SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

N. J. NiELSEN
\section*{Bounded operators on tensor products of Banach lattices}

Séminaire d'analyse fonctionnelle (Polytechnique) (1980-1981), exp. no 11, p. 1-13
<http://www.numdam.org/item?id=SAF_1980-1981 \qquad A11_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. : (1) 941.82.00-Poste N°
Télex : ECOLEX 691596 F

S E M I N A I R E

 1980-1981

BOUNDED OPERATORS ON TENSOR

$\stackrel{\text { PRODUCTS }}{=}$ OF $-\underset{=}{\text { BANACH }}$ LATTICES

N.J. NIELSEN
(Université d'Odense)

0. INTRODUCTION AND NOTATION.

In this note we shall investigate for which Banach spaces E and Banach lattices X the m-tensor product (defined below) has the property that for every bounded operator T on X I®T (I denoting the identity on E) is a bounded operator on $E \otimes_{m} X$. We shall then apply it to the question when spaces of absolutely summing operators have the uniform approximation property.

All the results of this note will appear in [7] to which we refer for further information and detailed proofs.

We shall use the notation and terminology commonly used in Banach space theory as it appears in [4].

If E and F are Banach spaces $B(E, F)$ denotes the space of all bounded operators from E to F equipped with the operator norm and we write $B(E, E)=B(E)$. If $\quad l \leq p \leq \infty \quad N_{p}(E, F)$ denotes the space of all p-nuclear operators from E to F with the p-nuclear norm $n_{p}, I_{p}(E, F)$ the space of all p-integral operators from E to F with the p-integral norm i_{p} and $\Pi_{p}(E, F)$ the space of all p-summing operators from E to F with the p-summing norm π_{p}. Finally $\Gamma_{\infty}(E, F)$ is the space of operators from E to F, which factor through an L_{∞}-space equipped with the factorization norm γ_{∞}. If $a(E, F)$ is one of the operator ideals above $a^{f}(E, F)$ denotes the closure of $E^{*} \otimes F$ in $Q(E, F)$.

If $\quad 1 \leq p \leq \infty$ then we write $E C I_{p}$, respectively $E G Q L_{p}$, if there is a measure μ so that E is isomorphic to a subspace of $L_{p}(\mu)$, respectively a subspace of a quotient of $L_{p}(\mu)$.

Throughout the paper we let E and F denote Banach spaces and X a Banach lattice. p_{X} and q_{X} are defined by

$$
\begin{aligned}
& p_{X}=\sup \{p \mid X \quad \text { is } p \text {-convex }\} \\
& q_{X}=\inf \{q \mid X \quad \text { is } q \text {-concave }\}
\end{aligned}
$$

1. THE TENSOR PRODUCT $E \otimes_{\mathrm{m}} \mathrm{X}$.

Let us recall that a linear operator $T: E \rightarrow X$ is called order bounded if there exists a $z \in X, z \geq 0$ so that

$$
\begin{equation*}
|T x| \leq\|x\| z \text { for all } x \in E \tag{1}
\end{equation*}
$$

and we define the order bounded norm $\|T\|_{m}$ of T by

$$
\|T\|_{m}=\inf \{\|z\| \mid z \quad \text { satisfies (l) }\} .
$$

$\|\cdot\|_{m}$ is a norm on the space $B(E, X)$ of all order bounded operators from E to X turning it into a Banach space [6].

1.1 Definition

The m-tensor product $E \otimes_{m} X$ is defined to be the closure in $\|\cdot\| m$ of $E \otimes X$ in $\mathbb{B}\left(E^{*}, X\right)$.

