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XII.1

In this seminar, we report on a part of a joint work with

W.B. Johnson and T. Figiel [13 concerning the structure of non-weakly
compact operators on Banach lattices. First, we recall the following

two fundamental theorems.

Theorem (A) : (A. Peiczynski L4]) - A non-weakly compact operator

from a C(K)-space into any Banach space must preserve a copy of co ;
that is there exists a subspace of C(K), isomorphic to c , on which T

o

acts as an isomorphism.
I.,

Theorem (B) : (H. Rosenthal 5). If K is a d-Stonian compact space,

then every non-weakly compact operator from C(K) into any Banach space

must preserve a copy of 

Our goal is to see to which extent, one can replace C(K)

in theorems (A) and (B) by a larger class of Banach spaces.

§ I. NON WEAKLY COMPACT OPERATORS :

The existence of the James space [2] elimihates the
possibility of replacing C(K) in theorem (A) by any Banach space
not containing a subspace isomorphic to , since c and II do not
embe ’ 

l o i
embed in this space and yet it is not reflexive. However, the result
does hold for the idendity operator acting on a Banach lattice since
if the latter is not reflexive, then it must contain a sublattice
isomorphic either or c o L3]. A natural problem is then to check
if the result holds for any operator or equivalently if whether in
theorem (A), C(K) can be replaced by any Banach lattice not containg Aaing I

Surprisingly, Peczynski’s theorem does not extend even

to this case as we show in the following counterexample.

Example (1) : For every p , 1 ~ p  00, there exists a Banach lattice
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p and a lattice homomorphism T p from X p onto co so that

(i) T 
p 

is strictly singular for each p, 1 ~ p oo

(ii) Xp contains no subspace isomorphic for p, 1  p .

We first give the idea. Let c be the space of converging sequences

and set X = £1(c) . that is the space of doubly-indexed sequences

a = (a..), where i = 1,2,... ; j = 1,2,..., °° such that
1,J

and

Define the norm one operator T : by

Clearly, T is weakly compact and X contains lots of sublattices iso-

morphic to ~-1. However, we can turn T into a non-weakly compact operator

by adding to the unit ball of X vectors (f ) for which (Tf ) is not
n n

weakly compact in co and taking for the new unit ball in X the absolute

convex solid hull of the old unit ball and the f’s, in order to get
n

a normed lattice. The completion of the resulting space probably still

contains t1 complementably, but we can kill them by taking the p-conve-

xification of the space for some 1  p  00 .

Letting X and T be defined as above we define x by
n 

-li

Clearly

co 
~ , ~ ,

where (e.).. is the unit vector basis for c * 
’

Let X be the dense sublattice of X consisting of those
vectors a = (a..) whose rows are eventually zero ; i.e., for some

113

n, a.. = 0 for all i n and all j - 1,2,,..,w.
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Let 11 be the greatest lattice norm on Xo such that

for n = 1, 2, ... and all That is, 11 -111is the gauge of theo 1

closed absolutely convex solid hull of the unit ball of X o and the
sequence ( f ) . Thus  1 i t’ and only i f there are and

n 1 0

eventually zero sequence s1,s2’.’. so that

Let be the completion of (xo,il 1!1) and for 1  p  ro, let

(X be the completion of the p-convexif ication of 
p p o I

that is, for x EX,
o

(See chapter 1. e in for a discussion of p-convexity. )

We claim that II TIl = 1 for every 1 ~ p i. e. , T has

norm one as an operator from p (X )) . )) ) into c . This claim is a
o p o

consequence of the observation that for each i and j, the coordinatewise

evaluation functional on X defined by a a.. has 11.11 -norm one.
o ~ 1,J p

(For p=1 this is clear, because 1 for each n, the general case
n

then follows from the def init ion of )).)) P . )

Since X is dense in X , T extends to a norm one operator,
o p

T , from X into c . Note also that T is a lattice homomorphism and
p p o p 

, ,
for every choice of signs + and n = 1, 2, ... ; there is f ,

- o n

so that + e. which shows that T is a quotient map.
i=1 - 1 P

00

In the sequel, we shall say that a sequence (x ) n n=I in X 
p

is a special co-sequence if there exist K  00 and integers i1  i2  ...
such that for every n = 1,2,...,
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Note that if 1 ~ i  00 and x E X with
o

then

consequently,

4 

i 
’°

for p = 1 and hence for all 1 p  00 . In particular, all the terms

of a special co-sequence lie in X .o o

We now show that X1 contains no special c 0 -sequence.

