SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

B. MAUREY

Points fixes des contractions de certains faiblement compacts de L^1

© Séminaire d'analyse fonctionnelle (École Polytechnique), 1980-1981, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél.: (1) 941.82.00 - Poste N° Télex: ECOLEX 691596 F

S E M I N A I R E

D'ANALYSE FONCTIONNELLE

1980-1981

POINTS FIXES DES CONTRACTIONS DE CERTAINS

FAIBLEMENT COMPACTS DE L

1

B. MAUREY

D. Alspach a construit l'année dernière un exemple d'une contraction d'un faiblement compact de L¹ n'admettant pas de point fixe. Nous allons montrer deux résultats positifs concernant deux classes particulières de convexes faiblement compacts de L¹.

Théorème 1 : Soient X un sous-espace réflexif de L¹ et C un convexe fermé borné de X. Toute contraction $T: C \to C$ admet un point fixe.

Notre second résultat concerne l'espace de Hardy H^1 , que nous munirons de la norme induite par L^1 , c'est-à-dire :

si f =
$$\sum_{n=0}^{\infty} a_n e^{in\theta}$$
, $\|f\|_{H_1} = \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{n=0}^{\infty} a_n e^{in\theta} \right| d\theta$

Théorème 2 : Soit C un convexe faiblement compact de H^1 . Toute contraction $T: C \to C$ admet un point fixe.

§ 1. RAPPELS SUR LES CONVEXES MINIMAUX.

Soient E un espace de Banach et C un convexe faiblement compact de E. Soit d'autre part T une contraction de C dans lui-même. Il est clair que la classe des convexes fermés D tels que D \subseteq C et $T(D) \subseteq D$ admet des éléments minimaux. Nous appellerons un tel élément minimal un convexe minimal pour T. Si T n'admet pas de point fixe, un convexe minimal pour T n'est pas réduit à un point.

Si D est convexe minimal pour T, on a

$$D = \overline{conv(T(D))}$$

En effet, conv(T(D)) est convexe et T-invariant, puisque

$$conv T(D) \subseteq D$$

$$T(conv T(D)) \subseteq T(D) \subseteq conv T(D)$$

Si D est minimal pour T, toute fonction numérique $\boldsymbol{\phi}$ convexe

s.c.i. telle que $\phi(Tx) \leq \phi(x)$, $\forall x \in D$, est constante sur D. En effet si ϕ atteint son minimum sur D en x_0 , l'ensemble $\{y \in D; \phi(y) \leq \phi(x_0)\}$ est convexe fermé, T invariant et non vide, il coincide par conséquent avec D.

Considérons par exemple :

$$\varphi(\mathbf{x}) = \sup \{ \|\mathbf{x} - \mathbf{v}\| : \mathbf{v} \in \mathbf{D} \}$$

La fonction φ est convexe et continue. De plus, puisque $D = \overline{\text{conv}(T(D))}$, on voit que :

$$\varphi(\mathbf{x}) = \sup \{ \|\mathbf{x} - \mathbf{T}\mathbf{y}\| : \mathbf{y} \in \mathbf{D} \}$$

On en déduit que $\varphi(T_X) \leq \varphi(X)$, $\forall X \in D$, puisque

$$\varphi(T_X) = \sup \{ \|T_X - T_y\| ; y \in D \} \le \sup \{ \|x - y\| ; y \in D \} = \varphi(x).$$

Il en résulte que ϕ est constante sur D. Il est clair que cette valeur constante ne peut-être que le diamètre $\delta(D)$ de l'ensemble D. On a donc

$$\mathbf{v} \mathbf{x} \in \mathbf{D}$$
, $\sup \{ \|\mathbf{x} - \mathbf{y}\| ; \mathbf{y} \in \mathbf{D} \} = \delta(\mathbf{D})$

Pour continuer, rappelons que toute contraction admet des points presque fixes :

Lemme 1 : Si T est une contraction d'un convexe fermé borné C dans lui-même, il existe pour tout $\epsilon > 0$ des points $x \in C$ tels que

$$||\mathbf{T}_{\mathbf{X}} - \mathbf{x}|| \leq \varepsilon.$$

<u>Démonstration du lemme</u> : soit $x_0 \in C$ et posons pour $x \in C$, $\epsilon \in]0,1[$

$$T_{\varepsilon}x = \varepsilon x_0 + (1 - \varepsilon) Tx$$

On voit que T_{ε} $C \subseteq C$ et $\|T_{\varepsilon} x_1 - T_{\varepsilon} x_2 \| \le (1 - \varepsilon) \|x_1 - x_2\|$, donc T_{ε} admet un point fixe (unique) x_{ε} , qui vérifie

$$x_{\varepsilon} = \varepsilon x_{o} + (1-\varepsilon) Tx_{\varepsilon}$$
, donc

$$\|\mathbf{T}\mathbf{x}_{\varepsilon} - \mathbf{x}_{\varepsilon}\| = \varepsilon \|\mathbf{T}\mathbf{x}_{\varepsilon} - \mathbf{x}_{0}\| \le \varepsilon \delta(C)$$

Soit ${\mathcal U}$ un ultrafiltre non trivial sur ${\mathbb N},$ que nous utiliserons dans toute la suite.

Si T est une contraction d'un convexe fermé borné C, on appellera suite quasi-fixe une suite (x_n) de points de C telle que

$$\lim_{\substack{n \to \infty \\ \mathcal{U}}} ||\mathbf{T}\mathbf{x}_n - \mathbf{x}_n|| = 0$$

Etant donnée une suite quasi-fixe (x_n) , on peut définir sur C la fonction

$$\Psi(\mathbf{x}) = \lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x} - \mathbf{x}_n\|$$

On voit immédiatement que Ψ est convexe continue, et que $\Psi(T_{\mathbf{X}}) \leq \Psi(\mathbf{x})$, $\forall_{\mathbf{X}} \in C$.

