $A_1 \in B_1$, $A_2 \in B_2$. Soient a_1 , a_2 leurs fonctions caractéristiques.

D. RETARQUE. Soient (Ω, F, p) un espace muni d'une loi de probabilité, X une variable aléatoire numérique intégrable sur cet espace, (E, T) un espace mesurable, f: $(\Omega, F) \rightarrow (E, T)$ une application mesurable, et q la mesure image de p par f: on démontre très facilement, comme dans le théorème 3.1, qu'il existe une variable aléatoire Y sur (E, T) et une seule à une équivalence près, telle que, pour toute partie B de T:

$$\int_{B} Y dq = \int_{f^{-1}(B)} X dp$$

il est clair que Y o f est une version de E(X|f): la fonction $y \to Y(y)$ sur E s'appelle l'espérance mathématique conditionnelle de X, sachant que f(x) = y. Cette terminologie est parfois très commode.

IV. <u>Définition</u>, <u>propriétés générales</u>, construction des processus stochastiques.

A. Donnons-nous un ensemble d'indices & : ce sera ici une partie de R , généralement un intervalle de R ou de Z . Le point t de & sera appelé "l'instant t " . Soit (E , B) un espace mesurable, qui sera appelé espace des états : on appelle processus stochastique (à valeurs dans (E , B)) un système formé :

- d'un espace (Ω, F, p) muni d'une loi de probabilité, appelé espace de base.
- d'une famille d'applications mesurables $\{X_t\}_{t\in\mathbb{C}}$ définies sur l'espace de base, à valeurs dans l'espace des états.

Soit $\omega \in \Omega$: l'application t $\rightarrow X_{\pm}(\omega)$ est appelée la <u>trajectoire</u> associée à ω .

DÉFINITION 4.1. - Soient $(\Omega, F, p, \{X_t\}_{t \in \mathcal{C}})$, $(\Omega^i, F^i, p^i, \{X_t^i\}_{t \in \mathcal{C}})$ deux processus stochastiques ayant même espace d'états, et même ensemble d'indices. On dit que ces deux processus sont <u>équivalents</u> si, pour tout système fini $u = (t_1, t_2, \dots, t_n)$ d'instants de t, les répartitions des variables aléatoires $(X_t, \dots, X_t, X_t, \dots, X_t, X_t, \dots, X_t,$

Soit U la famille des parties finies de $\mathcal C$: si $u\in U$, nous noterons N_u la projection de $E^{\mathcal C}$ sur E^u , et si $u\in v\in U$, N_{uv} la projection de $E^{\mathcal V}$ sur E^u .

DÉFINITION 4.2. - On appelle système projectif de lois de probabilités sur $(E^{\mathcal{C}}, B^{\mathcal{C}})$ une famille de lois de probabilités π_u sur les espaces $(E^{\mathbf{u}}, B^{\mathbf{u}})_{\mathbf{u} \in \mathbf{U}}$? telles que, si $\mathbf{u} \subset \mathbf{v} \in \mathbf{U}$, l'on ait $\mathbf{N}_{\mathbf{u}\mathbf{v}}(\pi_{\mathbf{v}}) = \pi_{\mathbf{u}}$. S'il existe une loi de probabilité π sur $(E^{\mathcal{C}}, B^{\mathcal{C}})$ telle que \forall \mathbf{u} , $\mathbf{N}_{\mathbf{u}}(\pi) = \pi_{\mathbf{u}}$, on dit que π est la limite projective des lois $\pi_{\mathbf{u}}$.

Il est immédiat qu'il existe au plus une limite projective. Toute classe d'équivalence de processus stochastiques détermine un système projectif de lois de probabilité, qui admet une limite projective : π_u étant une loi image de la loi du processus par l'application $\omega \to \{X_t(\omega)\}_{t\in u}$ de $(\Omega$, F) dans $(E^u$, B^u), et la limite projective π des π_u étant l'image de la loi du processus par l'application $\omega \to \{X_t(\omega)\}_{t\in \mathcal{C}}$ de $(\Omega$, F) dans $(E^c$, B^c). Le processus ainsi construit, $(E^c$, B^c , π , $\{Y_t\}_{t\in \mathcal{C}}$) - où les Y_t désignent maintenant les applications coordonnées - sera appelé premier processus canonique associé à la classe d'équivalence donnée.

