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IX.1

In this seminar we present some new notions in the operator ideals

theory. These are dimensional gradations and cogradations of operator ideals

which give some approximations of a given operator ideal by auxiliary sequences
of ideal norms. We recall known important examples of the natural dimensional

gradations of the ideals of (q,r) - summing operators and of type p and co-

type q operators. We also investigate other interesting examples of dimen-

sional cogradations of the ideals of (t,s) - nuclear operators and L -
P

factorable operators.

Our considerations on the dimensional co-gradation of the ideal of

L 
P 
-factorable operators lead to the definition of the weak distance d(E,F)

between Banach spaces. The weak distance has the property d(E~F) ~d(E,F),
where d(E,F) is the classical Banach-Mazur distance from E to F. Still, it

+

separates spaces with respect to ideal norms : we have d(E,F) a(idF)- 

Ej r

for every operator ideal 

The definition of the dimensional gradation has been precised in

many discussions between Prof. A. Pe~czynskiand the author. It can be also

found in the Pe~czynski Notes [15] . All the material of this seminar will

be contained in notes prepared by the author for the lecture notes series of

Springer Verlag [20] . .

1 - GENERAL DEFINITIONS

Throughout this text E,F denote real or complex Banach spaces, &#x3E; E , &#x3E;

F* their duals · the action of a functional e* on an element e (E

is denoted by (e, e ) . By lL (E,F) we denote the space of all linear

bounded opeartors from E to F and by If .~ - the usual operator norm on
(E,F). we denote the space of all nuclear operators from

* *
E to F and by v ( . ) - the nuclear norm onfl (E,F). For e E E and f E F

* * *
the operator e 0 f  JL (E F) is defined by (e f) (e) - (e,e ) f for

e E E. For u E"JL (E,F), a by u EL (F E ) we denote the adjoint operator.
m m

* ** ** 2013 * **
If u = z EjL (E,E ) , we put traceU = I (ek,ek); ; it is

k=1 
" " 

k=1 
" "

well-known that trace u does not depend on a particular representation
of u.
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For Banach spaces E,F, by d(E,F) we denote the Banach-Mazur dis-

tance from E to F, i.e. we nut d(E,F) = inf T )" : T 11 T an iso-
. f ii y

morfirm from E onto F , if E and F are isomorphic, and d(E,F) - °°

otherwise. Finally, for 1  p ~we put p = p/ (p-1 ) .

Let us recall some fundamental definitions from the operator

ideals theory. A normed operator ideal (01,a) is a class UL of linear

bounded operators between Banach spaces and a function a from at to R+
which satisfy the following conditions for all Banach spaces Eo,E,Fo,F :

(0) if u E L(E,F) , rank u = 1, then and a(u) = fl u II ;

(1) (CfL(E,F) , a) is a Banach space ;

(2) if v C L(Eo9E),u C OL (E,F), w E L(F,F o ), then and

a(wuv) ~ ~I I w 1f I I v’l I -

This definition is equivalent to the definition given by

A. Pietsch in [16] ] (definitions I. I .1 I and 6.2.2). In case when we res-

trict our attention only to the category of finite - dimensional Banach

spaces, a function a from the classlf of all linear operators in the lR
+

satisfying the conditions (1) and (2) (for all finite - dimensional

Banach spaces E a ,E,F 0 ,F) is called a finite - dimensional ideal norm.

We recall now the notion of duality for operator ideals. Let 

be a normed operator ideal. We say that u C L(E,F) (E,F Banach spaces)
* *

belongs to the 4ual operator ideal (0-L a ), if

(1) a * (u) = sup Itrace w B u A~

is finite, where the suprenum is taken over all finite-dimensional

Banach spaces E ,F and operators A L(E 01,E), B JL(F,F0 w )L(F ,E )
o 0 0 0* * 

0 0

with 11 AI = II = a(w) = 1. It is easy to see taht (0l ,a ) is a

normed operator ideal too. If E,F are finite - dimensional Banach spaces,

we obviously have for u E L(E,F)

In this case the symmetric formula
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is valid for all w EIL(F,E). Moreover it is well-known and easy to see
* 

that the space (IL(E,F), a ) can be identified with the dual space
*

(JL (F,E), a) ; this identification is given by the trace formula : for

u E 1L(E,F) and w E JL(F,E) we have

(w,u) = trace wu.

To emphasize the symmetry between formulas (2) and (3), we say, in the

finite - dimensional setting, that finite - dimensional ideal norms a

* 
and a are in trace duality.

We introduce now notions of dimensional gradations and cogradations
which give some approximations of a given normed operator ideal by an

auxiliary sequence of normed operator ideals.

