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This is a presentation of some results on type and cotype con-

stants which were obtained in joint work with L. Tzafriri.

To fix notations, let X be a Banach space, r n (t) be the sequen-

ce of Rademacher functions, g n (t) be a sequence of independent standard

Gaussian variables on a probability space (r2,p). Given 

and nE IN , we define a (X), b (X), a (X) and fl (X) to be smallest
p,n q,n p,n q,n

constants such that for arbitrary x1 ... the following inequalities

hold

If a (X) = sup a (resp. b (X) = sup b X is of (Rademacher)
P 

n 
Psn q 

n 
q,n

type p (resp. (Rademacher) cotype q). Similarly, define the Gaussian type

p and cotype q constants by a (X)=sup ex (X) and fl (X)=sup p (X) .
P 

n 
P,n q 

n 
q,n

These quantities were investigated by Maurey and Pisier [7].

We have for some c and c 
P 

independent of n and X

The last two inequalities result immediately from

cf. Pisier To prove the first inequality, we have by the symmetry

of the g.’s
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The equivalence of the Gaussian p- and 2-moments yields the desired

inequality a p,n ( X ) :!~; cpap,n (X).

If X does not have some finite cotype, i.e. b for some
q 

n
qCJ, the sequences (X) and bq,n (X) may be inequivalent : for X = 

n

one gets b2 ,n (X) ’" n 1/2 but n) 1/2 , ’ cf. Figiel-Lindenstrauss-

Milman [2].

We will study the question whether the type and cotype constants

of n-dimensional spaces X n can be calculated essentially by n vectors,
that is whether e.g.

holds, with c P depending only on p. For p= 2 one has the

Theorem - (Tomczak-Jaegermann l10J) : For any n-dimensional space Xn , I

The proof rests upon a corresponding statement for 2-absolutely

summing norms of rank n operators, to which the Gaussian constants relate.

Given T : X -~ Y and we denote by n(n) (T) the smallest constant cy 
r,s

such that for all 

Clearly T is absolutely (r,s)-summing, TE n (X,Y) iff
~ x r. s

dP((i))) 1/2 where e. are the unit vectors in
1

n has ideal norm properties.

The following lemma relates the Gaussian constant and (q,2)-

absolutely summing norms. It is due to Tomczak-Jaegermann [10] (for

p = 2 = q, the generalization of the argument to p  2  q is easy), for more

details cf. also Pejczynski [8].
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: Let X be a Banach space, p’ = p/ ( p-1 ) and

n E ]N. Then

denotes the adjoint ideal norm to

Concerning problem (2) for p J. 2 J. q we have the following

positive answer

Theorem 1 : Let 1p2qoo. There is c :!E;c/(q- 2) such that for
q

any nE IN and any n-dimensional space Xn

land by
Theorem 1 results immediately from lemma 1 and proposition 1

below which we want to derive :

Proposi t i on 1 : For any q &#x3E; 2, there is c q Kc/(q-2) such that for any

n E lN and any rank n operator T: X - Y

Defining the approximation numbers of T: X- Y by

we let for 

Thus 2,1 is the norm of (aj(T»jEm in the Lorentz sequence space
?’ J J

£2 , 1 which can be written as a real interpolation space between £ -spaces
2, L q

in particular £2,1 = (£1’£00)1 , cf . lil.
’ 

2,1
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Proof of proposition 1 : Since Ti q, 2(T) = sup[ -ii q , 2(TA) : 
it suffices to prove the statement for maps T: ,n . Y. We will show

: We define inductively an orthonormal basis (e.)n 
1 

of ),nwith
For j = I , choose eIof norm one such that 

i i-I 2

j j I

If jn orthonormal vectors have been found, let

and be the orthogonal projection. Thusi I i 1 2 j- 2

u

Hence there is of norm one such that - SinceJ+I i J+I J+I
rank T::; n, for k&#x3E;n. This yields 

the right side inequality in (3).