Supposons C faiblement compact et minimal pour T. Dans ce cas Ψ est constante, et en désignant par y la limite faible de la suite $(\mathbf{x_n})$ suivant l'ultrafiltre $\mathcal U$:

$$\forall \mathbf{x} \in \mathbf{C}, \|\mathbf{x} - \mathbf{y}\| \le \lim_{\substack{\mathbf{n} \to \infty \\ \mathcal{U}}} \|\mathbf{x} - \mathbf{x}_{\mathbf{n}}\| = \Psi(\mathbf{x})$$

On a vu précédemment que $\sup~\{\|\mathbf{x}-\mathbf{y}\|~;~\mathbf{x}\in C\}$ = $\delta(C)$, ce qui permet d'énoncer :

Lemme 2 : Soit C un convexe faiblement compact minimal pour T. On a pour tout $x \in C$ et pour toute suite quasi-fixe (x_n)

$$\lim_{\substack{n\to\infty\\\mathcal{U}}} \|\mathbf{x} - \mathbf{x}_n\| = \delta(\mathbf{C})$$

§ 2. UTILISATION DES ULTRAPUISSANCES

Soit E un espace de Banach. On rappelle que l'ultrapuissance $\mathbb{R}^{\mathbb{N}/\mathbb{U}}$ de E est le quotient de l'espace $\ell^\infty(E)$ des suites bornées de points de E par le sous-espace fermé

$$N = \{(x_n) \in \ell^{\infty}(E) : \lim_{\substack{n \to \infty \\ ?/\ell}} ||x_n|| = 0\}$$

On notera $\mathbf{\widetilde{E}}$ l'ultrapuissance de \mathbf{E} . Si (\mathbf{x}_n) est un représentant de $\mathbf{\widetilde{x}}$ \in $\mathbf{\widetilde{E}}$, on a

$$\|\widetilde{\mathbf{x}}\| = \lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x}_n\|$$

Soient maintenant C un convexe fermé borné de E et T une contraction de C dans lui-même. On désignera par $\mathbb C$ "l'ultrapuissance de C" c'est-à-dire l'ensemble des points $\mathbb X$ \in $\mathbb E$ qui admettent un représentant $(\mathbf x_n)$ tel que $\mathbf x_n$ \in C pour tout n.

On prolonge T à \widetilde{C} en définissant $T(\widetilde{x})$ comme la classe d'équivalence de $(T(x_n))$, où (x_n) est un représentant quelconque de \widetilde{x} . On vérifie immédiatement que T est encore une contraction sur \widetilde{C} .

Le convexe C initial s'identifie au sous-convexe fermé de C formé des points $\tilde{\mathbf{x}}$ représentés par une suite constante de points de C.

On notera que T admet toujours des points fixes sur \widetilde{C} . En effet, dire que $\widetilde{Tx} = \widetilde{x}$ équivaut à dire que \widetilde{x} est représenté par une suite (x_n) quasi-fixe.

Dans le cas où C est faiblement compact minimal pour T, le lemme 2 se traduit de la facon suivante :

Si
$$\widetilde{\mathbf{x}} \in \mathbf{C}$$
 et $\mathbf{T}(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{x}}$, alors $\|\widetilde{\mathbf{x}} - \mathbf{x}\| = \delta(\mathbf{C}) = \delta(\mathbf{C})$, $\forall \mathbf{x} \in \mathbf{C}$.

Si x et y sont deux points d'un espace de Banach F, on dira que z \in F est un quasi-milieu de [x,y] si

$$\|\mathbf{x} - \mathbf{z}\| = \|\mathbf{y} - \mathbf{z}\| = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|$$

Lemme 3: Si \tilde{x} et \tilde{y} sont deux points fixes de T sur \tilde{c} , il existe un autre point fixe $\tilde{z} \in \tilde{c}$ de T qui est un quasi-milieu de $[\tilde{x}, \tilde{y}]$.

Démonstration : On considère l'ensemble

$$K = \{t \in \mathcal{C} : \|\widetilde{\mathbf{x}} - \mathbf{t}\| = \|\widetilde{\mathbf{y}} - \mathbf{t}\| = \frac{1}{2} \|\widetilde{\mathbf{x}} - \widetilde{\mathbf{y}}\| \}$$

On vérifie que K est convexe fermé, non vide (il contient $\frac{\widetilde{x}+\widetilde{y}}{2}$) et T-invariant. D'après le lemme 1, il existe pour tout m entier un point t_m de K tel que

$$||T(t_m) - t_m|| \le 1/m$$

Soient (x_n) , (y_n) , (t_m,n) des représentants de \tilde{x} , \tilde{y} et t_m respectivement. On a :

$$\lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x}_n - \mathbf{t}_{m,n}\| = \lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{y}_n - \mathbf{t}_{m,n}\| = \frac{1}{2} \|\widetilde{\mathbf{x}} - \widetilde{\mathbf{y}}\|$$

$$\lim_{\substack{n\to\infty\\\mathcal{U}}} \|T(t_{m,n}) - t_{m,n}\| \leq \frac{1}{m}$$

Un argument diagonal classique permet de construire à partir des $t_{m,n}$ une suite diagonale (t_n) telle que

$$\lim_{\substack{n\to\infty\\\mathcal{U}}}\|\mathbf{x}_n-\mathbf{t}_n\|=\lim_{\substack{n\to\infty\\\mathcal{U}}}\|\mathbf{y}_n-\mathbf{t}_n\|=\frac{1}{2}\|\widetilde{\mathbf{x}}-\widetilde{\mathbf{y}}\|$$

$$\lim_{n \to \infty} \|\mathbf{T}(\mathbf{t}_n) - \mathbf{t}_n\| = 0$$

Autrement dit, la classe \tilde{z} de (t_n) est un point fixe de T qui est un quasi-milieu de $[\tilde{x},\tilde{y}]$.