This tensor product was originally introduced by Schaefer [11]. Further investigation of the geometric properties of $E \otimes_{m} X$ e.g. concerning the uniform approximation property, can be found in [2]. The tensor product is a generalization of spaces of vector-valued functions. Indeed, in [2] it was proved that if. X is an order continuous Köthe function space on a probability space $(\Omega, \mathcal{\rho}, \mu)$, then $\mathrm{E} \otimes_{\mathrm{m}} \mathrm{X}$ can be identified in a canonical manner with the space $X(E)$ consisting of all measurable functions $\mathrm{f}: \Omega \rightarrow \mathrm{E}$ with $\|f(\cdot)\|_{\mathrm{E}} \in \mathrm{X}$.
XI. 3

We now wish to comment a little on the computation of norms in $E \otimes_{m} X$. If $e_{1}, e_{2}, \ldots, e_{n} \in E$ then the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left\|\sum_{j=1}^{n} t_{j} e_{j}\right\| \quad\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}^{n}
$$

is a continuous function, homogeneous of degree one. Therefore the Krivine calculus of l-homogeneous expressions in Banach lattices (see [4]) gives that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be given a unique meaning as an element in X_{n} for all $x_{1}, x_{2}, \ldots, x_{n} \in x$, and we denote that element by $\left\|\sum_{j=1}^{n} x_{j} e_{j}\right\|_{E}$. It is readily verified that

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} x_{j} e_{j}\right\|_{E}=\sup \left\{\left|\sum_{j=1}^{n} e^{*}\left(e_{j}\right) x_{j}\right| e^{*} \in E^{*},\left\|e^{*}\right\| \leq 1\right\} \tag{2}
\end{equation*}
$$

Hence if $T=\sum_{j=1}^{n} e_{j} \otimes x_{j} \in E \otimes X$ then

$$
\begin{equation*}
\|T\|_{m}=\| \| \sum_{j=1}^{n} x_{j} e_{j}\left\|_{E}\right\|_{x} \tag{3}
\end{equation*}
$$

2. THE IDEAL PROPERTY OF (E,X).

2.1 Definition

The pair (E,X) is said to have the ideal property (I.P.), if for every operator $T \in E \otimes_{m} X$ and every operator $S \in B(X)$ $S T \in E \otimes_{m} X$. In other words if $I \otimes S \in B\left(E \otimes_{m} X\right)$ for every $S \in B(X)$, where I is the identity operator on E.

The following result was proved in [6]

2.2 Proposition

Let X be weakly sequentially complete. If $T \in B(E, F)$ with $T^{*} \in \Pi_{1}\left(F^{*}, E^{*}\right)$ then $S T \in \mathbb{B}(E, X)$ for all $S \in B(F, X)$ and $\|S T\|_{m} \leq\|S\| \pi_{1}\left(T^{*}\right)$. If X is arbitrary the result holds for
all finite dimensional $T \in B(E, F)$.
It was proved by Kwapien [3] that $\left(E, I_{p}(\mu)\right), \quad 1 \leq p \leq \infty$ has the I.P. if and only if $E G Q L_{p}$. Grothendieck's inequality gives together with Proposition 2.2 that $\left(\ell_{2}, X\right)$ has the I.P. for all Banach lattices X. In fact the following was noted in [7].
2.3 Proposition

If $T \in \ell_{2} \otimes_{m} X$ then

$$
K_{G}^{-1} \pi_{1}\left(T^{*}\right) \leq\|T\|_{m} \leq \pi_{1}\left(m^{*}\right)
$$

If X is weakly sequentially complete, then

$$
T * \in \Pi_{1}\left(X^{*}, \ell_{2}\right) \Rightarrow T \in \ell_{2} \otimes_{m} X
$$

In the sequal we shall need the following lemma:
2.4 Lemma

If $2<\mathrm{p}<\mathrm{q}$ and $\mathrm{E} G Q L_{\mathrm{p}}$ then $B\left(\ell_{1}, E\right)=\Pi_{q}\left(\ell_{1}, E\right)$.

Proof

It is readily vererified that it suffices to prove the statement when E is a quotient of $L_{p}(0,1)$ so let us assume that.