Le problème inverse (étant donné un système projectif de lois de probabilité, est-il le système des répartitions finies d'un processus stochastique?) est évidemment très important, et équivaut au problème de l'existence d'une limite projective pour un tel système. On a des exemples qui prouvent qu'il n'existe pas toujours de telle limite projective lorsque les mesures sont abstraites. En revanche, on a le théorème suivant:

THÉORÈME 4.1. — Si E est un espace compact, et si les π_{ij} sont des lois de Radon, il existe une loi de Radon π sur l'espace compact $E^{\mathcal{E}}$ telle que $N_{ij}(\pi) = \pi_{ij}$. (cf. [1], p. 100).

En général, notre espace E ne sera pas compact, mais, à cause de la nature particulière des processus que nous étudierons, il n'y aura pas d'inconvénient à le compactifier de manière à pouvoir appliquer ce théorème. La tribu $M(\pi)$ des ensembles mesurables pour la mesure de Radon π contenant évidemment la tribu $B^{\mathbb{Z}}$, l'existence d'une limite projective sur $B^{\mathbb{Z}}$ en résulte. Nous appelerons second processus canonique le processus $(E^{\mathbb{Z}}, M(\pi), \pi, \{X_t\}_{t\in \mathbb{T}})$.

Nous utiliserons désormais des notations simplifiées : nous omettrons la mention de l'espace Ω , de F , de $\mathcal C$... lorsque cela n'introduira pas d'ambiguité : nous parlerons par exemple du "processus $\{X_{+}\}$ " ...

B. Processus séparables. - Soient $\{X_t\}$ et $\{Y_t\}$ deux processus équivalents : Si $\mathbb Z$ n'est pas dénombrable, il se peut que, pour les lois correspondantes, des "événements" au sens intuitif du terme (par exemple "l'événement" $\{\forall \ t \in \mathbb Z\ , \ X_t(\omega) \in A\}$, où $\mathbb A$ est une partie mesurable de $\mathbb E$), ne soient pas mesurables, ou bien le soient, et se voient attribuer des mesures différentes pour les deux processus. Il convient donc de donner un nom à certains processus pour lesquels certains "événements" intéressants dont la définition fait intervenir une infinité plus que dénombrable d'instants, ont des probabilités naturelles.

Nous supposerons dans les théorèmes qui suivent que $C = R_+$: l'adaption à d'autres cas serait triviale.

K étant un compact de E , I une partie quelconque de R nous noterons V(I,K) l'ensemble des ω tels que \forall $t\in I$ on ait $X_t(\omega)\in K$.

DÉFINITION 4.3. - On dit qu'un processus $(\Omega, F, p, \{X_t\})$ à valeurs dans un espace LCD E est <u>séparable</u> (relativement à la famille des parties compactes de E) si, pour toute partie compacte K de E, et tout intervalle ouvert I de R_+ , l'ensemble V(I, K) appartient à F, et si l'on a :

 $p[V(I, K)] = \inf_{U} p[V(U, K)]$ où U parcourt la famille des parties finies de l

Il est évident qu'il existe alors une partie dénombrable S de I telle que p[V(S, K)] soit égal à l'inf ci-dessus : une telle partie sera appelée ensemble séparant (relatif à I et K) : s'il existe une partie dénombrable S qui est

séparante relativement à tout couple (I, K), nous dirons que S est un ensemble séparant universel.

LEME. - Pour tout processus stochastique, à valeurs dans un espace LCD, il existe un ensemble séparant universel.

Prenons en effet une suite de compacts K_n telle que tout compact soit l'intersection d'une sous-suite des K_n (par exemple : les réunions finies de boules fermées dont le rayon est rationnel, et dont le centre appartient à un ensemble dénombrable partout dense dans X). Prenons une suite d'intervalles ouverts I_m , formant une base de la topologie de R_+ . Pour chaque couple (m,n), soit S_{mn} un ensemble séparant relativement à I_m , K_n : $S = U S_{mn}$ répond à la question. Nous supposerons dans la suite que S est en outre dense dans R_+ .

