SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

N. GHOUSSOUB

On operators fixing copies of c_o and ℓ_{∞}

Séminaire d'analyse fonctionnelle (Polytechnique) (1980-1981), exp. nº 12, p. 1-11 http://www.numdam.org/item?id=SAF_1980-1981 _____A12_0>

© Séminaire d'analyse fonctionnelle (École Polytechnique), 1980-1981, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél.: (1) 941.82.00 - Poste N° Télex: ECOLEX 691596 F

S E M I N A I R E

 $\underbrace{ \text{ON OPERATORS FIXING COPIES OF} }_{\text{COPIES OF}} \mathbf{c_{O}} \underbrace{ \text{AND }}_{\text{COPIES OF}} \ell_{\text{O}}$

N. GHOUSSOUB

(University of British Columbia, Vancouver)

Exposé No XII 12 Décembre 1980

In this seminar, we report on a part of a joint work with W.B. Johnson and T. Figiel [1] concerning the structure of non-weakly compact operators on Banach lattices. First, we recall the following two fundamental theorems.

Theorem (A): (A. Pełczynski [4]). A non-weakly compact operator from a C(K)-space into any Banach space must preserve a copy of c_0 ; that is there exists a subspace of C(K), isomorphic to c_0 , on which T acts as an isomorphism.

Theorem (B) : (H. Rosenthal [5]). If K is a σ -Stonian compact space, then every non-weakly compact operator from C(K) into any Banach space must preserve a copy of ℓ_∞ .

Our goal is to see to which extent, one can replace C(K) in theorems (A) and (B) by a larger class of Banach spaces.

§ I. NON WEAKLY COMPACT OPERATORS :

The existence of the James space [2] eliminates the possibility of replacing C(K) in theorem (A) by any Banach space not containing a subspace isomorphic to ℓ_1 , since c_0 and ℓ_1 do not embed in this space and yet it is not reflexive. However, the result does hold for the idendity operator acting on a Banach <u>lattice</u> since if the latter is not reflexive, then it must contain a sublattice isomorphic either to ℓ_1 or c_0 [3]. A natural problem is then to check if the result holds for any operator or equivalently if whether in theorem (A), C(K) can be replaced by any Banach lattice not containg ℓ_1 .

Surprisingly, Pełczynski's theorem does not extend even to this case as we show in the following counterexample.

Example (1) : For every p , $1 \le p < \infty$, there exists a Banach lattice

 \mathbf{X}_{p} and a lattice homomorphism \mathbf{T}_{p} from \mathbf{X}_{p} onto \mathbf{c}_{o} so that

- (i) T_{p} is strictly singular for each p, 1 \leq p < ∞
- (ii) X contains no subspace isomorphic to $\boldsymbol{\ell}_{1}$ for p, 1 < p < $_{\infty}$.

We first give the idea. Let c be the space of converging sequences and set $X = \ell_1(c)$; that is the space of doubly-indexed sequences $a = (a_{i,j})$, where $i = 1, 2, \dots$; $j = 1, 2, \dots$, ω such that

$$\lim_{j\to\infty} a_{i,j} = a_{i,\omega} \text{ for } i = 1,2,\dots$$

$$\|a\|_{X} = \sum_{i=1}^{\infty} \sup_{j} |a_{i,j}| < \infty$$

and

Define the norm one operator $T: X \longrightarrow c_0$ by

$$Ta = (a_{i,\omega})^{\infty}_{i=1}.$$

Clearly, T is weakly compact and X contains lots of sublattices isomorphic to ℓ_1 . However, we can turn T into a non-weakly compact operator by adding to the unit ball of X vectors (\mathbf{f}_n) for which (\mathbf{Tf}_n) is not weakly compact in \mathbf{c}_0 and taking for the new unit ball in X the absolute convex solid hull of the old unit ball and the \mathbf{f}_n' s, in order to get a normed lattice. The completion of the resulting space probably still contains ℓ_1 complementably, but we can kill them by taking the p-convexification of the space for some 1 .