Since E is of cotype p it follows from [5] that $\pi_{1}(E, G)=\pi_{q^{\prime}}(E, G)$ for every Banach space G. By assumption E* is a subspace of $L_{p^{\prime}}(0,1)$ and hence isomorphic to a subspace of $L_{1}(0, l)$. Hence if $T \in \Pi_{1}\left(E, \ell_{1}\right)$ then $T * \in \Pi_{1}\left(x_{\infty}, E *\right)$ by a result of Kwapi nn [3] and therefore $T \in \mathscr{B}\left(E, l_{1}\right)$. Clearly $\mathscr{B}\left(E, \ell_{1}\right)=E * \otimes_{m_{1}} \ell_{1} E^{*} \otimes_{\pi} \ell_{1}=N_{1}\left(E, \ell_{1}\right)$. Combining this with the above we get $N_{1}\left(E, \ell_{1}\right)=\Pi_{q^{\prime}}\left(E, l_{1}\right)=N_{q^{\prime}}\left(E, l_{1}\right)$ and therefore by duality $B\left(\ell_{1}, E\right)=\Pi_{q}\left(\ell_{1}, E\right)$.

2.5 Theorem

1°. If $l<q \leq 2, x$ is q-concave and $B\left(\ell_{1}, E^{*}\right)=\Pi_{q}\left(\ell_{1}, E^{*}\right)$ then
(i)

$$
T \in E \otimes_{\mathrm{m}} \mathrm{X} \Leftrightarrow T \in I_{q}\left(\mathrm{E}^{*}, \mathrm{X}\right) \Leftrightarrow \mathrm{T}^{*} \in \Pi_{1}\left(X^{*}, E\right)
$$

Dually
2. If $2 \leq p<\infty, x$ is p-convex and $B\left(\ell_{1}, E\right)=\Pi_{p}\left(\ell_{1}, E\right)$ then

$$
\begin{equation*}
T \in E \otimes_{m} X \Leftrightarrow T^{*} \in \Pi_{p}^{f}\left(X^{*}, E\right) \Leftrightarrow T \in \Gamma_{\infty}\left(E^{*}, X\right) \tag{ii}
\end{equation*}
$$

If furthermore X is weakly sequentially complete, the superscripts "f" can be removed in (ii).

Proof

We shall only prove 1°. (ii) in 2° can be obtained from 1° using duality theory and the second statement in 2° follows from Theorem 1.3 in [2].

Note that the assumptions in 1° imply that $E G Q L_{q}$ so that E is reflexive.

Let $T \in E \otimes_{m} X$. Then there exists a compact Hausdorff space S and operators $T_{1}: \mathrm{E}^{*} \rightarrow \mathrm{C}(\mathrm{S}), \mathrm{T}_{2}: \mathrm{C}(\mathrm{S}) \rightarrow \mathrm{X}$ so that $T=T_{2} T_{1}$ and $\left\|T_{1}\right\| \leq 1, T_{2} \geq 0,\|T\|_{m}=\left\|T_{2}\right\|$. Since x is q-concave T_{2} is q-integral by [4] and hence T is q-integral as well.

Assume next that $T \in I_{q}\left(E^{*}, X\right)$. Let μ be a measure so that there is a quotient map S of $L_{1}(\mu)$ onto E^{*}. Since S is q'-summing by assumption it follows from [9] that $T S$ and hence also $\mathrm{S}^{*} \mathrm{~T} *$ are l-integral. S^{*} is an isometry and therefore $T^{*} \in \Pi_{1}(X *, E)$.

If $T^{*} \in \Pi_{1}(X *, E)$, then Proposition 2.2 gives that $T \in \mathscr{B}\left(E^{*}, \mathrm{X}\right) \quad(\mathrm{X}$ is weakly sequentially complete), but the reflexivity of E implies that $\mathbb{B}(E *, X)=E \otimes_{m} X[2]$.
q.e.d.

The result corresponding to Theorem 2.5 in case $q=1$ is wellknown. Indeed if $X=L_{1}(\mu)$ for some measure μ then by a result of Grothendieck [1] we have for all Banach spaces E : $E \otimes_{m} L_{1}(\mu)=E \otimes_{\pi} L_{1}(\mu)=N_{1}\left(E^{*}, L_{1}(\mu)\right)$.

The next theorem gives a necessary and sufficient condition for a pair (E, X) to have the I.P. in certain cases.

