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Tn this seminar we report on joint work with Ted Odell [5] concerning
the isomorphic classification of complemented subspaces of Lp, 1<p # 2 < o
There are now known to exist uncountably many mutually non-isomorphic
complemented subspaces of Fp for each 1<p# 2 < o [1]. However, there
probably are only finitely many which are "small". For example, the only
complemented subspace of Lp which embeds into zp is zp itself [6].
The question studied in [5] 1is "what are the complemented subspaces of ]:,p
which embed into zp e>12?” For 1< p <2, the following partial answer

is given:

Theorem A: If X 1s a complemented subspace of Lq (1< g<?2)

which has an unconditional basis and X embeds into zq e~22, then X

is isomorphic to zq, Ly, oOF Zq & zgo

It is of course a major unsolved problem whether every complemented
subspace of Lp (L<p# 2 < ») has an unconditional basis.
Theorem A is an immediate consequence of the result of [6] mentioned

above and:

Proposition B: Iet X be a subspace of Lp (2 < p < ) which has an

unconditional basis and which is isomorphic to a quotient of zp 52 22. Then
there is a subspace U of zp (possibly U = {0}) so that X 1is isomorphic

to U, 4, Or U@ 4.
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The classification of complemented subspaces of Lp which embed into

%p @‘22 is more complicated for 2 < p < » because of the presence of

Rosenthal's space X? [11]. However, in [5] the following is proved:

Theorem C: If X 1s a complemented subspace of 2 <p< @)
Theoren C: If X ise of 1,

—

which has an unconditional basis and which embeds into zp 5] 22, then X

is isomorphic to Zp’ 22, lp 52 £2, or xpo

Below we give a more-or-less complete proof of Proposition B and
outline the proof of Theorem C. Actually, Theorem A is also a consequence
of Theorem C and the following result from [5] which will not be discussed

in this seminar:

Theorem D: If X 1is a subspace of yp (2 <p< =) which is isomorphic

Proof of Proposition B: ILet (x,) be a normalized unconditional

basis for X and let € be a norm one operator from %p 5] £2 onto X.

Claim: There exists € > 0O so that for all 0 <8 < e, {i:

5 < Hxiug < e} 1is finite. (Here Hx”r = (Jl |x(t)|rdt)l/r for 1< r <)
0

If the claim is false, then there are € > 65 > e > 0 and infinite
sets M of integers so that ¢, < HxiH2 <e, for i€M and
n=1,2,... . Since (xi) is unconditional, it follows from the classical

results of Kadec and Pelczynski [7] that (xi)i 3 is equivalent to

the unit vector basis for Lo for each n = 1,2,..., hence so is
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(fi)i M’ if (fi) is the sequence of biorthogonal functionals to (xi).
n

But this means that for each n = 1,2,... the zq - contribution to the
norm of (Q*fi) tends to zero as i+ in Mh, because every operator from
12 into Zq is compact. Consequently, since Q% is an isomorphism, we

can select in € M.n so that (Q;*fi ): is equivalent to the unit vector
n

=1

basis of 4,, hence the same is true of (xi )

n=1° n=1

[ee]
But (Xi ) has a
n
subsequence equivalent to the unit vector basis of %p because

lim ”Xi H2 = O. This completes the proof of the claim.
n->o n

Exercise: Where was unconditionality of (xn) used in the proof of
the claim?
Since for any € > O, tle closed linear span of {xi: HxiH2 > e} is

either finite dimensional or isomorphic to [ we can, in view of the claim,

Y
assume that \hnng + O and hence [7] that no subsequence of (xn) is
equivalent to the unit vector basis for 22. We will show that this cordition
implies that X embeds into zp.

Let f; =g; ©¢; €4 4, (1/p + 1/g = 1) be a normalized sequence
which is equivalent to the biorthogonal functionals to (xi). In view cf
Lemma 1 below, we can assume that (gi) is a monotonely unconditional basic
sequence in zq, and (hi) is orthogonal in 4,. Since no subsequence of
(fi) is equivalent to the unit vector basis of Ly 5 there exists & > 0
and n so that HgiH >3 for all i >n. ILetting P denote the natural
projection of zq €>£2 onto Zq, we complete the proof by observing that
P 1is an isomorphism when restricted to [(fi);;nj’ the closed linear span

of (fi):Ln. Indeed, since (gi) is monotonely unconditional, we have

2)1/2

-1 .
for all scalars (a,) that (zlai| < K [2a;;]l where K, 1is
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[ee]
Khintchine's constant for I . Hence for any f = T a,f, € [(f.)? 1,
q jop 13 i’i=n

o 5 1/2
el < liell = max Cloage s lizagng ) < max (leell, (£ lay %)) <

-1
. 0
KD ||t

In the proof of Proposition B, we used:

Lemma 1: Let (xi) be an unconditional basic seguence in Zp ® £,

(1 <p < «). Then there is a monotonely unconditional basic sequence (ui)

in Zp and an orthogonal sequence (Vi) in £

» 50 that (xi) is

equivalent to (u; & Vi) in Zp ® Ly-

Proof. The proof uses an idea of Schechtman's [13]. Note that by a
perturbation argument we can assume that, if (en) denotes the natural
basis for zp 57 22, then for any n = 1,2,..., only finitely many of the
xi's have a non-zero nth coordinate when x; 1is expanded in terms of (en).