Letting X and T be defined as above we define $f_n \in X$ by

$$(r_n)_{i,j} = \begin{cases} 1 & \text{, if } i \leq n \leq j \\ 0 & \text{, otherwise} \end{cases}$$

Clearly

$$\mathbf{Tf}_{\mathbf{n}} = \sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{e}_{\mathbf{i}}$$

where $(e_i)_{i=1}^{\infty}$ is the unit vector basis for c_0 .

Let X_0 be the dense sublattice of X consisting of those vectors $a=(a_{i,j})$ whose rows are eventually zero; i.e., for some n, $a_{i,j}=0$ for all $i\geq n$ and all $j=1,2,\ldots,\omega$.

Let $\|\cdot\|_1$ be the greatest lattice norm on X_0 such that

$$\|\mathbf{f}_{\mathbf{n}}\|_{1} \le 1$$
, $\|\mathbf{x}\|_{1} \le \|\mathbf{x}\|$

for $n = 1, 2, \dots$ and all $x \in X_0$. That is, $\|\cdot\|_1$ is the gauge of the closed absolutely convex solid hull of the unit ball of X_0 and the sequence (f_n) . Thus $\|x\|_1 < 1$ if and only if there are $g \in X_0^+$ and eventually zero sequence s_1, s_2, \dots in \mathbb{R}^+ so that

$$|\mathbf{x}| \le \mathbf{g} + \sum_{i=1}^{\infty} \mathbf{s_i} \mathbf{f_i}$$
 and
$$||\mathbf{g}||_{\mathbf{X}} + \sum_{i=1}^{\infty} \mathbf{s_i} \le 1.$$

Let $(X_1,\|.\|_1)$ be the completion of $(X_0,\|.\|_1)$ and for $1 , let <math>(X_p,\|.\|_p)$ be the completion of the p-convexification of $(X_0,\|.\|_1)$; that is, for $x \in X_0$,

$$\|\mathbf{x}\|_{\mathbf{p}} = \|\|\mathbf{x}\|_{1}^{\mathbf{p}}\|_{1}^{1/\mathbf{p}}$$
.

(See chapter 1.e in [3] for a discussion of p-convexity.)

We claim that $\|T\|_p = 1$ for every $1 \le p < \infty$; i.e., T has norm one as an operator from $(X_0, \|.\|_p)$ into c_0 . This claim is a consequence of the observation that for each i and j, the coordinatewise evaluation functional on X_0 defined by $a \longrightarrow a_i, j$ has $\|.\|_p$ -norm one. (For p=1 this is clear, because $|f_n| \le 1$ for each n, the general case then follows from the definition of $\|.\|_p$.)

Since X_o is dense in X_p , T extends to a norm one operator, T_p , from X_p into c_o . Note also that T_p is a lattice homomorphism and for every choice of signs $\underline{+}$ and $n=1,2,\ldots$; there is $g\in X_o$, $|g|\leq f_n$, so that $T_p=\Sigma$ $\underline{+}$ $\underline{+}$ $\underline{+}$ $\underline{+}$ $\underline{+}$ which shows that T_p is a quotient map.

In the sequel, we shall say that a sequence $(x_n)_{n=1}^{\infty}$ in X_p is a <u>special</u> c_0 -<u>sequence</u> if there exist $K <_{\infty}$ and integers $i_1 < i_2 < \cdots$ such that for every $n = 1, 2, \cdots$,

$$x_n \ge 0$$
 , $\|x_n\|_p = 1$

$$(x_n)_{i,j} = 0 \text{ if } i \neq i_n$$

$$\left\| \sum_{k=1}^{n} x_{k} \right\|_{p} < K.$$

Note that if $1 \le i < \infty$ and $x \in X_0$ with

$$x_{\ell,j} = 0 \text{ for } \ell \neq i$$

then

$$\|\mathbf{x}\|_{\mathbf{X}} = \sup_{\mathbf{j}} |\mathbf{x}_{\mathbf{i},\mathbf{j}}|$$
;

consequently,

$$\|\mathbf{x}\|_{\mathbf{p}} = \sup_{\mathbf{j}} |\mathbf{x}_{\mathbf{i},\mathbf{j}}|$$

for p = 1 and hence for all 1 \le p < $_{\infty}$. In particular, all the terms of a special c $_0-sequence$ lie in X $_0$.