2.6 Theorem

(i) If $\mathrm{p}_{\mathrm{X}}<\mathrm{q}_{\mathrm{X}}<2$ and X is q_{X}-concave then (E, X) has the I.P. if and only if $B\left(\ell_{1}, E^{*}\right)=\Pi_{q_{X}^{\prime}}\left(\ell_{1}, E^{*}\right)$.

Dually if $2<p_{X}<q_{X} \leq \infty$ and X is p_{X}-convex then (E, X) has the I.P. if and only if $B\left(l_{1}, E\right)=\Pi_{p_{X}}\left(l_{1}, E\right)$. (ii) If (E,X) has the I.P. and X is p_{X}-convex with $\mathrm{p}_{\mathrm{X}}<\mathrm{q}_{\mathrm{X}}<2$ (resp. x is q_{X}-concave and $2<\mathrm{p}_{\mathrm{X}}<\mathrm{q}_{\mathrm{X}} \leq \infty$) then $B\left(\ell_{1}, E *\right)=\Pi_{q_{X}^{\prime}}\left(\ell_{1}, E^{*}\right) \quad\left(\right.$ resp. $\left.B\left(\ell_{1}, E\right)=\Pi_{p_{X}}\left(\ell_{1}, E\right)\right)$. (iii) If $p_{X} \leq 2 \leq q_{X}$ and either p_{X} or q_{X} is attained or X contains $\left(l_{2}^{n}\right)$ uniformly complemented on disjoint blocks then (E, X) has the I.P. if and only if E is isomorphic to a Hilbert space.

Proof

The "if" part of (i) follows from Proposition 2.3 and Theorem 2.5. The "only if" parts of (i)-(iii) are based on the following argument:

Assume that (E, X) has the I.P. and that X is q_{X}-concave or

```
q
```

It follows from [2], Proposition 1.6 that every $T \in E \otimes_{m} X$ has P_{X}-summing adjoint. Since q_{X} is attained we get from [5] and [10] that for every n there is a sublattice F_{n} of X spanned by n mutually disjoint positive vectors, 2-equivalent to the unit vector basis of $\ell_{q_{X}}^{n}$ and so that the F_{n} 's are uniformly complemented in X. Together with the above this shows that there is a constant K_{1} so that for every n and every $T \in E \otimes_{m} \ell_{q_{X}}^{n}$ we have

$$
\begin{equation*}
\pi_{p_{X}}\left(T^{*}\right) \leq K_{1}\|T\|_{m} \tag{1}
\end{equation*}
$$

An approximation argument yields that (l) holds for every $T \in E^{\otimes_{m}}{ }^{\ell} q_{X}$.

Proof of (i)

If $p_{X}<q_{X}<2$ then by [5] there is a constant K_{2} so that $\pi_{1}(S) \leq K_{2} \pi_{p_{X}}(S)$ for all $S \in \pi_{p_{X}}\left(\ell_{q_{X}^{\prime}}, F\right)$. Combining this with (1) and Proposition 2.2 we conclude that $T \in E \otimes_{m}{ }^{\ell} q_{X}$ if and only if $T * \in \pi_{1}\left(\ell_{q_{X}^{\prime}}, E\right)$. In particular ($E, \ell_{q_{X}}$) has the I.P. and therefore $E \leftrightarrow Q L_{q_{X}}$ by Kwapien's result so that E is reflexive. By duality we get that
(2)

$$
T \in E * \otimes_{m^{\ell}}^{q^{\prime}}{ }_{X}^{\prime} \Leftrightarrow T \in \Gamma_{\infty}\left(E, \ell_{q^{\prime}}^{\prime}\right)
$$

Let K_{3} be a constant so that $\|T\|_{m} \leq K_{3} \gamma_{\infty}(T)$ for all $T \in \Gamma_{\infty}\left(E, \ell_{q^{\prime}}{ }_{X}\right)$.