Given a normed operator ideal (C)l ,a) , a sequence 

normed operator ideals is a dimensional gradation of (at ,a) provided
for all Banach spaces E,F the following conditions are satisfied :

Similarly, a sequence of normed operator is
. kk

a dimension cogradation of a normed operator ideal if for all

Banach spaces E,F the following conditions hold

where is the unit ball in (~ (E,F), g,) and
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For a large class of normed operator ideals a dimension gradation
can be obtained as follows. Given a normed operator ideal we put

for u C L(E,F) (E,F Banach spaces)

Clearly, if for every u one has a(u) = 1~M uk(u), we obtain in

this way a dimension gradation of 

Dimensional gradations and cogradations of finite - dimensional

ideal norms are defined by the obvious modification of the previous
definitions (just as sequences of ideal norms satisfying the conditions

(Grad 1), (Grad 2) or (Cograd 1), (Cograd 2) respectively).

The,notions of dimensional gradation and dimensional cogradation
are in the natural duality. tlamelY , we have

- * *
Theorem 1 : Let be a normed operator ideal and (at a*) the

dual ideal. A sequence of normed operator ideals is a

dimensional cogradation of if and only if the sequence

1(Olk,ak)J of dual ideals is a dimensional gradation of ,a ).k k ’ ’ )

We omit the proof of this theorem which is standard. Let us only

mention that in order to prove that a norm ak on 4iL(E,F) satisfies’ 

k

(Cograd 2), if a norm ak on JL(F,E) satisfies (Grad 2), we show the for-

mula.

for w This yields (Cograd 2) by the general separation theorem

argument.

2 - BASIC EXAMPLES

As the first example we introduce the natural dimensional gradation

of the ideal of (q,r) - summing operators. Let I ~ r 6 q  c*. Let E,F be
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Banach spaces and let u E L(E,F). For a positive integer k we put

where the supremum is taken over all xl,...,xk E E such that

We say that u E L(E,F) is

(q,r) - summing, in symbols 1

It is well-known and easy

is a normed operator ideal. A sequence

(where we simply put (E,F) = is a dimen-( P Y P 
qr )

., i i

sional gradation of (n 
qsr 

, 
7r 
q,r 

). It can be easily checked that this

gradation has a submultiplicative property .

for w u (E,F,G Banach spaces) and positive integers

n, k.

In the last few years several theorems about a behaviour of a

sequence - L 7T cT u for finite rank operators were Droven. They can beq f q,r P ’ y

found e. g. in [ 18 ] , [ 7 ] , [8] , , [ 10 ] , the detailed proofs of some of

them were presented also in [15] (lectures 17-23). Most of results

concern the case q=r=2or2=r~q~~ which seem to be the most

important.

The first result says that for a rank n operator u the sequence

 7!- (u)r stabilizes at the N the p lace ’ with N - 2 1 n(n+l) in the
2 

2
real case and N = n in the complex case.

Proposition I : Let u EIL(E,F) be a rank n operator (E,F Banach spaces).

Then ~r u - ~ (N) (u with N defined above.

This result is essentially due to T. Figiel ; its proof is a modi-

fication of the argument used in [ 3 ] (Lemma 6.1).

The next theorem is due to the author.
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iTheorem 2 : Let u6 IL(E,F) be a rank n operator (E,F Banach spaces).

Then 7r 2 (u) 27T~Bu).
The proof of this theorem can be found in [18] and we omit it.

Finally, let us recall the result of H. K6nig ([7] , cf. also [8] 1

and [10]) which says

Theorem 3 : Let 2  q . There is a constant c 
q 

such that for every

rank n operator u E L(E,F) (E,F Banach spaces), 7r q,2 (u) 6 c q q, 2(u).
Let us formulate two problems related to theorem 3 and Proposi-

tion 1 .

Problems I : (a) Let 2  q ~. Does there exist a function N = N(n)

such that for every positive integer n and every rank n operator u one

has 7r (u) = 

q,2 q,2

(b) Does there exist a constant c such that for every

2  q  c*, every positive integer n and every rank n operator u one has

ir (U) - C7r (n) (u) ?
q,2 2 
u 

q,2 2 
u .

Theorems 2 and 3 provide a useful tool in investigations of finite -

rank operators. Many of its important applications will be shown in our

further considerations. As a first application of Theorem 2 we show a

sharper version of the inequality between different (a.2) - summing
norms of a finite-rank operator, which was originally obtained in [9] 1

(cf. also [17] , Thgoreme 3.1 I and Remarques 3.1, 3.2 and 3.3).

Corollary 1 : Let 2 ~ q ~, let u be a rank n operator. Then

Moreover, for every 2~r~q~we have

where 0  0 ~ 1 is chosen so that
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Proof : The first inequality is obvious. To get the second one we inter-

polate between two extreme cases : r = 2, established in the first ine-

quality and r = q, when the respective inequality is trivial.