§ 3. RAPPELS SUR LES MESURES ALEATOIRES

3.1 Soit (Ω, C, P) un espace de probabilité. Nous supposerons $L^1(\Omega, C, P)$ séparable pour simplifier. Nous travaillerons ici avec des fonctions complexes.

Une probabilité aléatoire est une application de Ω dans l'ensemble des probabilités sur $\pmb{\epsilon}$, soit $\pmb{\omega}$, telle que

$$\psi \sim \int \varphi(\mathbf{u}) \ \mu_{\mathbf{w}}(\mathbf{d}\mathbf{u})$$

soit mesurable pour toute fonction continue bornée φ sur \mathbf{C} . L'ensemble des probabilités aléatoires est une partie du dual de $L^1(\Omega, \mathcal{C}, P, C(\overline{\mathbf{C}}))$ (où $\overline{\mathbf{C}}$ désigne le compactifié d'Alexandrof de $\overline{\mathbf{C}}$), la dualité opérant ainsi :

$$<\mu$$
, $f> = \int (f(\omega,u)\mu_{\omega}(du)) dP(\omega) = E \int f(u)\mu(du)$

(Ex désignera l'intégrale d'un élément \mathbf{x} de $\mathbf{L}^{1}(\Omega, C, P)$)

Si (\mathbf{x}_n) est une suite bornée en probabilité, on peut lui associer une probabilité aléatoire μ par

$$E \int f(u) \mu(du) = \lim_{\substack{n \to \infty \\ \mathcal{U}}} E f(x_n)$$

où $f(x_n)$ désigne la fonction $w \longrightarrow f(w,x_n(w))$, et où $f \in L^1(\Omega,\Omega,P,C(\overline{t}))$.

3.2 Si la suite (x_n) est équi-intégrable, on peut prolonger la relation ci-dessus aux fonctions f(w,u) "qui ne croissent pas plus vite que |u| à l'infini", précisément aux fonctions mesurables de Ω dans C(C) telles qu'il existe M et une fonction intégrable g vérifiant $|f(w,u)| \leq g(w) + M|u|$.

Si la suite (x_n) est équi-intégrable et si μ est la probabilité aléatoire qui lui est associée, on trouve en appliquant la remarque précédente à f(w,u) = |u|

$$\lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x}_n\|_{\mathbf{L}^1} = \mathbf{E} \int |\mathbf{u}| \mu(d\mathbf{u})$$

puis à f(w, u) = |x(w) - u|, avec $x \in L^1$

$$\lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x} - \mathbf{x}_n\|_{\mathbf{L}^1} = \mathbf{E} \int |\mathbf{x} - \mathbf{u}| \ \mu(\mathbf{d}\mathbf{u})$$

Si on applique enfin à $f(w,v) = \int |v - u| \mu_w(du)$

3.3 Notons encore que si (x_n) est équi-intégrable, la variable aléatoire

$$y(\omega) = \int u \mu_{\omega}(du)$$

est égale à la limite faible de la suite (x_n) suivant \mathcal{U} . En effet soit $g \in L^{\infty}(\Omega, \mathcal{O}, P)$ et posons $f(\psi, u) = u \ g(\psi)$. On a :

$$E g y = E \int f(u) \mu(du) = \lim_{\substack{n \to \infty \\ i \neq i}} E g x_n$$

3.4 Terminons ce paragraphe par deux remarques simples qui seront utilisées dans la suite.

Si la suite (\mathbf{x}_n) est formée de fonctions réelles, et si μ est la probabilité aléatoire associée, pour presque tout $\omega \in \Omega$ la probabilité μ_ω est portée par ${\rm I\!R}$.

S'il existe de plus deux fonctions mesurables X et Y sur Ω (pouvant prendre les valeurs + ∞ ou - ∞) telles que l'on ait $X \leq x_n \leq Y$ pour tout n, la probabilité μ_{ω} est portée pour presque tout Ψ par l'intervalle $[X(\Psi), Y(\Psi)]$.

Pour vérifier cette affirmation, il suffit de considérer

$$f(\omega, u) = 1 \land dist(u, [X(\omega), Y(\omega)])$$

On a E $f(x_n) = 0$ pour tout n, donc:

E $\int f(u) \mu(du) = 0$, d'où le résultat découle.

§ 4. CONVEXES MINIMAUX DANS L1.

Soient C un convexe faiblement compact de $L^1(\Omega,C,P)$ (fonctions à valeurs complexes) et T une contraction de C dans lui-même. Nous supposerons C minimal pour T, et nous supposerons pour fixer les idées que $\delta(C)=1$.

<u>Proposition 1</u>: Soit C un convexe faiblement compact de $L^1(\Omega, C, P)$

minimal pour T. Il existe une fonction G sur Ω , de module 1, et un point $\mathbf{x_0} \in \mathbf{C}$ tels que

$$\forall x \in C$$
, $G(x - x_0)$ est une fonction réelle sur Ω .