m

such a sequence (xn)n=1 exists in X1’ pick for each
n an index jn  w so that

By passing to a subsequence, we may’assume that i 
n+ &#x3E; j 

n 
for each n.

i, c:.; X 
+ 

s. B 
00 

]1(+ so thatGivren an 1n",eger n, find x 0 + and - - so that
o i 1= -

Evaluating both sides of the first inequality at (in,jn), we get

It follows that
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which for large N contradicts the inequality

To prove (i), suppose that T : X co is an isomor-
p p 0

phism on an infinite dimensional subspace E of X which we way assume

is isomorphic to c . Let be a normalized basis for E which
o n n=l

is K-equivalent to the unit vector basis of co ; since X 0 is dense

in X , we can assume that each zn lies in Xo .
p no

Since

we can find a sequence i1  i2  ... and 6 &#x3E; 0 such that for all n,

Define the band projection

By the diagonal principle (cf. p.20 in [23) it follows that the disjoint

sequence (P. is K/6-equivalent to the unit vector basis of c -i n n= 0
n

Consequently, 
’

is a special c -sequence in X and hence the sequence x = yp is a
o p n n

special co-sequence in Xi, which is a contradiction.

To prove (ii), note that i~’ E is a subspace o~’ X p isomor-
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m

phic to 1,, and if S X = S P.X determines the natural Schauder
M p i=l 

I p

decomposition of X ? then S j cannot be an isomorphism for any m
p mE

because S X is isomorphic to c * Thus there exists a normalized
m p 0

sequence (x ) in E which is equivalent to the unit vector basis
and a disjoint sequence in Xo so that

m

It follows that the sublattice of X 
p 
generated by is isomorphic

to ~1, which is impossible for p &#x3E; 1 because X P is p-convex.

§ II. OPERATORS WHOSE ADJOINT ARE NOT WEAK SEQUENTIALLY CGMPACT :

To study the extensions of theorem (B), we note first

that if K is a-Stomian, then C(K) is a Grothendieck space, that is

the weak-star sequential convergence in its dual coincide with the

weak convergence. The problem then reduces to the study of the structure

of operators whose adjoints are not weak-star sequentially compact

and whose domain is a Banach lattice which contains no complemented

copy of 11* The first theorem reduces the problem to C(K)-spaces,
where much is known.

Given any u in the positive cone L~ of a Banach lattice

L, denote by Lu the (not necessarily closed) ideal generated by u.

The canonical injection from L u into L is denoted by ju or just j
if there is no ambiguity. If we put the natural norm on Lu, defined

u

by

then (L 11.11 ) is an abstract M-space with unit u and hence is isometric-
u u

ally isomorphic to a C(K) space by Kakutani’s Theorem. The operator

j 
u 

: (L , BB .11) ) L obviously has norm u u u

Theorem 2 : : Let L be a Banach lattice which does not contain a

copy of ae1 as a sublattice and let T be an operator from L into a

Banach space X such that Ball(X7r) is not weak% sequentially compact.
Then there exists u l L+ so that (Tj u )3% Ball(X’b) is not weawb sequen-

1



XII.7

1
1

tially compact.

To prove the theorem we will need a few lemmas. Given an

infinite subset of IN , denote by [M] the set of all infinite subsets
of M. Given a Banach space L and a bounded sequence (f ) in Ur, we

n

define for x E L and M E CJNI

Note that

and there exists P E CMJ so that

Given A ~ L, define

Lemma (3) : Let L be a Banach space and let (fn) be a bounded
n

sequence in L9b. If A C Ball (L) and M E M, then either (A) &#x3E; 0
- p

for some p E LMI or there exists P E CMJ such that (f ) Ep convergesp p
pointwise on A.

Proof : If p(A) = 0 for all P E [M], we can recursively defineP 
1

infinite sets M .. " so that ap r (A)  n . If P is a
2013 i* 2 Pri n

diagonal sequence with respect to the Pris, then ap(A) = 0 ; i.e.,

converges on A.