We pass now to the duality theory for the dimensional gradation

, which is fully analogous to that for the ideal of (q,r) -( q,r J
summing operators. We begin with the definition. Let 1 t  s  and

let k be a positive integer. For Banach spaces E,F and u E I(E,F) with

rank u  k we put

where the infimum extends over all representations
We use the notation

for the usual modifications of (5) . Next, for u E we put

where the infimum is taken over all representations

The definition (6) should be compared with the well-known definition

of (t,s)-nuclear operators. We say that u is (t,s)-nuclear, in

symbols u if u admits a representation

where the infimum is taken over all representations

It is well-known (cf. [161 , , Theorems 18.2.5, 18.4.5), that for

The fillowing result



IX.8

is a graded version of this duality. (In the sequel we denote 

1fZ..(E,F) and s * for E,F - Banach spaces) 
t ,s

Theorem 4 : Let 1  t C s and let k be a positive integer. Then

(tl, )* = (ni *, 7ri *). Moreover $ and 7r§ considered as( 
t &#x3E; s’ t &#x3E; s) = ( t s 7T t’ s ’ t 9 s and t* &#x3E; s* considered ast,s t,s t ,s t",s t,s t ,s

finite - dimensional ideal norms are in trace duality.

Proof : The second assertion is just a reformulation of the first one

in the finite - dimensional case. The proof of the first assertion is a

slight modification of the usual proof of the duality t,s 
)* = II t * , s *.

We give here only a sketch of it.

Let E,F be Banach spaces, let u E L(E,F) . It is easy to see that

for all finite - dimensional Banach spaces Eo, Fo and all operatorso o

Therefore,

On the other hand, given E &#x3E; 0 pick a sequence xl ,...,xk E E

nonical embedding. Put F I = (span(
be the quotient map. Finally define

trace

while

Since e &#x3E; 0 is arbitrary, it follows that

completes the proof.

This
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As an immediate consequence of Theorems 1 and 4 we get

Corollary 2 : The sequence , is a dimensional cogra-
I

nuclear operators.

The next corollary is a formal consequence of Theorem 4 and the

fact that 7r as a finite-dimensional ideal norm, is "trace self-dual".

Corollary 3 : Let E,F be finite-dimensional Banach spaces, let c ~ 1

and let k be a positive interger. The following conditions are equivalent

(ii) if v E with ~’2(v) ~ 1, then v E conv (c lik), where Wk is a

set of all operators w E L(E,F) which admit a factorization

is diagonal o erator, B is diagonal operator, B C 2

Proof : Observe that for every L(E,F) the condition v E conv ( c dk)201320132013 /, (k)is equivalent to v 2,2(v) ’-- c. Next recall that on the (finite dimensional)
i

space the norms 7r and v (usually denoted by v2) coincide, hence

7T = . . Moreover, 2(k = by Theorem 4. Therefore (I) 4 (ii)2 2 
" ’ 2 ( 

292 y ( 

easily follows from the formula (3) ; similarly, (ii) (i) follows from

the formula (2).

Combining Corollary 3, Theorem 2 and Proposition 1 we get

Proposition 2 : Let E,F be Banach spaces, v E L(E,F) has rank n and

7r (v)  1. Then

v E c£(conv Wn) ,

where N = -~(n+1 ) in the real case and N = n2 in the complex case ; "ek"
denotes the "norm closure of", if E and F are finite-dimensional, the

symbols "c£" in (9) can be omitted.
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Proposition 3 : Let E be an n-dimensional Banach space. Then for the

identity operator, idE’ we have

In the proof of this proposition we shall use the well-known

theorem of F. John ([ 6 ] ) . Let us mention that the original John’s argu-
ment works only in the real case. Another proof and interesting and

fruitful generalization of this theorem is due to Lewis ([12]) , whose

argument can be extended also to the complex case (cf. also [ 15 ] ,

Lectures 15, 16). 

Theorem (F. John) : Let E be an n-dimensional (real or complex) Banach

space. There exist an inner product [ ., . ] on E, vectors xl , ...,xN in E
and positive scalars A 1 ,...,h N (where N is the same as in Proposition 10)

such that

Let 11 . 112denote the euclidean norm on E induced by the inner pro-
duct [ .,.] , , let E - (E, II 2 ) and let I : E 2 I E denote the formal
identy operator. From 1° it follows that 11 I 1B = 1. Another important

property of the operator I is
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Lemma 1 : The operator I 1 : E -~ E admits a factorization

where is a diagonal operator,
1

be the orthogonal projection onto X.

From 2° and 3° it follows that

and the condition

Before we pass to the proof of Proposition 3 let us formulate an

immediate consequence of Lemma 1 and the "trace self-duality" of the norra

Corollary 4 : For every n-dimensional Banach space E, 1T2(idE) = fi.