We now show that \mathbf{X}_1 contains no special \mathbf{c}_0 -sequence.

If such a sequence $(x_n^{})_{n=1}^{\infty}$ exists in $\textbf{X}_1^{},$ pick for each n an index $\textbf{j}_n^{}<\omega$ so that

$$(x_n)_{i_n, j_n} \ge 1/2 \sup_{j} (x_n)_{i_n, j} = 1/2 ||x_n||_1 = 1/2$$
.

By passing to a subsequence, we may assume that $i_{n+1} > j_n$ for each n.

Given an integer N, find $g \in X_0^+$ and $(s_i)_{i=1}^\infty \subseteq \mathbb{R}^+$ so that

$$\|\mathbf{g}\|_{\mathbf{X}} + \sum_{i=1}^{\infty} \mathbf{s}_{i} \leq \mathbf{g} + \sum_{i=1}^{\infty} \mathbf{s}_{i}^{T}_{i},$$

$$\|\mathbf{g}\|_{\mathbf{X}} + \sum_{i=1}^{\infty} \mathbf{s}_{i} \leq \|\sum_{n=1}^{N} \mathbf{x}_{n}\|_{1} + 1.$$

Evaluating both sides of the first inequality at (i_n, j_n) , we get

$$1/2 \le (g)_{i_n, j_n, j_n = i_n}^{j_n} s_i \text{ for } n = 1, 2, \dots, N.$$

It follows that

$$N/2 \leq \sum_{n=1}^{N} (g)_{i_n, j_n} + \sum_{n=1}^{N} \sum_{i=i_n}^{j_n} s_i \leq$$

$$\leq \|\mathbf{g}\|_{\mathbf{X}} + \sum_{i=1}^{\infty} \mathbf{s}_{i} < \|\sum_{n=1}^{N} \mathbf{x}_{n}\|_{1} + 1$$

which for large N contradicts the inequality

$$\left\| \sum_{n=1}^{N} x_{n} \right\|_{1} < K.$$

To prove (i), suppose that $T_p: X_p \longrightarrow c_o$ is an isomorphism on an infinite dimensional subspace E of X_p which we way assume is isomorphic to c_o . Let $(z_n)_{n=1}^\infty$ be a normalized basis for E which is K-equivalent to the unit vector basis of c_o ; since X_o is dense in X_p , we can assume that each z_n lies in X_o .

Since

$$\|T_{p}z_{n}\| = \max_{i} |(z_{n})_{i,\omega}| \text{ and}$$

$$\lim_{n \to \infty} (z_{n})_{i,\omega} = 0 \text{ for each } i \in \mathbb{N},$$

we can find a sequence $i_{1} < i_{2} < \cdots$ and $\delta > 0$ such that for all n,

$$|(\mathbf{z}_n)_{\mathbf{i}_n,\omega}| > \delta$$
.

Define the band projection $P_n: X_p \longrightarrow X_p$ by

$$(P_nx)_{i,j} = \begin{cases} x_{i,j}, & \text{if } i = n \\ \\ 0 & \text{if } i \neq n \end{cases}$$

By the diagonal principle (cf. p.20 in [2]) it follows that the disjoint sequence $(P_i z_n)_{n=1}^{\infty}$ is K/ δ -equivalent to the unit vector basis of c_o . Consequently,

$$y_n = \|P_i z_n\|_p^{-1} P_i z_n$$

is a special c_0 -sequence in X_p and hence the sequence $x_n = y_n^p$ is a special c_0 -sequence in X_1 , which is a contradiction.

To prove (ii), note that if E is a subspace of X_{D} isomor-

phic to ℓ_1 , and if $S_m X_p = \sum\limits_{i=1}^m P_i X_p$ determines the natural Schauder decomposition of X_p , then $S_m|_E$ cannot be an isomorphism for any m because $S_m X_p$ is isomorphic to c_o . Thus there exists a normalized sequence $(x_n)_{n=1}^\infty$ in E which is equivalent to the unit vector basis for ℓ_1 and a disjoint sequence $(y_n)_{n=1}^\infty$ in X_o so that

$$\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{y}_n\|_p = 0.$$

It follows that the sublattice of X_p generated by $(y_n)_{n=1}^{\infty}$ is isomorphic to ℓ_1 , which is impossible for p>1 because X_p is p-convex.