From lemma (3) it follows that if L is a Banach lattice

and (fn) c has no weak8b convergent subsequence, then we may
n -

assume, by passing to a subsequence of (f ) that P,(L’) &#x3E; 0.
n ’V

To prove Theorem 2, we fix a sequence 2013 
n

with supll fnll 1 so that (L +) &#x3E; 0. We assume 0 for
n 
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all x E L and m E since this is the case if (j7f ) E:M hasx m m

a subsequence which converges weak’" in L’b. The conclusion that this
x

set-up implies that L must contain a disjoint positive sequence equi-

valent to the unit vector basis is an immediate consequence

of the next two lemmas. Lemma (4), produces an "almost disjoint"

sequence in Ball(L+) which, by Lemma (5), has a subsequence which

is a small perturbation of a disjoint sequence.

Lemma (4) : Suppose that L is a Banach lattice, (f ) C 
n -

(L+) &#x3E; 6 &#x3E; 0 for all M E [U43 and x E L+, and en 1 0.JN M x n

Then there exists f E weak-,", closure (f ) and (y ) c Ball(L+) so that
n n

for each n = 1,2,...,

Proof : By induction we construct a sequence (y ) cBall (L+) and
- n -

(M ) C UNJ to satisfy for each n = 1,2,... condition (i) and
n - 

’

Having done this, we simply let f be any element of Ball(L9b) which

is a weak,c cluster point of for each n = 1, 2, ....
n

Choosing y 1 E Ball(L+) so that 6, we have that

so that we can choose M 1 E ÚNJ to satisfy (iv) for n = 1.

Having defined (M ) N 1 and (Y)11=1 to satisfy (i), (iii),
n n=l n n 1

and (iv) for n  N, we pick M C [MNI so that

and choose z E Ball (L~ ) so that 0152M(z) &#x3E; 6. Define
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Since

we have that

Thus we can choose I so that for all m E MN+1 ’

To check ( i ) , just note that if z, x E L+ then

Lemma (5) : Suppose that L is a Banach lattice, f E 

(y ) C Ball(L+), and 0  6  6 + e. Suppose that for each n = 1,2,....,
n - n

Then there is a subsequence

(y . ) of (y ) and a disjoint sequence (x.) in L+ with y .nl nil n(y

so that for each i = 1,2,...

Consequently, If(x.)1 &#x3E; ó for each i = 1,2,...., and hence (x.) is
1 1

1/6-equivalent to the unit vector basis for II and Ex iI is 1/6-com-

plemented in L.

Proof : Assume, by passing to a.subsequence of (yn), that for

We define by recursion a double sequence (y )00 , ==n n2013-L 

to satisfy
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Once this is done, we can in view of (e) set

m

from (b) and (c) we have that is disjoint and

each n = 1,2,.... From (d) and (e) we infer that

We turn now to the construction of the Set yi, i ::: Yi *
Suppose that y~ ~&#x3E; N N has been defined. Let

and, for 1 ~ n ~ N + 1, set

We leave the verification of (b) - (e) to the reader. 13

By applying Theorem (B) we obtain the following two corollaries of

Theorem (2).

Corollary (6) : Let L be a 1-complete Banach lattice which does

not contain a copy of £1 as a sublattice. If T is an operator from

X into some Banach space Y and T’b is not weakJ* sequentially

compact, then T preserves a copy of £00 .

Proof : : By Theorem (2) there is u E L + so that ( T j )*Ball (t) is
u

not weak7 sequentially compact and hence not weakly compact. When L u
is represented as C(K) space, K is c-Stonian because L is a-complete.

Therefore) by Theorem (B) Tj , hence also T, preserves a copy of 
u 

o

Corollary (7) : If L is a, a-complete Grothendieck Banach lattice,

then every non-weakly compact operator from L into any Banach space
preserves a copy of Ic.

"I
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Proof : : A Grothendieck space cannot contain 1 1 (or any other non-

reflexive separable space) as a complemented subspace, and non-weakly

compact operators from a Grothendieck space have adjoints which are

not weak* sequentially compact, and hence Corollary (6) can be

applied to any non-weakly compact operator from a o-complete,

Grothendieck Banach lattice. 0

Problem : -. It is still unknown whether every non-weakly compact

operator from a Grothendieck space into any Banach space preserves

a copy of too .
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Errata à l’exposé XXIV du Séminaire d’Analyse Fonctionnelle 1979-1980

The proof of 3) ~ 1) in theorem (10) is wrong I Therefore

it is still unknown whether a Banach lattice E has the Radon-Nikodym

property whenever every operator from L1 into E is Dunt’ord-Pettis.