* 
Proof : Since vr as a finite-dimensional ideal norm, it follows

that n = trace id  iT2(idE Hence Tr(id-) On the other hand, byL 2_ L z L ’ y

Lemma 1, r ( I 1 ) II I 1 =.Jfi.

Proof of Proposition 3 : A factorization of idE, required in (i), is

given by id - w w , where w E (L(E, E ( 
N QN) 

are the same asgiven by id- = where L (E , zw) , AL ( Z..", z2) are the same as

in Lemma I and w4 - 4 
= I w2 C (2 1 N ,E). 

°° °°’ 2
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By Corollary 4 one has Jil. Therefore, by Proposition 2,
Z b

idE c 2 conv Wn. This shows the existence of a representation required
in (ii). The estimate for the number K follows from the Caratheodory’s

theorem.

Remark : It would be interesting to give a proof of Proposition 11 I (ii)

which does not use the duality argument.

At the end of the discussion of the dimensional gradation 7r (k)g P q
let us stress the fact that there are (p,q)-summing norms for which any

analogue of Theorems 2 and 3 is false. The following theorem is due to

Figiel and Pe~czynski ([15] , , Lecture 21).

I Theorem 5 : (i) Let u be a rank n operator.

Then

be the Rademacher projection defined

by

where ri(j) is the value of the i-th Rademacher

function on theJ interval ((j-l)2-nj2-n) (j=1,.:.,2n). . Then R n is a rank n
operator such that

where c is a universal constant. .

Another important examples of dimensional gradations are natural

dimensional gradations of the type p and cotype q norms of operators

(1  p  2 ~ q  °°), We recall the definitions. Let be a sequence

of (real or complex) independent standard Gaussian random variables on a

probability space (5~,~) . Let 1  p  2  q  °° and let k be a positive

integer. For Banach spaces E,F and u C L(E,F) we define 0153 p, k(u) (resp.

p q ,k (u) ) as the smallest number c (resp. cI) such that
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holds for arbitrary vectors xl,...,xk E E. We say that u is of Gaussian
type p, in xymbols (resp. Gaussian cotype q, in symbols

It is well-known that (Jï ,a ) and (L ,6 ) are normed operator
P P q q / .

ideals. It can be easily shown that the sequences ((T ,a p,k and
Tq,k q,k (where we put p, p, ) areq q- / (where we put 

P3, 
= IL(E,F) = t are

dimensional gradations of (9-,a ) and (1: 6 ) respectively.
p p q q

In a similar way, using the Rademacher functions instead of

Gaussian random variables, we can define the dimensional gradations of

the ideals of Rademacher type p and Rademacher cotype q operators. These

gradations, which were introduced by Maurey and Pisier in [ 14] , , and their

relations to the gradations of Gaussian norms were investigated by

K3nig and Tzafriri ([ 10] and [8] ). Let us also mention that the gra-

dations of Rademacher norms are equivalent to the gradations which

have the submultiplicative property, analogous to (5) (cf. [ 14 ] ).

We pass now to an investigation of behaviour of the natural grada-
tions of Gaussian type p and cotype q norms for finite-rank operators.

The obtained results answer questions raised by many authors and already
have many applications in the Banach spaces theory.

Our considerations are based upon the relations between the grada-

tions of Gaussian type p and cotype q norms and the cogradation (resp.

gradation) of the ideal of (p,2)-nuclear (resp.(q,2)-summing) operators.

Proposition 4 : Let 1  p  2  q  °° and let k be a positive integer.
Let E,F be Banach spaces and let L(E,F). Then

were I h. b 
.. k

the unit vector basis 
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The proof of this proposition can be found in [18] (for the case

p = 2 = q, the generalization to the case easy)

(cf. also [ 15 ] or [ 17 ] , Propositions 2.2 and 2.4).

Combining Proposition 4 with Proposition 1 and Theorems 2 and 3

we get

I 
Theorem 6 : Let us be an operator of rank n. Then

where N = 2 I n(n+l) in the real case and N = n2 in the complex case. If

1 p2q°°, then

where c P and c q are constants depending only on p and q respectively.I p q

Let us formulate two typical applications of the obtained results,
which strengthen earlier results from [ 9 ] and [ 4 ] ] (cf , also [ 17 ] , Pro-

position 3.2 and Thgor6me 4.1). The second result is a generalization of

the Mourey’s extension theorem ([ 13 ) ) .

Corollary 5 : Let 1  r ~ p ~ 2  q  s ~. Let u be an operator of

rank n. Then

where 0 ~ 8 ~ 1 and 0 ~ 0’  1 are chosen to satisfy I/p = 0/r + ( 1-0) /2

and I/q = e’ /s + (1-0’)/2.