Now let $S \in B\left(\ell_{1}, E *\right)$ and $V \in B\left(\ell_{\infty} \prime^{\prime} \ell_{q^{\prime}}{ }_{X}\right)$. Then VS* $\in \Gamma_{\infty}\left(E, \ell_{q^{\prime}}\right)$ and hence

$$
\begin{equation*}
\left\|V{ }^{*}\right\| m \leq K_{3} \gamma_{\infty}\left(V S^{*}\right) \leq K_{3}\|v\|\|s\| \tag{3}
\end{equation*}
$$

Since (3) holds for all $V \in B\left(\ell_{\infty} \ell_{q^{\prime}}\right)$ it follows from [6] that S is $q^{\prime} X^{-s u m m i n g}$ with $\pi_{q^{\prime}}(S) \leq K_{3}\|S\|$. This shows the first part of (i). The second part follows from the above by duality.

We shall not prove (ii) and (iii) here, but let us just mention that to obtain (ii) (1) is used to show that for every $S \in B\left(l_{1}, E\right)$ and every $V \in B\left(l_{\infty}, l_{p_{X}}\right)$ VS* $\in E \otimes_{m} l_{p_{X}}$ so that S is p_{X}-summing. To get (iii) we observe that (l) implies that if $r=q_{X}$, if q_{X} is attained and $r=2$ if X contains uniformly complemented copies of ℓ_{2}^{n} on disjoint blocks then every element in $E \otimes_{m} \mathrm{~L}_{r}(0,1)$ has 2-summing adjoint. It is easily verified that this implies that E is both of type 2 and of cotype 2 so that E is isomorphic to a Hilbert space. We refer to [7] for details concerning (ii) and (iii).
q.e.d.

We have not been able to extend Theorem 2.6 to the case where neither p_{X} nor q_{X} is attained and to the case where $p_{X}=q_{X}$ and at most one of them is attained.

The condition $B\left(\ell_{1_{1}}, E^{*}\right)=\Pi_{q^{\prime}}{ }_{X}\left(\ell_{1}, E\right)$ is not completely satisfactory. We can pose

2.7 Problem

If $1<p<2$ and $B\left(l_{1}, E^{*}\right)=\Pi_{p}\left(l_{1}, E\right)$. Does $E G Q L_{r}$ for some $r, p<r \leq 2$.

If the answer to this question is affirmative then it follows from Theorem 2.5 that the condition in (ii) above is also sufficient for (E, X) to have the I.P.

It can be shown that the condition $B\left(\ell_{1}, E^{*}\right)=\Pi_{p^{\prime}}\left(\ell_{1}, E^{*}\right)$ for some $p, l<p<2$ implies that $E C Q L_{p}$ and that E is of type p-stable. We may therefore ask

2.8 Problem

Let $l<p<2$, and let $E G Q L_{p}$ be of type p-stable. Does there exist an $r>p$ so that $E \hookrightarrow Q L_{r}$?

It is wellknown that the answer to 2.8 is affirmative if either $E G L_{p}$ (follows from a result of Rosenthal) or if E is a quotient of L_{p} (in which case E is isomorphic to a Hilbert space).

If F is a subspace of X then we put $E \bar{\otimes}_{m} F=\overline{E Q F}^{E} \otimes_{m} X$. We have the following theorem:

2.9 Theorem

Let $l \leq q<p<2$ or $l \leq q<\infty$ and $p=2, X \quad q$-concave and $E \subset L_{p}$, and let $F \subseteq X$ be a subspace.
10. For every $T \in B\left(E^{*}, F\right)$ we have
(i)

$$
\begin{aligned}
& T \in E \bar{\otimes}_{m} F \Leftrightarrow T * \in \Pi_{1}^{f}\left(F^{*}, E\right) \Leftrightarrow \\
& T \in \Pi_{q}^{f}\left(E^{*}, F\right) \quad\left(\Leftrightarrow T \in \Pi_{l}^{f}(E, F) \quad \text { if } \quad l<q<p \leq 2\right)
\end{aligned}
$$

2°. The superscript "f" can be removed if either
(ii) F is complemented in X
(iii) E or F and X have the bounded approximation property.