§ II. OPERATORS WHOSE ADJOINT ARE NOT WEAK*-SEQUENTIALLY COMPACT

To study the extensions of theorem (B), we note first that if K is σ -Stomian, then C(K) is a Grothendieck space, that is the weak-star sequential convergence in its dual coincide with the weak convergence. The problem then reduces to the study of the structure of operators whose adjoints are not weak-star sequentially compact and whose domain is a Banach lattice which contains no complemented copy of ℓ_1 . The first theorem reduces the problem to C(K)-spaces, where much is known.

Given any u in the positive cone L^+ of a Banach lattice L, denote by L_u the (not necessarily closed) ideal generated by u. The canonical injection from L_u into L is denoted by j_u or just j if there is no ambiguity. If we put the natural norm on L_u , defined by

$$\|\mathbf{x}\|_{\mathbf{u}} = \inf \{\lambda > 0 : |\mathbf{x}| \le \lambda \mathbf{u}\}$$

then $(L_u, \|.\|_u)$ is an abstract M-space with unit u and hence is isometrically isomorphic to a C(K) space by Kakutani's Theorem. The operator $j_u: (L_u, \|.\|_u) \longrightarrow L$ obviously has norm $\|u\|$.

Theorem 2: Let L be a Banach lattice which does not contain a copy of ℓ_1 as a sublattice and let T be an operator from L into a Banach space X such that T* Ball(X*) is not weak* sequentially compact. Then there exists u ℓ L so that $(Tj_u)^*$ Ball(X*) is not weak* sequen-

tially compact.

To prove the theorem we will need a few lemmas. Given an infinite subset of IN , denote by [M] the set of all infinite subsets of M. Given a Banach space L and a bounded sequence (f_n) in L^{*} , we define for $x \in L$ and $M \in [N]$

$$\alpha_{M}(x) = \lim_{m \in M} \sup_{m} f_{m}(x) - \lim_{m \in M} \inf_{m} f_{m}(x)$$
.

Note that

$$\alpha_{\mathbf{M}}(\mathbf{x}) \leq 2 \sup_{\mathbf{m} \in \mathbf{M}} \|\mathbf{f}_{\mathbf{m}}\| \|\mathbf{x}\|$$

and there exists $P \in [M]$ so that

$$\left|\lim_{\mathbf{p}\in\mathbf{P}}\mathbf{f}_{\mathbf{p}}(\mathbf{x})\right| \geq 1/2 \alpha_{\mathbf{M}}(\mathbf{x}).$$

Given $A \subseteq L$, define

$$\alpha_{\mathbf{M}}(\mathbf{A}) = \sup\{\alpha_{\mathbf{M}}(\mathbf{x}) : \mathbf{x} \geq 0, ||\mathbf{x}|| \leq 1, \mathbf{x} \in \mathbf{A}\}$$

$$\beta_{\mathbf{M}}(\mathbf{A}) = \inf\{\alpha_{\mathbf{p}}(\mathbf{A}) : \mathbf{p} \in [\mathbf{M}]\}.$$

Lemma (3): Let L be a Banach space and let (f_n) be a bounded sequence in L*. If $A \subseteq Ball$ (L) and $M \in [IN]$, then either $\beta_p(A) > 0$ for some $P \in [M]$ or there exists $P \in [M]$ such that $(f_p)_{p \in P}$ converges pointwise on A.