We can represent (en) in ;p [-1,1] by having (e be a sequence of

2n )n=l

;p-normalized indicator functions of disjoint subsets of [-1,0) and

letting (e be the Rademacher functions on [0,1]. Write

)CD
2n-1/n=1

o] [o]
] and z; € [(e2n-l)n=l]' The sequence

X, =Y., + Zi with yl € [(e2n)n=l

i i
(xi) is easily seen to be equivalent to the sequence (r; ® Yy v Ty ® zi)
in Lp ([0,1] x [-1,1]), where (ri) is the usual sequence of Rademacher
functions. Of course, (ri &® Zi) is equivalent to an orthogonal sequence;
the point is that the terms of the monotonely unconditional sequence (ri ® yi)

are measurable with respect to a purely atomic sub-sigma field of [0,1] x [-1,0]

so that [(ri ® yi)] embeds isometrically into zp. O
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Throughout the rest of this seminar, we let 2 < p < » and let (en)
(respectively, (6n)) denote the unit vector basis for Zp (respectively,

22). Given z =y @z € I,p 5] 22, we let lxlp = Hy|| and lxl2 = HzH

Given a sequence W = (wn) of non-negative weights, the space Xp W is
2

defined to be the subspace [en @wnSn] of zp <) zg. We use (bn) to

denote the natural basis (en 57 Wn8n) for a generic XP;W space; if

confusion is likely to result, we use ,° I2 - to denote the 22- part of
b

1/2
the norm in Xp w 5o that for x = Eanbn € Xp W’ lxlg w = (z IaanIE) / .
b b4 J

No matter what the weight sequence w 1s, the space Xp w is
J
isomorphic to 2,2, zp, zp S .62 or the space Xp introduced by Rosenthal
[11]. Rosenthal showed that }% - is isomorphic to Xp if and only if
)

for each e¢> 0,

3 ng/('p-g) = o,

w<€n
n

Xp is isomorphic to a complemented subspace of Lp but is not isomorphic
to a complemented subspace of zp @ !,2. It has become clear during the last
ten years that, rather than being a pathological example, Xp plays a
fundamental role in the study of L, (cf., e.g. [2], [4], and [12]).

There are three important steps in the proof of Theorem C:

Proposition 2: Let X be a subspace of zp e 4, (2 <p < «) and let

T be an operator from Lp into X. Then T factors through Xp

Proposition 3: If X 1is isomorphic to a complemented subspace 2@ }%

and Xp is isomorphic to a complemented subspace of X, then X 1is

isomorphic to Xp
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Proposition 4: ILet X be a subspace of ;ap &4, (2<pc< @) with a

normalized basis x =y, ®z , where (yn) (respectively, (zn)) is a

basic sequence in zp (respectively, 1,2). Assume that lznl2 - 0 as

n - o Then either X embeds into Zp or )% is 1lsomorphic to a comple-

mented subspace of X.

Notice that Proposition 2 implies that a complemented subspace of Ib
which embeds into zp & ,@2 is isomorphic to a complemented subspace of
Xp. Suppose now that X 1s a complemented subspace of Lp which embeds
into I,p 5> 1,2 and X has normalized unconditional basis which in Zp S ,@2
can be represented as X, =Y, @ 2 where by Iemma 1 we can assume that

(yn) is unconditional in zp and (zn) is orthogonal in 4,. Suppose that

There are 1 > el> €2>...>O so that for n = 1,2,...,

(%)

Moo= {i: e ;< |zgl, <€} is infinite.

We can then use a standard gliding hump and perturbation argument to

1 «© |
find infinite M cM so that, setting M= U Mn , we have that
n=1

(yi)i ¢y 1s equivalent to the unit vector basis of zp and (Zi)i cy 1s
equivalent to an orthogonal sequence in 22. Thus by Rosenthal's characteri-
zation of Xp mentioned earlier, [(Xi)i GM] is isomorphic to Xp and

is complemented in X Dbecause (xi) is unconditional, hence by Propositions
2 and 3, X 1is isomorphic to Xp

If (%) is false, then there is € >0 and A € IN so that

>e¢ for i ¢ A and lim 'zi|q=0.

i

ieA

lzi'2
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By Proposition 4, either Xp is complemented in [(xi)i EAJ and hence in