Proposition 2 : Soit C un convexe faiblement compact de $L^1(\Omega, C, P)$, minimal pour T, formé de fonctions réelles. Il existe deux fonctions U et V sur Ω (non nécessairement intégrables) telles que $|U| \wedge |V|$ soit intégrable et que pour toute suite quasi-fixe (x_n) de points de C

$$\lim_{\substack{n\to\infty\\\mathcal{U}}} \mathbf{E}|\mathbf{x}_n - \mathbf{U}|_{\Lambda} |\mathbf{x}_n - \mathbf{V}| = 0$$

$$\forall \mathbf{x} \in \mathbf{C}$$
, $\lim_{\substack{\mathbf{n} \to \infty \\ \mathcal{U}}} \|\mathbf{x} - \mathbf{x}_{\mathbf{n}}\| = \delta(\mathbf{C}) = 1$

Puisque la suite (x_n) est équi-intégrable, les résultats de 3.2 et 3.3 donnent :

$$1 = \lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x} - \mathbf{x}_n\| = \mathbb{E} \int |\mathbf{x} - \mathbf{u}| \mu(d\mathbf{u})$$

en particulier si x = 0, $E \int |u| \mu(du) = 1$. On a aussi

$$1 = \lim_{\substack{m \to \infty \\ \mathcal{U}}} \lim_{\substack{n \to \infty \\ \mathcal{U}}} \|\mathbf{x}_{m} - \mathbf{x}_{n}\| = \mathbb{E} \int |\mathbf{v} - \mathbf{u}| \mu(d\mathbf{u}) \mu(d\mathbf{v})$$

et $\int u \mu_{\omega}(du) = 0$ pour presque tout ω .

Cette dernière propriété implique

$$\forall u \in \mathbb{C}, \int |u - v| \mu_{\omega}(dv) \ge |u|$$
.

Or ces deux fonctions ont la même intégrale (égale à 1) pour E $\int \mu(du)$. On en déduit que pour presque tout w, on a pour μ_w presque toute valeur de $u \in \mathbf{C}$

$$\int |\mathbf{u} - \mathbf{v}| \ \mu_{\omega}(\mathbf{d}\mathbf{v}) = |\mathbf{u}|$$

Soit $w \in \Omega$ fixé et soit u un point du support de μ_w . L'égalité ci-dessus est donc réalisée. Soit z un complexe de module 1 tel que z u = |u|. On peut écrire :

$$|\mathbf{u}| = \int |\mathbf{u} - \mathbf{v}| \ \mu_{(\mathbf{u})}(d\mathbf{v}) \ge \int \operatorname{Re}(\mathbf{z}\mathbf{u} - \mathbf{z}\mathbf{v}) \ \mu_{(\mathbf{u})}(d\mathbf{v}) = \mathbf{z}\mathbf{u} = |\mathbf{u}|$$

On en déduit que z(u-v)=|u-v| pour μ_{ψ} presque toute valeur de v, ce qui montre que le support de μ_{ψ} est situé sur une demi-droite issue de u. Comme cette propriété doit être vraie pour tout point u du support de μ_{ψ} , on en déduit immédiatement que le support de μ_{ψ} comporte au plus deux points.

Posons donc $\mu_{\omega} = \theta(\omega) \ \delta_{X(\omega)} \div (1 - \theta(\omega)) \ \delta_{Y(\omega)}$, avec $0 \le \theta(\omega) \le 1$ et $Y(\omega) = X(\omega)$ si $\theta(\omega) = 0$ ou si $\theta(\omega) = 1$.

Puisque $0 = \int u \ \mu_{\omega}(du)$, le point 0 appartient au segment $[X(\omega), Y(\omega)]$. En particulier, on a sur l'ensemble $\{X = Y\}$

$$X = Y = 0.$$

Soient x et y deux points de C. On a

$$E \int \left\{ \frac{1}{2} (|x - u| + |y - u|) - |\frac{x+y}{2} - u| \right\} \mu(du) = 0$$

On en déduit que pour presque tout Ψ , les points $x(\Psi)$ et $y(\Psi)$ sont situés sur une demi-droite issue de $X(\Psi)$ et également sur une demi-droite issue de $Y(\Psi)$. Puisque C est séparable (parce que minimal) on peut trouver un ensemble négligeable N tel que la propriété ci-dessus soit vraie pour tout $\Psi \not\in \mathbb{R}$ N et pour tout couple de points de C.

En particulier, les valeurs de x(w) lorsque x décrit C, et pour w fixé, $w \not\in N$, sont alignées sur une droite réelle qui passe par l'origine (puisque $0 \in C$). On en déduit aussitôt la proposition 1.

Dans le cas où C est formé de fonctions réelles, supposons $X \le 0 \le Y$. Notons que sur l'ensemble $\{X < Y\}$, on a X < 0 < Y. Si X est un point de C, 0 et $X(\omega)$ sont du même côté de $X(\omega)$ et $Y(\omega)$, donc

 $X(w) \leq X(w) \leq Y(w)$.

Dans le cas où X(w) = Y(w) = 0, on peut seulement dire que toutes les valeurs x(w), pour x décrivant C, sont de même signe.

En résumé, dans le cas où C est formé de fonctions réelles, on peut associer à toute suite quasi-fixe (x_n) de points de C deux fonctions mesurables X et Y définies sur Ω telles que X \leq Y et

- a) Si μ est la probabilité aléatoire associée à (x_n) , le support de μ_ω est égal à $\{X(w), Y(w)\}$ pour presque tout $w \in \Omega$.
 - b) Sur l'ensemble $\{X < Y\}$, on a $X \le x \le Y$ pour tout $x \in C$
- c) Pour presque tout w tel que X(w) = Y(w), les valeurs de x(w) lorsque x décrit C sont situées du même côté de X(w).