Step 2 : We show S 2,1 (X I Y) :!!~ -112(X,Y) for any X and Y. Taking

SE S2,1 (X,Y) choose D.: X - Y of rank with .(S), ’, J J J J

and

rank Si 2j + 2. Since the 2-absolutely summing norm of the identity on an
n-dimensional J space is n 1/2 , we infern-dimensional space is n 1/2 , we infer

Thus S is 2-summing 

Step 3 : The K-functional of the real interpolation theory [1J satis-
fies
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Here continuous linear maps. By definition of the K-functional,

for the last equivalence cf. [I]. For t~!1, choose X- Y with rank

Tt  I Tl and liT - Ttll  2 Then

for and a/Tt) == 0 hence
J t 

L

which proves (4).

, the equivalence (4) yields

by the reiteration theorem (1]

where the last equality follows from (4) and (..e’1,~)1B :-Iq- It is an

easy consequence from

that

This, (5) and step 2 show S for any q&#x3E;2 and thus

for any where c depends only on q &#x3E; 2 ;
Q qq’ q q



XXVIII.6

the bound c q - c/(q - 2) can be derived by checking the constants occuring

in the reiteration theorem. This proves the left side in (3) and thus

proposition 1.

As a corollary to the proof we note a fact which is false for

q= 2 :

Corollary 1 : For any and any Banach space Y

Corollary 2 : For any 2  q  , there is Cq such that for any n E:IN and

any rank n operator T : X -~ Y

Proof : It is well-known that

By Maurey [6J, the (q,1)- and (q,2)-absolutely summing norms are equiva-
lent on IT q, 1(£ 00 ,y) ; the argument does not depend on the number of vec-

tors considered. Thus

Theorem 1 gives no answer to the question whether the (Rade-

macher) cotype constants on n-dimensional spaces Xn can be calculated
by n vectors, i.e. whether

does hold or not. We only have a partial answer :

Proposi t i on 2 : : Let q &#x3E; 2. There is Cq &#x3E; 0 such that for any n E IN andI any n-dimensional space
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and thus by (1)

Remark : c can be bounded by as q tends to 00.

We postpone the proof of proposition 2. It is well-known,

Maurey-Pisier [7J, that a Banach space X has some finite cotype if

it has type p for some p &#x3E; 1. More quantitative information is given in

Theorem 2 : Let p&#x3E; 1, p’ = p/(p - I ) and X be a Banach space.

(a) If dim X = 2n and q = 2 + (X) p’ , then b (X) s 2. p~L (b) If X has type p &#x3E; 1, it has cotype q for q = 2 + 2 a .

Proof : Clearly it suffices to prove part (a).

Step 1 : Let dim X = 2n be dense in X. Denote the span of

in L (X) by Z. Then is a 1-unconditional
’ 

1 lIP] 11
basis of Z. We now use a Shimogaki-Pisier-type argument : define y.

. 
J

to be the smallest constant such that for any sequence (u.)j c Z of
I i=l-

pairwise disjoint elements (relative to the lattice structure inherited

from the 1-unconditional basis of Z) one has
IL IL i E IN

Then 1 = Y 1 ¿ Y 2 ... ° and all j and k in IN , cf . " Lindenstrauss-
’ " J J " 

2m
Tzafriri p. 91. Given mE lN , choose such that

i m1

It is a consequence of the 1-unconditionality of in Z that we
i 1

may assume w.1. o. g. 1 for al l i ~ 1, ... , 2m and moreover

m _ 1 .

for all scalar sequences (ci)E R . Thus span,LwiI isyIm-isomorphic to
i i y

2
2m 

which contains (in the real case) isometrically Thus there are), co 
m 

which contains (in the real case) isometrically Thus there are

v1,...,vmE Z (which can be realized as the Rademacher elements over the
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w.) such that
1

’"

for all scalar sequences (c.). It is well-known and easily checked by
1

integral inequalities that a 

p,m 
(X) = a 

p,m 
(L 

p 
(X))&#x3E;a 

p,m 
(Z). Integrating

(8) with c. 1 = r. 1 (t), we get

Step 2 : 

I 

We first consider the case a p,n (X)n- I/pt -&#x3E; 1/2. Then
2013201320132013 . ? P?
q : -- 2 1- 2p a p,n (X)p &#x3E; 2 + n &#x3E; n. If follows from

that b2(X) ~ 2n/2. An interpolation argument shows

Step 3 : We now derive the same conclusion in the other case

a (X) 1/2, for the same value of q. Let (y.). cX be an arbi-
p,n i 1= -

trary finite sequence. We may assume that Ily.11 is non-increasing. Since

the (z.). 1 were dense in X,
I 1=

holds for all j. Hence

and thus

Let k be the first integer ~ n such that
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Then

,- - 
_ .-

Note here k - 1 2P 
, 

a 
p,n 

, 

and thus k + 1::; q as well as Hence

b q (X) 2 in the second case, too.