X, so that, by Proposition 3, X and Xp are isomorphic, or ]

[(x5)5 cp
embeds into 4p’

it embeds into Lp as a complemented subspace. Of course, [(Xi)i¢ A]

and so is finite dimensional Oor isomorphic to zp since

is isomorphic to a Hilbert space and so if [(xi)i €A

if, respectively, W ~ A

] embeds into %p’

then X 1is isomorphic to %p’ zp e 22, or 12

is finite, A and W ~ A are infinite, or A is finite.
To indicate how to prove Proposition 2, we need to recall the concept
of a blocking of a finite dimensional decomposition (f.d.d., in short).
Given an f.d.d. (En) for some space Z, a blocking of (En) is an f.d.d.
' ! n(k+1)-1
for 7z of the form (E ), where for k = 1,2,..., Ey = [(Ei)i=n(k) for

some sequence 1 = n(l) < n(2) < ... of integers. The simplest version of

the blocking method, introduced in [6] (cf. also Proposition 1l.g.k  in

[8]) can be stated qualitatively as follows: If Z has a shrinking f.d.d.
(En), Y has an f.d.d. (Fn), and T: Z »Y is an operator, then there
are blockings (E;) of (E,) and (Fé) of (F,) so that for all
n=1,2,..., T?E; is "essentially" contained in F; + F;+l' ("Essentially"

1 1
means: given any ¢ 4 G, (En) and (Fn) may be chosen so that for

! 1
X € En’ a(Tx, Fn + Fn+ < eon .) An easy consequence of this blocking

1)

principle is:

Lemma 5: If (En) is a shrinking f.d.d. for Z, (F_ ) is an f.d.d.

for Y, and T: Z - Y is an operator, then there are blockings (En) of

0

o}
so that T: ( £ E
n=1

1 ] (o)
\ .
(En; and (Fn) of (Fn) n)p - (n? F is bounded.

1
)
1 P

We are now ready to prove Proposition 2. By a change of density on

the underlying measure space, we can by one of Maurey's theorems [9]
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assume that T 1is bounded as an operator from L, into (X, ’°|2), i.e.,
for all x € Lp, lTx|2 <K Hx”2 for some constant K. Secondly, by

Lemma 5, we can find a blocking (Hn) of the Haar basis so that T is

(e o]
bounded as an operator from ( I (Hn”

p))p into (X, [+].). (To see this,
n=1

1Y

embed (X, l-'p) into £p and block the unit vector basis for Zp.)

Consequently, if for x € ;p’ X = X, (xn € En), we define ||| x ||| =

max ((T ”xnﬂg)l p, ”X“E) then we have that T 1is bounded as an operator

from (Lp, |”-'”) into X. The identity mapping from Lp into (Ib’ |”'|")
is bounded because the Haar basis, being unconditional, admits a lower Lp-
estimate. Thus the operator T: Ib +~ X factors through (Lp, |"'|”).

To complete the proof of Proposition 2 we only need to observe that the
completion of (yp, IH-IH) is isomorphic to a complemented subspace of

Xb - for some weight sequence w. This is done by seeing that the completion

s
of (;p, el = (= H ll+lll) is norm one complemented in (% E -1
k(n)
=1

k(n) 1is chosen so that H €E. If f? € E ~denotes the I, -normalized

by the orthogonal projection, where for n= 1,2,..., E = [(hi)i ] and

indicator function of the interval [(i-l)e'k(n), i 2'k(n)) for

n 2k(n) e

Kn); i)i21 pel

1<i<e ;n=12,..., then one can easily see that (f

in (£E, Il+]ll) is equivalent to the natural basis of X5 for the
b4

’
@©

. n 2k\
weight sequence w = (“fi”2>i=l n=1 °

To prove Proposition 3 we need the following:

Lemma 6: There exists M, < ®» so that if T is an operator on X

)

for some weight sequence w = (wn)zll, then there exists a weight sequence
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v sothat [ty <u ol ana [x = max (xl, fxl, ) is M-

equivalent to the usual norm on Xp W'
b

The lemma can be proved by embedding X‘p into Lp [-1,1] %Dy identifying
the nth-unit vector of Xp,w with the function f =g + W, where (gn)
are disjointly supported unit vectors in Lp[-l,O], l[gn|]2 <w, and (rn)
are the Rademacher functions on [0,1]. Note that |~ 'E,W on Xp,w is
.|2
get a change of density ;252% on [-1,1] so that T is bounded when

equivalent to under this identification. Now one uses [3] to

considered as an operator from ([f I, H.”L (¢d.m)) into itself. One can
2
. . 2 2 -1/p 2
check that the weight sequence v = (vn) defined by V=W o+ ||¢ gnHIE(gédm)

does the job.