THÉORÈME 4.2. - Pour tout processus à valeurs dans un espace compact E, il existe un processus équivalent qui est séparable.

DÉMONSTRATION. - Montrons que le second processus canonique associé au processus donné est séparable : soit K une partie compacte de E : les ensembles V(I,K), où I est quelconque, sont compacts dans E^{+} . Ils appartiement donc à la tribu M(p) définie plus haut. Les ensembles V(U,K), où U parcourt la famille des parties finies de I, forment une famille filtrante décroissante de compacts dont l'intersection est V(I,K), et il en résulte que

$$p[V(I, K)] = \inf_{U} p[V(U, K)]$$
.

C. Propriétés des processus séparables.

Faisons une remarque qui nous sera utile dans la suite ; tout processus dont les trajectoires sont p. s. continues à droite est séparable, et tout ensemble dense est un ensemble séparant universel pour un tel processus.

Une définition équivalente de la séparabilité, souvent précieuse, est la suivante :

THEOREME 4.3. - Pour toute partie A de ϵ , tout $\omega \in \Omega$, posons

$$X_{A}(\omega) = \{X_{t}(\omega), t \in A\}$$

Pour que le processus $\{X_t\}$ à valeurs dans l'espace nétrique compact $\mathbb E$, soit séparable, il faut et il suffit que pour presque tout ω , on ait :

$$\overline{X_{I}(\omega)} = \overline{X_{IOS}(\omega)}$$

pour tout intervalle ouvert I, S désignant un ensemble séparant universel.

DEMONSTRATION. - Il est clair que ceci entraîne bien la séparabilité. Inversement, montrons que, si le processus est séparable, cette propriété a lieu pour les intervalles \mathbf{I}_m à extrémités rationnelles ; on en déduira immédiatement qu'elle est vraie pour des intervalles ouverts quelconques. Soit \mathbf{K}_n une suite de compacts telle que tout compact \mathbf{K} soit l'intersection d'une sous-suite des \mathbf{K}_n : soit \mathbf{W}_{nm} l'ensemble de mesure nulle $\mathbf{V}(\mathbf{I}_m \cap \mathbf{S}_n, \mathbf{K}_n) - \mathbf{V}(\mathbf{I}_m, \mathbf{K}_n)$ si $\mathbf{W} = \mathbf{U} \mathbf{W}_{nm}$ la condition de l'énoncé est remplie pour tout $\mathbf{w} \notin \mathbf{W}$. On en déduit :

THEORÈME 4.4. - Soit $X_{\mathbf{t}}$ un processus séparable à valeurs dans l'espace métrique compact E, et soit S un ensemble séparant universel ! pour que les trajectoires soient p. s. continues à droite à l'instant t, il faut et il suffit que $X_{\mathbf{s}}(\omega) \xrightarrow{S} X_{\mathbf{t}}(\omega)$ p. s. L'ensemble des trajectoires qui possèdent en tout point t $s \in S$

de R₊ une limite à droite et une limite à gauche est mesurable, et identique à l'ensemble des trajectoires ω telles que, pour tout $t \in \mathbb{C}$, $\lim_{s \to t_+} X_s(\omega)$ et $s \to t_+$

 $\lim_{s \to t} X_s(\omega) \text{ existent.}$

DEMONSTRATION. - Nous supposons ici que E = R (Cf. Appendice). L'existence d'une limite à droite au point t s'exprime ainsi : la fonction $s \to X_s(\omega)$ possède une valeur d'adhérence à droite au point t. On applique alors le théorème 4.3.

Soit I un intervalle ouvert relativement compact, U une partie finie de I, et soient \mathbf{r}_1 , \mathbf{r}_2 deux nombres rationnels, $\mathbf{r}_1 < \mathbf{r}_2$. Appelons nombre des passages décroissants de la trajectoire associée à ω sur l'intervalle $[\mathbf{r}_1$, $\mathbf{r}_2]$, aux instants de U, le nombre $\mathbf{n}(\omega$, U, \mathbf{r}_1 , \mathbf{r}_2) des couples d'instants \mathbf{u}_1 , \mathbf{u}_2 , de u tels que: $\mathbf{u}_1 < \mathbf{u}_2$; \mathbf{x}_1 , \mathbf{u}_2 ; si $\mathbf{u}_1 < \mathbf{u}_2 < \mathbf{u}_2$; \mathbf{x}_2 ; \mathbf{x}_3 ; \mathbf{x}_4 ; \mathbf{x}_4 ; \mathbf{x}_4 ; si \mathbf{u}_4 ; \mathbf{x}_4 ; si \mathbf{u}_4 ; \mathbf{x}_4 ; si \mathbf{u}_4 ; si