This corollary easily follows from Proposition 4 and Corollary 1.
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Corollary 6 : Let 1 p2q~. Let E,F, G be Banach spaces and

let F C F be a subspace. Let u E L(E,F), w E L(Fo 9G) , rank w = n.
Let E - u 1(F ) and let u - ulE0 be the restriction of u. Then thereo o o ’ o

exists an extension T C IL(E,G) of the operator w u such that

where ~2(.) is the norm of factorization through LZ-space. In particular,
if E is a Banach space with type p and E C E its n-dimensional subspace
then

Proof : The following lemma is a consequence of the Hahn-Banach theorem
*

and the characterization of the ideal r 2 dual to the ideal (r2,y2) of

L2-f actorab le operators, due to Kwapieri ([ 11 ] ) (cf. [4] , , Lemma 10.1).

Lemma 2 : Let E,G be Banach spaces, let E be a subspace and let

J : E0 -+ E be the canonical embedding. Let L(E o ,G) rank v o 
= n and

000 0

let c &#x3E; 0. The following conditions are equivalent

(a) there exists T " r2(E,G) such that Vo and Y2(T) ~ c ;

(b) J ) for every v E IL ( n 2 E).

It follows from Lemma 2 that the existence of an extension satisfying

(10) is an obvious consequence of _the inequality.

valid for all v E 

Let v E By theorem 2 and Propositions 4 and 2 we have
2
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This cimpletes the proof of {11).

Remark : An alternative proof of Corollary 6 can be obtained by an easy

modification of an argument from [17] , , Theoreme 4.1.

Finally let us introduce some dimensional gradations and cogradations

of ideals r 
P 

of L P -factorable operators (1 ~ p ~ ~). We begin with the

definitions . Let 1 ~ p  °°. Let E,F be Banach spaces and let u E [L(E,F).

We say that u is L -factorables, in syrnbuLs u E ’ (E,F), if JF u = vw, ---.- 

** P **
w E (L{E,L P (S,) j , (,u). F ) and JF : : F - F is the canonical

embedding. For u E we inf ! vii II with the infimum

taken over all factorizations JF u = vw as above. This motion was intro-" 

r

duced by - Kwapien in [ i l ] , where it was also proven that (r ,y ) is a

P P
normed operator ideal.

For 1 p 00 ,., the sequence y by the general formula

(4), i.e. 

° ’ ’ (p,k ) 

for u (E,r Banach spaces) and k = I ,2, .... Using the ultraproduct
. i ( - NI ... * __ 1 ---technique one can show that 1 l is actually a dimensional gra-one show 

I p, 
L v,7 Cll. LlAd1 1 y a U-Liilt--LLSionai- 

dation of ( r ,y ). This gradation has very clear geometric interpretation ;
P P

for p = 2 and u-the identity operator on a Banach space E, the condition
k

c is equivalent to d(E l)  c for all k-dimensional subspaces_2 ,k L ’ 2
E C E. 

The next proposition gives a solution for an operator version of a

problem discussed by Figiel, Lindenstrauss and Milman in [ 31 , , Section 6.

As a particular case we get an essential improvement of Theorem 6.2 in

[ 3 ] (for k ", n/2) .
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Proposition 5 : Let E,F be Banach spaces, let u E L(E,F). Let k,m be

positive integers. Then

In particular, if dim E = n and d(i,k k ) -- c for all k-dimensional sub-

spaces E C E, with k = [~12-1 , then d(E, 2)  2 4"7 -c .

Proof : Let E C E be a km-dimensional subspace and let u 
o 

= u E. From
Lemma 2 it follows that the inequality

is equivalent to

for all v E !L( for all v E 2

To show ( 13) fix v E with n2(v*) I . Since rank v km, then,
, , 

* * ,

by Proposition 2, v E conv where Wkm consists of all operators
w E which admit a factorization

2

T- t km km 
A - km km.. 1 where L (),2,z2 1:1 E L(Z 2 1 ) is a diagonal operator, 

11 All 2. Since v) is a convex function of v, one may

assume, without loss of generality, that v itself admits a factorization

(14), say v = w" Aw’. Define subspaces X j C k km 2 by Xj 
= span (e(j-l)k+!"’"

e. ), for j = l,...,m, where (e is the unit vector basis in Let

P. E be the orthogonal projection onto X. ; put Y. = A(X C tklm
J 2 2 J J J ’

be the restriction of A ; ; put E. = w"(Y.) C E and let
J J J J J

be the restriction of w" (j=l,....,m).. Since dim E .  k , then
J J J J
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for all j=l,...,m (in the first inequality we use the easy estimate
* * * *

n2(TS) Y2(T) n2(S ), valid for all S : F, - F2 such that S E TI2(F2,FI)
and T C f2(F2,F3)(FI,F2,F3 Banach spaces) ). Therefore,

Now it is enough to observe that to ge t

This completes the proof of (16). Since the inequality (12) holds for all

km-dimensional subspaces E C E we infer that

completing the proof.