 $\begin{array}{lll} \underline{Proof} & : & \text{If } \beta_p(A) = 0 \text{ for all } P \in [M], \text{ we can recursively define} \\ \underline{infinite sets } M \supseteq P_1 \supseteq P_2 \supseteq \cdots \text{ so that } \alpha_{P_n}(A) < \frac{1}{n} \cdot \text{ If } P \text{ is a} \\ \underline{diagonal sequence with respect to the } P_n's, \text{ then } \alpha_p(A) = 0 \text{ ; i.e.,} \\ \underline{(f_p)}_{p \in P} \text{ converges on } A. \end{array}$

From lemma (3) it follows that if L is a Banach lattice and (f_n) \subseteq Ball(L*) has no weak* convergent subsequence, then we may assume, by passing to a subsequence of (f_n) that $\beta_{\mathbb{N}}(L^+) > 0$.

To prove Theorem 2, we fix a sequence $(f_n) \subseteq T\%Ball(X\%)$ with $\sup_n \|f_n\| \le 1$ so that $\beta_N(L^+) > 0$. We assume that $\beta_M(L_X) = 0$ for

all $x \in L^+$ and $M \in [TN]$ since this is the case if $(j_{X-M}^*)_{M \in M}$ has a subsequence which converges weak* in L_X^* . The conclusion that this set-up implies that L must contain a disjoint positive sequence equivalent to the unit vector basis of ℓ_1 is an immediate consequence of the next two lemmas. Lemma (4), produces an "almost disjoint" sequence in Ball(L^+) which, by Lemma (5), has a subsequence which is a small perturbation of a disjoint ℓ_1 sequence.

(ii)
$$|f(y_n)| \ge \delta/2$$
.

 $\frac{Proof}{(M_n)\subseteq [IN]} \ \ \text{to satisfy for each } n=1,2,\cdots \ \ \text{condition (i) and}$

(iii)
$$M_{n+1} \subseteq M_n$$

(iv)
$$|f_m(y_n)| > \delta/2 \text{ for all } m \in M_n.$$

Having done this, we simply let f be any element of Ball(L*) which is a weak* cluster point of $(f_k)_{k\in M_n}$ for each n = 1,2,...

Choosing $y_1 \in Ball(L^+)$ so that $\alpha_{IN}(y_1) > \delta$, we have that

$$\lim_{m \in \mathbb{N}} |f_{m}(y_{1})| > \delta/2$$

so that we can choose $M_1 \in [IN]$ to satisfy (iv) for n = 1.

Having defined $(M_n)_{n=1}^N$ and $(y_n)_{n=1}^N$ to satisfy (i), (iii), and (iv) for $n \le N$, we pick $M \in [M_N]$ so that

$$\alpha_{\mathbf{M}}([0, \sum_{i=1}^{N} y_{i}]) = 0$$

and choose $z \in Ball(L^+)$ so that $\alpha_{M}(z) > \delta$. Define

$$\mathbf{y}_{N+1} = \mathbf{z} - \mathbf{z} \wedge \left(\varepsilon_{N+1}^{-1} \overset{N}{\underset{i=1}{\sum}} \mathbf{y}_{k} \right)$$
.

Since

$$\alpha_{\mathbf{M}} \left(\mathbf{z} \wedge \boldsymbol{\varepsilon}_{\mathbf{N+1}}^{-1} \begin{array}{cc} \mathbf{N} \\ \boldsymbol{\Sigma} \end{array} \mathbf{y}_{\mathbf{i}} \right) = 0.$$

we have that

$$\alpha_{M}(y_{N+1}) = \alpha_{M}(z) > \delta$$
.

Thus we can choose $\mathbf{M_{N+1}} \in \texttt{[M]}$ so that for all $\mathbf{m} \in \mathbf{M_{N+1}}$,

$$|f_{\mathbf{m}}(y_{N+1})| > \delta/2$$
.

To check (i), just note that if z, $x \in L^+$ and $\lambda \in {\rm I\!R}^+$, then

$$(z - z \wedge \lambda x) \wedge x = (z - \lambda x)^{+} \wedge x \leq \lambda^{-1} z.$$

$$\|y_{n(i)} - x_i\| < 4^{-i+1}\epsilon$$
.

Consequently, $|f(x_i)| > \delta$ for each $i = 1, 2, \dots$, and hence (x_i) is $1/\delta$ -equivalent to the unit vector basis for ℓ_1 and $[x_i]$ is $1/\delta$ -complemented in L.