Example : The value of q = 2 + 2P 
1 

a (X)P 
, 

may be slightly improved :

choosing instead of c = 2 in a P,n (X) n , one gets that X

is of type q for any q&#x3E;p’ £n 2 + (e p’ £n 2) a p (X)P’ - . However, in general

this value of q has to be at least as large as q ~ e a as shown by

r &#x3E; 2 : clearly X is not of cotype q for q  r. On the other
r 

2/’ 1/’ ...

hand, a where Br is the Khintchin constant for
p 2 r r

Rademacher r-averages. By the estimates of Haagerup [3J, B - rle as
r

1fT: t X~Y factors through a Hi lbert space, let y 2 (T) denote

the factorization norm.

Corollary 3 : Assume X is a Banach space of type 2. Let e=(6 a 2 (X)2)-1. .
Then onto any n-dimensional subspace Xn of X there is a projection Pn
with 

n n

In particular, one has for the relative projection constant of X 
n 

in X

and the Banach-Mazur distance to Hilbert space

Proof : It is known (cf. L4]) that there is a projection P : X- Xn
2013201320132013 

’ 

n n

with



XXVIII.10

theorem 2 implies for

Remarks :

(1) The existence of an e&#x3E;0 as in corollary 3 is an open problem

in spaces of type p&#x3E; 1. Theorem 2 yields a positive answer for small

type p constants and values p near 2 : if

corollary 3 holds for X and F- = 1 - 1 1 (&#x3E; 0) wherecorollary 3 holds for X 2 p r (&#x3E; 0) where

r &#x3E; p’ kn This condition makes sense only if the
p

right side of (9) is &#x3E; 1 which means p&#x3E; 1.56.

(2) In general estimates of the form f(a2(Xn» n 1/2 - £ ,
2 n 2 n 

’

e &#x3E; 0, and f: 1 -IR increasing, f cannot be of polynomial growth because

necessari ly n !5; d f( ) for some d &#x3E; 0 : take X 1 r = £n n &#x3E; 2 to
n r

see n 1/2 - 1/ r s; b2 () Xn .’ 2 n ’ 2 n

Proof of proposition 2 : The proof is a combination of ideas of Maurey-

Pisier [.7J, p. 68 and the proof of theorem 2. We will show for dim X n = n,
q &#x3E; 2, n &#x3E; 2q b ( X ) q and any finite 

q,n n i i=1-

Theorem 1 and inequalities (1) and (11) yield

In the case n  2q b (X )q the same estimate is trivial, since neces-
q,n n

sarilyb (X ) :5=n1/q and thus~ 
q n

Thus it suffices to prove (11). Let (Zi)=1X be given,
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1CL2(X ). Define (y .)~ 1 
as in the proof of theorem 2.

1 i i 1 2 n J 

Let b (X )~]+1. Then for any set (v. )~ c Z of pairwise disjoint- y 11=1 *"’

vectors

since

This implies f’or arbitrary pairwise disjoint vectors I

HI

Define a map by Z a. r.(t) z.. Then T is a positive" 
00 

" 

I I I 1

map relative to the lattice structure on Z inherited from the 1-uncondi-

tional basis (r. (t)z. )m of Z. By Lindenstrauss-Tzafriri [5], p. 84 and
I I i=l

55, (12) implies for 
00

and thus IT 1(T: 2 11 T 11 - Since T is defined on i,m, one has byr, 1 co o  00

Maurey [6J

for some absolute constant c (even independent of r). Thus

IT2r (T) $ c II TII.
The Pietsch factorization theorem yields the existence of a sequence
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Integrating this inequality with gives

nothing but the Gaussian average

This proves (11 ) since r- q log

Remark : Inequality (6) of proposition 2 is asymptotically optimal,

in general : let X n q ; 2. Then

cf. E2]. It seems unknown, however, whether (7) could be improved to

b (X )~c b (X ).
q n q q,n n
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