Proposition 5 suggests the following problems

Problems 2 : (a) Does the gradation have the submultiplicative

property, analogous to (6) and (12) ?

(b) In particular, is it true that Y2,k(idE)
for positive integers k, m and any Banach space E ?

Remark : The affirmative answer to Problem 2(b) would imply that for any

Banach space E of type p &#x3E; 1 there is an a  1/2 such that d(E,9,2) -- n0152

for all n-dimensional subspaces E C E and n = 1,2,.... This would give the

affirmative answer to the problem raised by many specialists (cf . eg. [17] , ,
P rob 1 eme (i) ) -
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At the end of this section, we define, as a particularly interesting

example, a sequence {k)} of ideal norms ( 1 p  ), which forms a
P ’ q 

dimensional cogradation of y , , considered as a finite-dimensional ideal
P

norm. Our definition is analogous to the definition of the cogradation

(cf . (6) and (7)).( t,s
Let 1  p  °° and let k be a positive integer. For Banach spaces

E,F and u E we put

00

where the infimum is taken over all representations u = 7- Bi m with
m=l 

m m

w G L(E , v G L( 
k 
,F) (m = 1 , 2 , ... ) . Clearly , for 

M=l 
il- (E ,F) we(m = 1,2,...). Clearly, for u e (E,F) we

m p m p
have 1 )(u) 10 (U)  00.

P I 

Obviously, y is a finite-dimensional ideal norm (k = 1,2,...) ;

it is not difficult to show that the sequence yp is a dimensional cogra-

dation of the ideal norm yP* Let us notice that the 
of normed operator ideals is not a cogradation of the normed operator ideal

(r p ,y p ). It is easy to see, however, that this sequence forms a dimensional

cogradation of the normed operator ideal (K p9Kp) of, so-called, p-compact
P P

operators. The ideal (K ,K ) is defined by Pietsch ([16] , , Section 18.3) in
P P

the following way : for Banach spaces E,F, K p(E,F) is a linear space of

all operator form E to F which admit a factorization through t p , endowed

with the norm defined for Kp(E,F) by K P (u) = inf 11 w)) , where
the infimum i.s taken over all factorizations u = vw with w E 

v E L(kp3F).

For further convenience we also introduce the following notation :

for 1 ~ p  00, a positive integer k and u GIL (E,F) (E,F Banach spaces)

with rank u  k, we put

obviously, for 1  p , we have y(k) (u) &#x3E; y (u) for every finite-rank
p yP(k)

operator u and k rank u. Also, y (u) = lim for every finite-
P k P

rank operator u. 
k
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particularly interesting iS behaviour of the sequences A (k) Particularly interesting is behaviour of the q yp E

and for E-a finite-dimensional Banach space. It is due to

P E 
(n) B n

the obvious f act that for n - dim E. Unfortunately,
p b p

relatively little is known on this topic.

Let us recall first the well-known fact that for

1  p  " we have y Jll for every n-dimensional Banach-
p -

space E. Actuall where N - 1 n (n+1) in theP y’ p E 
’ 2

real case and N = n2 in the complex case. For 2  p 00 this
follows directly from Proposition 3(i) (see the argument below).

For I  p  2 we just observe that (id ) .P J 
P E ’Yp* E*

In a similar way, as an appl.ication of Proposition 3(ii) , we have

j Proposition 6 : Then y (id ) 2 Jn for everyp P P yp E y

I-dimensional Banach space . p

n-dimensional Banach space.

Proof : Without loss generality we may assume that 2  p  °°. By Propo-
1-

Without loss of generality we may assume that

be a sequence of scalars corresponding to 0., i,e.
J

is the unit vector basis) .

be the diagonal operator corresponding to

be the diagonal operator corresponding to

is the representation of idE such that

This completes the proof .

Obviously, = (n) = y’ (u) for any operator u with rank

u= n. ° However, = n) no longer

has to be equivalent, up to a constant factor. to y (idE) . This can be
n 

p ’

seen e.g. for E = £2-
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Proposition 7 : Let 2  p  ~ and let n be a positive integer. Let

la constant depending only on p ;

is an absolute constant.

Proof : -. By the result of Bennet, Dor, Goodman, Johnson and Newman ([1] )

there exists a constant c’,depending only on p and T E such that
p 2 p

is the restriction of T. By the

Maurey’s extension theorem ( [ 1 3 ] ) tlle re exists

is the required factorization of I . P
n

The proof of (ii) is based upon the well-known lemma.

Lemma 3 : Let 2  p ~ ~ and let n be a positive integer. Then

where c &#x3E; 0 is an absolute constant.

Assuming the truth of Lemma 3 we complete the proof of (ii) as follows.