 $\frac{\text{Proof}}{n = 1, 2, \dots}$: Assume, by passing to a subsequence of (y_n) , that for

(a)
$$\|\mathbf{y}_{n+1} \wedge \sum_{i=1}^{n} \mathbf{y}_{i}\| < 4^{-n} \epsilon$$

We define by recursion a double sequence $(y_n,k)_{n=1}^{\infty} \stackrel{\infty}{\underset{k=n}{\longrightarrow}} -Ball(L^+)$ to satisfy

- (b) $(y_{n,k})_{n=1}^k$ is disjoint for k = 1, 2, ...
- (c) $y_{n,k+1} \le y_{n,k} \le y_n$ for $1 \le n \le k$.

(d)
$$\|y_n - y_{n,n}\| < 4^{-n} \epsilon$$
 for $n = 1, 2, ...$

(e)
$$\|y_{n,k} - y_{n,k+1}\| < 4^{-k} \epsilon \text{ for } 1 \le n \le k$$
.

Once this is done, we can in view of (e) set

$$x_n = \lim_{k \to \infty} y_{n,k}$$
;

from (b) and (c) we have that $(x_n)_{n=1}^{\infty}$ is disjoint and $0 \le x_n \le y_n$ for each $n=1,2,\ldots$ From (d) and (e) we infer that

$$\|\mathbf{y}_{\mathbf{n}} - \mathbf{x}_{\mathbf{n}}\| < 4^{-\mathbf{n}+1} \varepsilon$$

We turn now to the construction of the $y_{n,k}$'s. Set $y_{1,1} = y_1$. Suppose that $(y_{n,k})$ N has been defined. Let

$$y_{N+1,N+1} = y_{N+1} - y_{N+1} \wedge \begin{pmatrix} \sum_{k=1}^{N} y_{N,k} \end{pmatrix}$$

and, for $1 \le n \le N + 1$, set

$$y_{n,N+1} = y_{n,N} - y_{n,N} \wedge y_{N+1}$$
.

We leave the verification of (b) - (e) to the reader.

By applying Theorem (B) we obtain the following two corollaries of Theorem (2).

Corollary (6): Let L be a σ -complete Banach lattice which does not contain a copy of ℓ_1 as a sublattice. If T is an operator from X into some Banach space Y and T* Ball(Y*) is not weak* sequentially compact, then T preserves a copy of ℓ_∞ .

<u>Proof</u>: By Theorem (2) there is $u \in L^+$ so that $(Tj_u)^*Ball$ (Y*) is not weak* sequentially compact and hence not weakly compact. When L_u is represented as C(K) space, K is σ -Stonian because L is σ -complete. Therefore, by Theorem (B) Tj_u , hence also T, preserves a copy of ℓ_∞ .

Corollary (7): If L is a σ -complete Grothendieck Banach lattice, then every non-weakly compact operator from L into any Banach space preserves a copy of ℓ_∞ .

Proof: A Grothendieck space cannot contain \$\ell_1\$ (or any other non-reflexive separable space) as a complemented subspace, and non-weakly compact operators from a Grothendieck space have adjoints which are not weak* sequentially compact, and hence Corollary (6) can be applied to any non-weakly compact operator from a \sigma-complete Grothendieck Banach lattice.

Problem : It is still unknown whether every non-weakly compact operator from a Grothendieck space into any Banach space preserves a copy of ℓ_∞ .

References :

- [1] T. Figiel, N. Ghoussoub, W. Johnson: "On the structure of non-weakly compact operators on Banach lattices". (To appear) (1981).
- [2] J. Lindenstrauss, L. Tzafriri : "Classical Banach spaces I".

 Springer-Verlag". (1977).
- [3] J. Lindenstrauss, L. Tzafriri : "Classical Banach spaces-II".

 Springer-Verlag (1979).
- [4] A. Pełczynski: "Banach spaces on which every unconditionally converging operator is weakly compact". Bull. Acad. Polo. 10, 641-648 (1962).
- [5] H.P. Rosenthal: "On relatively disjoint families of measures, with some applications to Banach space theory". Studio, Math. T XXXVII (1970).

• • •