Soient maintenant D un ensemble dénombrable et $(x_n^\alpha)_\alpha \in D$ une famille de suites quasi-fixes. On appellera X_α , Y_α les fonctions associées à la suite (x_n^α) .

Soit $\alpha_0 \in D$. Sur l'ensemble $\{X_{\alpha_0} < Y_{\alpha_0}\}$, on a $X_{\alpha_0} \le x \le Y_{\alpha_0}$ pour tout $x \in C$. En particulier si $\alpha \in D$

$$\forall n, \quad \mathbf{x}_{\alpha_0} \leq \mathbf{x}_n^{\alpha} \leq \mathbf{y}_{\alpha_0}$$

D'après 3.4 on en déduit $X_{\alpha} \leq X_{\alpha} \leq Y_{\alpha} \leq Y_{\alpha}$. Sur l'ensemble $\{X_{\alpha} < Y_{\alpha}\} \cap \{X_{\alpha} < Y_{\alpha}\}$ on peut renverser les rôles de α_{o} et α et on déduit $X_{\alpha} = X_{\alpha}$, $Y_{\alpha} = Y_{\alpha}$. Sur l'ensemble $\{X_{\alpha} = Y_{\alpha}\} \cap \{X_{\alpha} < Y_{\alpha}\}$, les valeurs $x_{n}^{o}(\omega)$ sont du même côté de $X_{\alpha}(\omega)$ d'après c) et on déduit de 3.4 et de ce qui précède que ou bien $X_{\alpha} = Y_{\alpha} = X_{\alpha}$, ou bien $X_{\alpha} = Y_{\alpha} = Y_{\alpha}$.

Au total, on voit que pour presque tout $\omega \in \bigcup_{\alpha \in D} \{x_{\alpha} < Y_{\alpha}\}$, l'ensemble des valeurs $\{X_{\alpha}(\omega), Y_{\alpha}(\omega); \alpha \in D\}$ comporte au plus deux points distincts.

Si $\omega \not\in \bigcup_{\alpha \in D} \{X_{\alpha} < Y_{\alpha}\}$, on a $X_{\alpha}(\omega) = Y_{\alpha}(\omega)$ pour tout $\alpha \in D$, et pour chaque α_0 fixé, toutes les valeurs de $x(\omega)$ sont du même côté

de X_{α} (ω), lorsque x décrit C. Par conséquent pour chaque α_0 , les valeurs de X_{α} (ω) sont du même côté de X_{α} (ω). Il en résulte à nouveau que l'ensemble des valeurs $\{X_{\alpha}$ (ω); $\alpha \in D\}$ comporte au plus deux points distincts.

On déduit de ce qui précède qu'il existe deux fonctions U et V sur Ω telles que pour toute suite quasi-fixe (x_n) , associée à la probabilité aléatoire μ , on ait

$$\mathrm{supp}\ \mu_{\pmb{\omega}} \subset \big\{ \mathtt{U}(\pmb{\omega})\,,\ \mathtt{V}(\pmb{\omega}) \big\}$$

(On peut prendre pour V l'ess-sup de la famille des fonctions Y, et pour U l'ess-inf de la famille des fonctions X, correspondant à toutes les suites quasi-fixes).

Si
$$f(w,u) = 1 \wedge |u - U(w)| \wedge |u - V(w)|$$
, on a

$$E \int f(u) \mu(du) = 0,$$

donc

$$\lim_{n \to \infty} E|_{x_n} - U|_{\Lambda}|_{x_n} - V|_{\Lambda} = 0,$$

On en déduit $|x_{n_k} - U| \wedge |x_{n_k} - V| \rightarrow 0$ p.p. pour une sous-suite, donc $|U| \wedge |V| \leq \liminf_k |x_{n_k}|$ est intégrable, et on termine en utilisant

$$f(\omega, u) = |u - U(\omega)| \wedge |u - V(\omega)|.$$

§ 5. DEMONSTRATION DU THEOREME 1

Soit C un convexe faiblement compact de $L^1(\Omega, C, P)$ et soit T une contraction de C dans lui-même. Nous allons montrer que lorsque T n'a pas de point fixe, l'espace vectoriel engendré par l'ultrapuissance \widetilde{C} contient un sous-espace isométrique à $L^1[0,1]$. Cela est impossible si C est contenu dans un sous-espace réflexif X de $L^1(\Omega,C,P)$, car alors X est super-réflexif et son ultrapuissance ne peut contenir L^1 . Le théorème 1 sera donc démontré.

Si T n'admet pas de point fixe, on peut supposer C minimal pour T et $\delta(C)$ = 1. La proposition 1 permet de se ramener au cas

où C est formé de fonctions réelles.

Rappelons que l'ultrapuissance \widetilde{C} s'identifie à une partie d'un espace $L^1(\widetilde{\Omega},\widetilde{C},\widetilde{P})$. (Un élément $\widetilde{A} \in \widetilde{C}$ correspond à une classe de suites (A_n) , $A_n \in C$, et on pose $\widetilde{P}(\widetilde{A}) = \lim_{n \to \infty} P(A_n)$. La tribu de départ C s'identifie à une sous-tribu de \widetilde{C} , formée des suites constantes.)