Sketch of proof

(i) If $1 \leq q<p \leq 2$ then it follows from [5] that $\Pi_{q}(E *, F)=\Pi_{1}(E *, F)$ and since $E \subset L_{1} T \in \Pi_{1}(E *, F)$ implies that $T^{*} \in \Pi_{1}\left(F^{*}, E\right)$. Further if E is isomorphic to a Hilbert space then clearly $\Pi_{1}(E, F)=\Pi_{2}(E, F)$ and if $q \geq 2$ then it follows from [3] that $T \in \pi_{q}(E *, F)$ implies $T * \in \pi_{1}(F *, E)$.

Combining this with Theorem 2.5 we obtain (i).
2° : It follows directly from the arguments above that "f" can be removed in case $F=X$. To prove 2° in general it is therefore enough to show that if $T \in E \otimes_{m} X$ and $T(E *) \subseteq F$ then $T \in E \bar{\otimes}_{m} F$.
(ii): Assume that there is a projection P of X onto F. Since (E, X) has the I.P. there is a constant K, so that
$\|P S\|_{m} \leq K\|P\|\|S\|_{m}$ for all $S \in E \otimes_{m} X$.
If now $T \in E \otimes_{m} X$ with $T(E *) \subseteq F$ and $\left(T_{n}\right) \subseteq E \otimes X$ converges to T in the m-norm then $\left(P T_{n}\right) \subseteq E \otimes F$ and by the inequality above it is a Cauchy sequence in the m-norm. Clearly its limit has to be T.

That the "f" can be removed under the assumptions in (iii) follows from the fact that if G_{1} and G_{2} are arbitrary Banach spaces so that either G^{*} or G_{2} has the bounded approximation property then an operator $T \in B\left(G_{1}, G_{2}\right)$ belongs to $\Pi_{q}^{f}\left(G_{1}, G_{2}\right)$ if and only if it is quasi-q-nuclear.
q.e.d.

We have omitted the well-known case $p=q=1$ in Theorem 2.9.
Let $F \subseteq X$ be a subspace and let $K \geq 1$ be a constant. We shall say that the pair (E, F) has the I.P. with constant K relative to X, if for every $T \in E \bar{\otimes}_{m} F$ and every $S \in B(F, X)$ $S T \in E \otimes_{m} X$ with $\|S T\|_{m} \leq K\|S\|\|T\|_{m} \cdot$

Using arguments similar to the ones in the proof of Theorem 2.6 we get
2.10 Theorem
10. If $p_{X}<q_{X}<2$ then the following statements are equivalent
(i) $\quad \exists r \quad q_{X}<r \leq 2 \quad E G L_{r}$
(ii) $\quad \exists K \geq 1$, so that (E, F) has the I.P. with constant K relative to X for all subspaces $F \subseteq X$.
20. If $2 \leq q_{X}<\infty$ and $p_{X}<q_{X}$ unless $q_{X}=2$ then (ii) above holds if and only if E is isomorphic to a Hilbert space.
3. APPLICATIONS TO THE UNIFORM APPROXIMATION PROPERTY.

Let us recall the following definition

3.1 Definition

Let $\lambda \geq 1 \quad \varphi: \mathbb{N} \rightarrow \mathbb{N}$. E is said to have the (λ, φ)-uniform approximation property ($(\lambda, \varphi)-\mathrm{u} . \mathrm{a} . \mathrm{p}$.$) if for every \mathrm{n}$-dimensional subspace $F \subseteq E$ there is an operator $T \in B(E)$ with $T x=x$ for all $x \in F,\|T\| \leq \lambda$ and $r k(T) \leq \varphi(n)$.

We shall say that E has the $\lambda-u . a . p$. if it has the $(\lambda, \varphi)-$ u.a.p. for some function φ. The u.a.p. was first introduced by Pelczynski and Rosenthal [8] and has since been studied by various authors. In [2] the u.a.p. of m-tensor products and Banach lattices was studied and we wish to apply the results there to the situation of this note.