 $n(\omega , V , r_1 , r_2) = \sup_{U\subset V} n(\omega , U , r_1 , r_2)$. Or il est facile de voir, d'après le théorème 4.3, que $\forall U\subset I$, $n(\omega , U , r_1 , r_2) \leq n(\omega , S\cap I , r_1 , r_2)$ p. s., de sorte que $n(\omega , I , r_1 , r_2) = n(\omega , S\cap I , r_1 , r_2)$ p. s. Le premier membre est donc une variable aléatoire. L'absence de discontinuités de seconde espèce s'exprimant par la condition $n(\omega , I , r_1 , r_2) < \infty$ p. s. $\forall I , r_1 , r_2$, le théorème est démontré.

THEOREME 4.5. - Soit $(\Omega$, F, p, $X_t)$, où $t \in R_t$, un processus stochastique à valeurs dans un espace LCD, et S un ensemble dénombrable dense dans R_t . Supposons que :

1°
$$\forall$$
 $t \in R_+$, $\lim_{s \in S} X_s = X_t$ p. s. $\sup_{t \to t_+} X_t = X_t$

2º L'ensemble des trajectoires dont la restriction à S admet une limite à droite et une limite à gauche en tout point de R_+ a pour mesure 1 • Il existe alors un processus équivalent, dont toutes les trajectoires sont en tout point de R_+ continues à droite et pourvues de limites à gauche •

DÉMONSTRATION. - Nous avons vu dans la démonstration précédente que l'ensemble des applications de S dans R₊ qui sont pourvues en tout point de R₊ de limites à droite et à gauche est mesurable sur la tribu B^S de E^S. Notre hypothèse est qu'ici il a la mesure 1 , pour le premier processus canonique associé au processus $\{X_s\}_{s\in S}$: choisissons-le comme espace de base, et posons, si $t\in R_+$:

$$\hat{X}_{t}(\omega) = \lim_{s \to t_{+}} \hat{X}_{s}(\omega), \text{ où les } \hat{X}_{s} \text{ sont les restrictions}$$

$$s \in S \qquad \text{à l'ensemble des coordonnées de } \mathbb{E}^{S}.$$

Le processus X_t est équivalent au processus X_t , d'après la condition 1 .

BIBLIOGRAPHIE

- [1] BOURBAKI (Nicolas). Intégration, chap. 1-4. Paris, Hermann, 1952 (Act. scient. et ind., 1175; Eléments de Mathématique, 13).
- [2] DOOB (J. L.). Stochastic processes. New York, J. Wildy, 1953.

APPENDICE.

1. Corollaire du théorème 4.3.

Soient $(\Omega, F, p, \{X_t\}_{t \in \mathbb{Z}})$ un processus séparable à valeurs dans un espace compact métrisable E, et S un ensemble séparant universel. Soit ϕ une application continue de E dans un espace compact métrisable G. Le processus $\{\phi \circ X_t\}_{t \in \mathbb{Z}}$ est séparable, et admet S pour ensemble séparant universel.

DÉMONSTRATION. - C'est une conséquence immédiate du théorème 4.3.

2. Fin de la démonstration du théorème 4.4.

Cette démonstration, telle qu'elle est donnée, n'a de sens que si $E=\overline{R}$. Voisi comment on peut en déduire le cas cù E est un compact métrisable : soit g_n une suite de fonctions numériques continues sur E, qui sépare les points de E. On peut appliquer le théorème 4.4 aux processus, à valeurs dans \overline{R} , $\{g_n \circ X_t\}_{t \in \mathbb{C}}$, qui sont séparables d'après le corollaire ci-dessus. Il en résulte bien que le théorème 4.4 est vrai pour le processus $\{X_t\}$.