Si \widetilde{x} est un point fixe de T dans \widetilde{C} , correspondant à une suite quasi-fixe (x_n) , la proposition 2 se traduit dans $L^1(\widetilde{\Omega},\widetilde{C},\widetilde{\widetilde{P}})$ par

$$|\widetilde{x} - U| \wedge |\widetilde{x} - V| = 0$$

autrement dit, $\widetilde{\mathbf{x}} = \mathbf{1}_{\widetilde{\mathbf{A}}} \mathbf{U} + \mathbf{1}_{\widetilde{\mathbf{A}}^{\mathbf{C}}} \mathbf{V}$, avec $\widetilde{\mathbf{A}} \in \widetilde{\mathbf{C}}$.

Si \tilde{x} et \tilde{y} sont deux points fixes de T dans \tilde{c} , on a donc :

$$|\tilde{x} - \tilde{y}| = 1_B \cdot |U - V|, \text{ avec } B \in \tilde{c}.$$

<u>Lemme 4</u>: Soient \tilde{x}_0 , \tilde{x}_1 ,..., \tilde{x}_n des points fixes de T dans \tilde{C} .

Si on a
$$\|\widetilde{\mathbf{x}}_{0} - \widetilde{\mathbf{x}}_{N}\| = \sum_{k=1}^{N} \|\widetilde{\mathbf{x}}_{k} - \widetilde{\mathbf{x}}_{k-1}\|,$$

les différences $(\widetilde{x}_k - \widetilde{x}_{k-1})$, k=1,2,...N, ont leurs supports deux à deux disjoints dans $L^1(\widetilde{\Omega},\widetilde{C},\widetilde{P})$.

<u>Démonstration du lemme</u> : D'après ce qui précède on peut écrire :

$$|\tilde{x}_{0} - \tilde{x}_{N}| = 1_{B}|U - V|$$
; $|\tilde{x}_{k} - \tilde{x}_{k-1}| = 1_{B_{k}}|U - V|$, $k = 1, 2, ... N$.

On a $|\tilde{x}_0 - \tilde{x}_N| \le \sum_{k=1}^N |\tilde{x}_k - \tilde{x}_{k-1}|$ et d'après l'hypothèse, ces deux fonctions ont la même intégrale. Elles sont donc égales \tilde{P} presque partout :

 $\mathbf{1}_{\mathbf{B}} | \mathbf{U} - \mathbf{V} | = (\sum_{k=1}^{N} \mathbf{1}_{\mathbf{B}_{k}}) | \mathbf{U} - \mathbf{V} |$

Sur l'ensemble $\{U \neq V\}$, on a $1_B = \sum_{k=1}^N 1_{B_k}$, donc les ensembles $B_k \cap \{U \neq V\}$ sont deux à deux disjoints, ce qui démontre le lemme.

Lemme 5 : On peut construire dans \overline{C} un chemin $(\widetilde{x}(t))$, $t \in [0,1]$, formé de points fixes de T et tel que

$$v_{s}, t \in [0,1], \|\tilde{x}(s) - \tilde{x}(t)\| = |s - t|$$

$$\lim_{k\to\infty}\|\mathbf{x}_k-\mathbf{x}_n\|=1.$$

Soient $\widetilde{\mathbf{x}}(\mathbf{o})$ et $\widetilde{\mathbf{x}}(\mathbf{1})$ les points de $\widetilde{\mathbf{C}}$ représentés respectivement par les suites (\mathbf{x}_k) et (\mathbf{x}_{n_k}) . D'après le lemme 3, il existe un point fixe $\widetilde{\mathbf{z}}$ de T qui est un quasi-milieu de $[\widetilde{\mathbf{x}}(\mathbf{o}), \widetilde{\mathbf{x}}(\mathbf{1})]$. On pose $\widetilde{\mathbf{x}}$ $(\frac{1}{2})$ = $\widetilde{\mathbf{z}}$.

On définit ainsi par récurrence les $\widetilde{x}(\frac{k}{2^n})$: on prend pour $\widetilde{x}(\frac{2k+1}{2^{n+1}})$ un point fixe quasi-milieu de $[\widetilde{x}(\frac{k}{2^n}), \widetilde{x}(\frac{k+1}{2^n})]$.

On vérifie de proche en proche que

$$\left\| \widetilde{\mathbf{x}} \left(\frac{\mathbf{k}}{2^{\mathbf{n}}} \right) - \widetilde{\mathbf{x}} \left(\frac{\ell}{2^{\mathbf{n}}} \right) \right\| = \frac{\left| \mathbf{k} - \ell \right|}{2^{\mathbf{n}}}$$

Cette relation permet de définir $\tilde{x}(t)$ par continuité pour $t \in [0,1]$.

Achevons la démonstration de l'affirmation faite au début de ce paragraphe. Soit $(\widetilde{\mathbf{x}}(t))$ un chemin donné par le lemme 5. Définissons une application de l'espace des fonctions en escalier sur [0,1] dans $L^1(\widetilde{\Omega},\widetilde{\mathbb{C}},\widetilde{\mathbb{P}})$ de la façon suivante :

si $0 = t_0 < t_1 < \dots < t_N = 1$ est une partition de [0,1], on associe à $f = \sum_{k=1}^{N} \lambda_k 1_{t_{k-1}, t_k}$ le point

$$\varphi(\mathbf{f}) = \sum_{k=1}^{N} \lambda_k(\mathbf{\tilde{x}}(\mathbf{t}_k) - \mathbf{\tilde{x}}(\mathbf{t}_{k-1}))$$

D'après le lemme 4, les fonctions $(\tilde{x}(t_k) - \tilde{x}(t_{k-1}))$ sont à supports disjoints, donc :

$$\|\phi(\mathbf{f})\| = \sum_{k=1}^{N} |\lambda_k| \|\widetilde{\mathbf{x}}(\mathbf{t}_k) - \widetilde{\mathbf{x}}(\mathbf{t}_{k-1})\| = \sum_{k=1}^{N} |\lambda_k| (\mathbf{t}_k - \mathbf{t}_{k-1}) = \|\mathbf{f}\|_{\mathbf{L}^1}$$

On en déduit que φ se prolonge en une isométrie de L¹[0,1] dans L¹($\widetilde{\Omega},\widetilde{\mathfrak{C}},\widetilde{P}$), qui prend ses valeurs dans le sous-espace engendré par $\widetilde{\mathfrak{C}}$.