It follows from [2], Theorem 3.7 that if E and X both have the u.a.p. and X is superreflexive then $E \otimes_{m} X$ has the u.a.p. Combining this with Theorem 2.5 and the fact that the u.a.p. is a self-dual property we obtain immediately

3.2 Theorem

Let $2 \leq p<\infty$ and assume that X is p-convex and superreflexive and that $B\left(\ell_{1}, E\right)=\Pi_{p}\left(\ell_{1}, E\right)$. If E and X have the u.a.p. then $\Pi_{1}(X, E)$ has the u.a.p.

If E has the u.a.p. and X is a general Banach lattice, then [2] gives that $E \otimes_{m} X$ has the u.a.p., provided X has the order u.a.p. (which means that the operators in the definition of the u.a.p. can be chosen with "controlled" modulus). However since for every $p, 1 \leq p \leq \infty$ the class of L_{p}-spaces is closed under ultraproducts the proof of [2], Theorem 3.7 easily yields:

3.3 Theorem

Let $l \leq p \leq \infty$ and assume that $\left(l_{p}, x\right)$ has the I.P. and that $E \hookrightarrow L_{p}$.

If E and X have the u.a.p. so does $E \otimes_{m} X$.
As a corollary we obtain:

3.4 Corollary

1°. Let $1<q<p \leq 2$ or $q=1$ and $1 \leq p \leq 2$ and let $E G L_{p}, x$ q-concave. If E and X have the u.a.p. and F is a complemented subspace of X, then $\Pi_{1}\left(E^{*}, F\right)$ and $\Pi_{1}\left(F^{*}, E^{* *}\right)$ have the u.a.p. 2°. If F^{*} is isomorphic to a complemented subspace of a weakly sequentially complete Banach lattice X with the u.a.p., then $\Pi_{1}\left(F, \ell_{2}\right)$ has the u.a.p.

Proof

Assume first $1 \leq q<p \leq 2$. By Theorem 2.9 it suffices to show that $E \bar{ه}_{m} F$ has the u.a.p. Since (E, X) has the I.P. $E \bar{ه}_{m} F$ is complemented in $E \otimes_{m} X$, which has the u.a.p. by Theorem 3.3. If $p=q=1$, then $\pi_{1}\left(E^{*}, X\right)=\mathscr{B}\left(E^{*}, x\right)$ and the latter space has the u.a.p., [2]. $\Pi_{1}\left(E^{*}, F\right)$ is clearly complemented in $\pi_{1}\left(E^{*}, F\right)$. This finishes the proof of 1°.
2° follows from Theorem 2.3.

3.5 Corollary

Let $l_{\leq s \leq 2 \leq r \leq \infty}$ and $r_{\neq s^{\prime}}$ unless $s=1,2$. If E is an \mathscr{L}_{r}-space and F is an \mathscr{L}_{S}-space complemented in $F * *$, then $\pi_{1}(E, F)$ has the u.a.p.

We conjecture that for all $p, l \leq p \leq 2 \pi_{1}\left(l_{p}, l_{p}\right)$ has the u.a.p. but we were not able to verify it using the methods of this note.

1. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. AMS 16 (1955).
2. S. Heinrich, N.J. Nielsen and G. Olsen, Order bounded operators and tensor products of Banach lattices, to appear in Math. Scand.
3. S. Kwapien, Operators factorizable through L_{p}-spaces, Bull. Soc. Math. France 31-32 (1972), 215-225.
4. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete 97, Springer Verlag 1979.
5. B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
6. N.J. Nielsen, On Banach ideals determined by Banach lattices and their applications, Dissertationes Math. CIX (1973), l-62.
7. N.J. Nielsen, The ideal property of tensor products of Banach lattices, to appear in Studia liath.
8. A. Pelczynski and H.P. Rosenthal, Localization techniques in L_{p}-spaces, Studia Math. 52 (1975), 263-289.
9. A. Persson and A. Pietsch, p-nucleäre and p-integrale Abbildungen in Banachraümen, Studia Math. 33 (1969), 19-70.
10. H.P. Rosenthal, On a theorem of J.L. Krivine concerning block finite-representability of 2_{p} in general Banach spaces, J. Funct. Anal. 28 (1978), 197-225.
11. H.H. Schaefer, Banach lattices and positive operators, Springer Verlag 1974.