It is easy to see that

Therefore, by Lemma 3,

what concludes (ii).
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It remains to prove Lemma 3. First write idtk 
= p,-, Whrk p, p,

k k p

Ip cc E the formal identity operator. Therefore,

To show the left-hand side inequality in (16) fix a L~-factorization

id . 
= vw with w C v ~ jL(L tp) and by I 2 ~ denote the

K. p 00 p p,Z p Z

p
formal intensity operator. Recall that = for every k-dimensional

space E (Corollary 4), and that, by the Grothendieck theorem,  I u I I
for every u E (c’ is a universal constant). Therefore,

Thus v w &#x3E; c k . Since this estimate is valid for all L -
factorizations of id k ’ it follows that c . This completes

the proof , ~’p ~p

Let us state some problems related to Propositions 6 and 7.

Prob lems 3 : (a) Let I p  °°, p # 2. Does here exist a constant c such
(u) ’

that c 
P 

for every operator u of rank n ? 
P P P

(b) Does here exist a constant c such that y(nu) c y (u)Y. 00

for every u E where E,F are Banach spaces, dim E = n ? , In particu-

lar, does here exist a constant c such that for any
. Y. E °° bl , Y

n-dimensional Banach space E ?

(c) Let 1  p  00, p # 2. What is the order of growth as

n - °°, of the sequence
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In particular, does there .exist,a constant c P such that 6 n (p)  

Remarks : (I) The second part of Problem 3(b) and Problem 3(c) are just

reformulations of well-known classical questions.

(2) In connection with Problem 3(b) let us mention an example

given by W.B. Johnson (unpublished) which shows that the analogous inequa-

lity is not true for all operators of rank n. Namely, for the Rademacher

projection R E considered in Theorem 5 (ii) , we haven 2

where c &#x3E; 0 is an absolute constant, while obviously y( n) - l.oa n

3 - E-FACTORABLE OPERATORS AND THE WEAK DISTANCE BETWEEN BANACH SPACES

The definitions of L -factorable operators and of the norms yP P p
(1  p  ~) suggest the following uniform approach. Let E be a fixed Banach

space. Let X,Y be Banach spaces and let u E We say that u is

E-factorable, in symbols u E rE(X,Y) , if u - wk vk with vk E L(X,E),
w G IL(E,Y) (k=1 2 . ) and 7 II w k II II vkll  °°. For u E rE(X,y) we definek ’ 

’ ’ °° 

k 
k k 

° 

E ’

YE (u) = inf y II w)) II v )) , where the infimum is taken over all represen-
. 

k " 

tations of u as above. For further convenience we also introduce the

notation y E (u) = inf II wll 11 vii, where the infimum is taken over all fac-
torizations u = wv with v E L(X,E) , w E L(E,Y) (we put such

factorization does not exist), 4

Obviously, (F A ) is a normed operator ideal. For E = L we have
E E 

Â p

(r p ,Y P ), for we have the ideal of

n A A(n)
p-compact operators and, finally, for we have y E 

= 

n (P P a y 
P YE Yp
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(1 p n = 1,2, ...) . If X,Y are finite-dimensional then
. I / I

also finite-dimensional, the Caratheodory’s theorem and the standard com-

pactness argument show that given u E L(X,Y) there exist vk E L(X,E) ,

1 2
(here m(m+ 1 ) for real spaces and N  m2 for complex spaces, where2

m = max (dim X, dim Y) dim E ) .

For a Banach space E the function y E( .) is directly related to the

notion of the Banach-Mazur distance d(E,F) (F any Banach space) , We have

d(E,F) = YE(idF) (= This observation suggest the following

definition of the weak distance d(E,F). For Banach spaces E,F we put

a

The definition of d(E,F) is very natural in the context of the theory
, 

A

of normed operator ideals. The value of d(E,F) shows how well one can

distinguish the spaces E and F by means of normed operator ideals . More

precisely, we have

Proposition 8 : Let E,F be Banach spaces. Then

(In (18) we put a(u) = - for any operator u C L(X,Y), u f li(X,Y) .
(X,Y - Banach spaces)).

Proof : It is eady to see that (18) holds if d(E,F) = . Assume now that

d(E,F) ~.. Let be a normed operator ideal and let id 
k

with vk C= L(E,F), wk c- L(F.E) (k=l 2,...). ° Then
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Since the estimate holds for all representations of idE as above, we
infer that

The similar argument shows that

It follows that

,a a normed operator ideal .

The converse inequality can be obtained by evaluating the right-hand side
, , 

expression on the ideals and (fF’YF).
+ /B n

For Banach spaces E,F,G we obviously have d(E,G) d(E,F) d(F,G). If
n

dim E = dim F = n  °° and d(E,F) = 1, then it is easy to show, using the

observation that the norm ‘~yF(idE) is attained that there exist v E L(E,F) ,

w E such that 11 wvll 11 vll = 1 and I trace wv I = n. This

yields (cf. eg. [ 21 ] ,[ 22 ] ) that wv = a id E for some scalar a with 1.