Ne are now reedy to prove Proposition 3. The idea is to use Pelczynski's
classical proof [10] that every complemented subspace of I,P is isomorphic
to £ . We need to write as a s etric sum X @ ... in

D B v (% ® % )
such a way that (X ® X ® ...) 1is complemented in (Xp & Xp ®...). The

oblem is that is not isomorphic to (X & ®...) . However, if
proble X rp (X, &%, )b )

we represent as then X is isomorphic to X @ X D ...
P XP XP)W, P P ( p,w p,w )

. [ee]
where for x € Xp,w’ the norm in (Xp,w ® Xp,w ® ... )p,2 of y= (Xn)n=l

p,2
o 1/p . 1/2
is given by |ly|| = max ((T ,Xn Ip) , (T lxn |2,w) ). (One checks the

isomorphism of Xp with (Xp v ® Xp v & ces) by observing that
J J

p,2
(Xp,w @D Xp,w D ... )p,2 is ilsometric to Xp,v’ where the weight sequence
v consists of all terms of the weight sequence w, each repeated infinitely
many times.) Unfortunately, it is not true that (X € X ® ...) must be
complemented in ® D ... if X 1is complemented in

mp (XP,W XP;W )PJE P Xp)w’

so Pelczynski's argument does not apply. However, if the projection
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P: xp ~ X 1is bounded in both the ,o'p and the ,~l2 , Porms on X,

2

tMn(X@X®.“)iswmhmmain(%w$x & ...) by the
2

)W P)g
projection PO P € ... . The point of Lemma 6 is that we can assume,
without loss of generality, that IP,2 W < ©, Of course, ,P,p might be

2
infinite, but there is by Lemma 5 a blocking (En) of the natural basis for

Xb w 5O that P 1is bounded as an operator from (I En)p into itself,

where each space En has the Xi y norm, , on it. If we define

2

' ! P 1/p sy s
l lp on Xf,w by lep = (Z Hanp) (x =2 X, x € En) then it is
easy to check that the Xb w horm is equivalent to the norm ”,x ”[ =
)
max (lx, lx|2 ). Since ,Pl and |P|2 are both finite, (X @®X & ...)
is complemented in ((Xb’w |+ l”) & (Xﬁ W’ el e "')p,2 and this

letter space is easily seen to be isomorphic to Xp. This completes the
sketch of the proof of Proposition 3.
We complete this seminar by giving a proof of Proposition L.

If zg does not embed into X, then X embeds into {p by a result

of Johnson and 0dell (or see [2]). Thus we may assume X contains a copy

of 12.

Since lzn|2 + 0, we can assume without loss of generality that
|zn|2 <1 for each n. For a subspace Y of X, let &(Y) =

sup {!ylg; llyll = 1}). Note that since X contains 4, if dim X/Y < o,

2’
then 8(Y) = 1. By the blocking technique [6] there exists

= k(1) < k(2) < ... such that if E = [(yi)igggiij Eéﬁ;ii

then (En) is an zp-f.d.d. for [(yn)] and (Fn) is an 4,-f.d.d. for

end F = [(z,)

1/p
[(zn)]. Thus if w € E, then |z un'p ~ (T lunli) and a similar

statement holds for (Fn). Also by our above remark we can insure that
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k(n+1 . .
5([xi]k§n)+i) > 1/2 for each n. Since ,ang ~ 0, we can find a(n)

k(n) < q(n) < k(n+l) such that if H = [( .)]q(n) then
n 3/ x(n)+1

1>58(H ) >0 for each n,

5 S(HH)Zp/(p-Q) = ©, and lim 5(H ) = O.
n=1 n->o

Let e € H so that HenH =1 and lenl2 = S(Hh)‘ Clearly L(en)]
is isomorphic to Xb. We must show it is also complemented in X. Thus we

wish to find %5 € X*¥ so that (%;) is biorthogonal to (e ) and

n

P(x) = £ %; (%) e, is a bounded operator, and hence a projection onto

[(e)]-

. . =2
Iet f_  be the functional on H  defined by fn(h) = <(n, e, |en|2 ).

Then
-2
Ifn|p = I;ﬁuil (h, e, |en|2 >
1Y
hEHn
-1
< max |h|, |e I =1,
- lhl -1 2 n'2
iy
h€lH
n

1l

since len|2 = 6(Hn) and l-lp on H. Thus f is anom 1
functional on Hh in the 4_ norm. Extend fn to a functional %ﬁ on
X by letting fn(xi) =0 if i< k(n) or i > g(n). Since (yi) and

(zi) are basic, we have
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where K 1is twice the larger basis constant of (yi) and (zi). Moreover,
since (En) and (Fn) are p- and 2-f.d.d.'s, respectively, and

|en|P <1, we see that P(x) = T fn(x) e, 1s bounded. O
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