§ 6. DEMONSTRATION DU THEOREME 2

Soit maintenant C un convexe faiblement compact de H¹, et soit T une contraction de C dans lui-même. On peut supposer C minimal pour T. Nous allons montrer que C est compact en norme, d'où il résulte que T admet un point fixe dans C, et par conséquent C est en fait réduit à un point.

D'après la proposition 1, après avoir effectué sur C une translation convenable, il existe une fonction mesurable G de module 1 sur le cercle unité du plan complexe telle que :

 $\forall x \in C$, $G \times est$ une fonction réelle.

On est conduit à examiner les sous-espaces fermés X de $\operatorname{L}^1_{\mathbb{R}}$ (T) (où T désigne le cercle unité du plan complexe, et $\operatorname{L}^1_{\mathbb{R}}$ l'espace des fonctions intégrables à valeurs réelles) tels qu'il existe une fonction H de module 1 sur T telle que :

$$\forall x \in X, \quad H x \in H^1.$$

Il n'est peut-être pas inutile de montrer un exemple de cette situation. Soit (a_n) une suite de points du disque unité ouvert, telle que

 $\overset{\infty}{\Sigma}$ (1-|a_n|) < $_{\infty}.$ On sait que le produit de Blaschke n=0

$$B(z) = \int_{n=0}^{\infty} \frac{|a_n|}{a_n} \frac{a_n-z}{(1-\overline{a}_n z)}$$

définit une fonction analytique telle que $\left|B(z)\right|<1$ pour $\left|z\right|<1$, dont la limite radiale satisfait

$$|B(e^{i\theta})| = 1 p \cdot p$$

Remarquons maintenant que la fonction $\frac{(a_n-z)(1-\overline{a}_nz)}{z}$ est réelle sur T. En effet

$$\frac{(a_n - e^{i\theta})(1 - \overline{a_n} e^{i\theta})}{e^{i\theta}} = a_n e^{-i\theta} + \overline{a_n} e^{i\theta} - (1 + |a_n|^2)$$

$$2(\alpha_n \cos\theta + \beta_n \sin\theta - (1 + |a_n|^2))$$

 $\mathbf{si} \ \mathbf{a}_{\mathbf{n}} = \mathbf{\alpha}_{\mathbf{n}} + \mathbf{i} \mathbf{\beta}_{\mathbf{n}}$. Posons

$$x_{n}(e^{i\theta}) = \frac{1}{2(\alpha_{n}\cos\theta + \beta_{n}\sin\theta) - (1+|\alpha_{n}|^{2})}$$

La fonction \mathbf{x}_n est réelle sur \mathbf{T}_n et c'est la valeur sur le cercle de

$$x_n(z) = \frac{z}{(a_n-z)(1-\bar{a}_nz)}$$

On a donc

$$x_{n_0}(z) \cdot B(z) = \frac{\begin{vmatrix} a_{n_0} \\ z \end{vmatrix}}{a_{n_0}(1-\bar{a}_{n_0}z)^2} \cdot \frac{1}{n \neq n_0} \frac{\begin{vmatrix} a_n \\ \bar{a}_n \end{vmatrix}}{a_n} \frac{a_n-z}{(1-\bar{a}_nz)}$$

ce qui montre que $B \cdot x_n \in H^1$ pour tout n_0 . Le sous-espace X de $L^1_{\mathbb{R}}(\mathbb{T})$ engendré par la suite (x_n) est donc un exemple vérifiant (*) et qui est de dimension infinie.

Nous allons montrer que tout espace X vérifiant (*) possède la propriété de Schur, c'est-à-dire que si (x_n) est une suite dans X qui tend faiblement vers zéro, alors $\lim_n \|x_n\| = 0$.

Revenons au convexe minimal C. Posons

$$X = \{x \in L^1_{\mathbb{R}}(\mathbb{T}) : \overline{G} : x \in \mathbb{H}^1\}$$

L'espace X est un sous-espace fermé de $I_{\mathbb{R}}^{1}$ (TI) vérifiant (*).

L'ensemble G.C est un convexe faiblement compact de X, donc compact si nous savons que X a la propriété de Schur, et ceci termine la démonstration du théorème 2.

Soient donc $X \subseteq L^1_{IR}$ (Tr) tel que $H_X \in H^1$, $v_X \in X$, avec H de module 1, et (x_n) une suite tendant faiblement vers zéro dans X (donc (x_n) est équi-intégrable).