Thus vll - 1, hence E = F. Therefore, for every positiveF A
integer n, the function log d(.,.) is a metric on the space y of all
n-dimensional Banach spaces. Obviously, the induced topology on ff’ n is
weaker than the classical topology defined by the Banach-Mazur distance.

Since the latter topology is compact, it follows that on 0- both topo-
logies are equivalent. This suggest the following problems.

Problems 4 : (a) What is the order of growth, as n , of the sequence

A

In particular, is it true that 6 n &#x3E; cn for some c &#x3E; 0 ?

(b) Does thre exist a constant c’ such that d(E,F)  c’ d(E,F)

for all Banach spaces E,F ? In particular, is it true that 
A 

n p
 c’ d(E,£ ) for all E E sr , I I  p , p # 2 ? 

p

p n
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Remarks : ( 1 ) E .D. Gluskin recently has shown in [ 5 ] that for every

positive integer n there exist subspaces E Z 3n with dim E -P g 
n noon

dim such that d(E,F) &#x3E; c n, where l 0 is a 
Lt seems to be quite likely that for these spaces we also have cn.

A n

(2) Let us observe that, since -( (id )  d (E,,2) , then
’ E ’ 2 ’

Jv?

The next theorem should be compared with Problems 3(c) and 4(b).

Theorem 7 : Let 1  p ~ ~, p ~ 2. Then

Proof : The estimate y fid-) = yen) (id )  2 has been shown, for
2013201320132013 gn p 

p * 2, in Proposition 6. For p = 2, we obviously have = Y2 (id E
n2(idE) = by Corollary 4.

A 

Since = d (FI,F2 for all Banach spaces then without

loss of generality we may assume that 2  p  ~. To estimate we

p
need the proposition, which is a slight modification of Theorem 3 in [2] . .

Proposition 9 : Let E be an n-dimensional Banach space and let 2 ~ p ~ ~.

Then there exist X C z n with dim X n/10 and v, E p I p 2 2 2

w E such that wV2 V, IX = idX, 11 wll 11 v211 11 2(1-3.10-2 )-IJn-
p Z i A 2 1

and v w v2 0, as an operator acting in the Hilbert space k n
1 

2 . 2’

Assuming the truth of Proposition 9 we complete the proof of Theorem 7

as follows. Let G be the symmetry group and let d1J be the Haar
p 

n
measure on G. It is well-known and easy to see that £; has enough symmetries,
i.e. for any u E £n)" if ug = gu for all g E G then u = kid for

some C. 
P P 

9, P n
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Let X c Rn and v,, w be as in Proposition 9. Put

u = f g-1 wv2v g dp(g). Then, by the translation invariance of the HaarG " ’

measure, ug = g u for all g E G. Therefore,

with some X E=- C. It follows that

Moreover,

Thus

p

To estimate IÀI I observe that, because vj w v 2 &#x3E;- 0.

-1 I
trace g w v2V, g = trace v, w v 2

~ trace vI w v21vl(X)
= trace dim X ~ n/10. °

Therefore,

Xn = trace X id-, = trace u

9,n

It follows that,

as derived.

It remains to prove Proposition 9.
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Proof of Proposition 9 : Let [.,.] I be the inner product on E defined

by F. John’s theorem. Let 11 ·II 2 be the induced euclidean norm on E, let

E2 = , II ) and let I : E -~ E be the formal identity operator. By
Lemma I we have 7r (I ) = lim. Therefore, by Proposition 2 and Theorem 2,

it follows that I 1 admits a representation

a diagonal operator,

It is easy to see that there is a j , 1  j  k, such that
o o

itrace A. A. I B. I = trace B. A. A. I n. Let U be an
_ JO JO jo j 0jo jo 2 3’ 2

unitary operator such thatUA. A. I B. &#x3E;0. Let XI-&#x3E;- x2&#x3E;- ... -&#x3E;- xn-&#x3E;- 0
jo jo jo 1 2 n

be the sequence of eigenvalues of U A. A. I B. and let (.) 1 be the
jo jo jo I

orthonormal basis in tn of corresponding eigenvectors. Then

On the other hand

Let be a diagonal factorization of A . such that
jo
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Remark : It is easy to observe that the conclusion of Proposition 9

holds if we replace the space tn by any n-dimensional Banach space F
p

which has the property :

(A) every diagonal operator 6 E admits a factorization
00 2

A

Therefore, d(E,F) a 6 for every n-dimensional Banach spaces E,F such
*

that F has enough symmetries and F or F have (A). It is known (cf. eg.

[ 19 ] , or [ 15 ] , Proposition 3.2) that every symmetric space which is

2-convex or 2-concave (with corresponding constants equal to 1) may be

taken as a space F above.
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