Nous utiliserons dans la démonstration la projection orthogonale P de L 2 sur ${\rm H}^2$, ainsi que les opérateurs ${\rm Q}_n$ correspondant aux sommes de Fejér :

$$f = \sum_{-\infty}^{+\infty} a_k e^{ik\theta}$$
, $Pf = \sum_{k=0}^{\infty} a_k e^{ik\theta}$,

$$Q_{n} f = \sum_{k=-2n}^{2n} \left(1 - \frac{|k|}{2n+1}\right) a_{k} e^{ik\theta}$$

On sait que P opère continument de L dans L pour tout p < 1. Pour tout n et tout $q \in [1,\infty]$, Q_n est un opérateur de norme \leq 1 de L dans L (parce que Q_n est une convolution par une probabilité) et de plus pour $1 \leq q < \infty$

$$f \in L^{q}(T \cap Q_n | f - Q_n | f | Q_n | f | Q_n | f | Q_n | f | Q_n |$$

Puisque la suite (Hx_n) tend faiblement vers zéro, ses coefficients de Fourier tendent simplement vers zéro et on peut écrire (en remplaçant au besoin la suite (x_n) par une sous-suite)

$$Hx_n = e^{in\theta} b_n + c_n ,$$

avec $b_n \in H^1$ et $\lim_n \|c_n\|_1 = 0$. Remarquons que la suite (b_n) est encore équi-intégrable. Puisque x_n est une fonction réelle

$$x_n = e^{in\theta} \overline{H} b_n + \overline{H} c_n = e^{-in\theta} H\overline{b}_n + H\overline{c}_n$$

On en déduit :

$$b_n = e^{-2in\theta} H^2 \overline{b}_n + r_n$$
, avec $\lim_n ||r_n||_1 = 0$

Posons $H^2 = Q_{n-1}(H^2) + L_n$. On a $\|L_n\|_{\infty} \le 2$ pour tout n et $\|L_n\|_q \to 0$ pour $q < \infty$, ce qui revient à dire que (L_n) tend vers 0 en probabilité. En notant que

$$P(e^{-2in\theta}Q_{n-1}(H^2)\overline{b}_n) = 0$$

on voit que

$$b_n = P(b_n) = P(e^{-2in\theta}L_n \overline{b}_n + r_n)$$

Comme (\overline{b}_n) est équi-intégrable et que (L_n) tend vers zéro en probabilité,

avec $\|L_n\|_{\infty} \le 2$, on a $\lim_{n} \|L_n \overline{b}_n\|_{1} = 0$.

Puisque P est continu de L^1 dans L^p pour p < 1, on a :

$$\lim_{n} \|b_{n}\|_{p} = 0$$
, $v_{p} \in [0,1]$.

Mais puisque (b_n) est équi-intégrable cela entraine $\lim_{n} \|b_n\|_1 = 0$, donc $\lim_{n} \|x_n\|_1 = 0$ et nous avons démontré que X possède la propriété de Schur.

Question : Peut-on caractériser les sous-espaces X de $L^1_{\mathbb{R}}$ (T) vérifiant (*)? Un tel espace est-il isomorphe à un sous-espace de ℓ^1 ? (ce qui impliquerait immédiatement le résultat que nous venons de démontrer).

On peut poser le problème dans une autre direction : étant donnée une fonction mesurable H de module 1 sur TC, décrire

$$X_{H} = \{ x \in L^{1}(T) ; Hx \in H^{1} \}$$

Un cas facile est le cas où $H \in H^{\infty}$ et où H admet un nombre fini n de zéros dans le disque unité. Dans ce cas

 $H = (\frac{n}{TT} (Z - a_i)). h$, où h ne s'annule pas dans le disque n

unité.

 $r = \frac{\prod_{i=1}^{n} (Z-a_i)(1-\overline{a}_i Z)}{z^n}$

Posons

Si $H_X \in H^1$, on voit que Z^n $r_X = \frac{f}{h}$, avec $f \in H^1$.

Comme rx est réelle sur TL, on a nécessairement

$$\mathbf{r}\mathbf{x} = \sum_{k=0}^{n} \mathbf{c}_{k} \cos k\theta + \sum_{k=1}^{n} \mathbf{d}_{k} \sin k\theta,$$

et inversement toute fonction x de cette forme est dans $X_{\dot{H}}$, donc $X_{\dot{H}}$ est de dimension (2n + 1).

\S 7 APPENDICE. LE CAS DE c_0 :

Les méthodes introduites précédemment permettent de dé-

montrer facilement le résultat suivant (cf. Odell et Sternfeld, a fixed point theorem in c_o)

Théorème : Toute contraction d'un convexe faiblement compact de contraction d'un convexe faiblement de contraction de contra

$$\| |x_k| \wedge |x_{n_k}| \| \le 1/k$$
, ce qui entraine $\lim_{k} \|x_k - x_{n_k}\| = 1$.

Les points $\widetilde{x}=(x_k)$ et $\widetilde{y}=(x_{n_k})$ sont deux points fixes de T dans \widetilde{C} , tels que $\|\widetilde{x}-\widetilde{y}\|=1$. Si $\widetilde{z}=(z_k)$ est un quasi-milieu de $[\widetilde{x},\widetilde{y}]$, fixe pour T, on aura $\lim_{k\to\infty}\|z_k\|=1$ d'après le lemme 2 et v

$$\lim_{\substack{k \to \infty \\ \mathcal{U}}} \|\mathbf{x}_{k} - \mathbf{z}_{k}\| = \lim_{\substack{k \to \infty \\ \mathcal{U}}} \|\mathbf{x}_{n_{k}} - \mathbf{z}_{k}\| = 1/2$$

Mais ceci est impossible car

$$|z_{k}| \le |z_{k} - x_{k}|v| |z_{k} - x_{n_{k}}| + |x_{k}| \wedge |x_{n_{k}}|$$

ce qui entraine $\lim_{k\to\infty} |\mathbf{z}_k| = 1/2$.

On en déduit $\delta(C) = 0$.