Séminaire d'analyse fonctionnelle École Polytechnique

W. B. JOHNSON Operators into L_p which factor through l_p

Séminaire d'analyse fonctionnelle (Polytechnique) (1979-1980), exp. nº 17, p. 1-6 http://www.numdam.org/item?id=SAF_1979-1980 A14_0>

© Séminaire d'analyse fonctionnelle (École Polytechnique), 1979-1980, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. : (1) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SEMINAIRE

D'ANALYSE FONCTIONNELLE

1979-1980

OPERATORS INTO L WHICH FACTOR THROUGH & p

W. B. JOHNSON

(Ohio State University)

Exposé No XVII

7 Mars 1980

In this seminar we prove the following theorem from $\lfloor 2 \rfloor$.

<u>Theorem A</u>: Let T be a bounded linear operator from a Banach space X into $L_p (\equiv L_p[0,1])$, $2 \le p \le \infty$. Then T factors through ℓ_p if and only if T is compact when considered as an operator into L_2 .

The "only if" part is an immediate consequence of the fact that every operator from ${}^{\ell}_{p}$ to ${}^{\ell}_{2}$ is compact when $p \ge 2$ (cf. Proposition 2.C.3 in [7]). The "if" part generalizes an earlier result of Johnson-Odell [5] which says that if X is a subspace of L_{p} ($p \ge 2$) which does not contain an isomorphic copy of ${}^{\ell}_{2}$, then X embeds into ${}^{\ell}_{p}$, because it is an easy consequence of the results in [6] that the restriction to such an X of the injection from L_{p} into L_{2} is compact.

<u>Proof of Theorem A</u>: We factor T through a space of the form $Y = (\Sigma(H_n, |.|_n))_{\ell_n}$, where each space $(H_n, |.|_n)$ is finite dimensional. We will observe that the spaces $(H_n, |.|_n)$ are uniformly isomorphic to uniformly complemented subspaces of L_p , and hence Y is isomorphic to a complemented subspaces of ℓ_p . (Of course, this implies that Y is isomorphic to ℓ_p by a result of Pe/czynski's [8], but we don't need this fact, since it is clear that if T factors through a complemented subspace of ℓ_p , then T factors through ℓ_p .)

The spaces (H_n) are chosen to be a blocking of the Haar basis for L_p . That is, $H_n = \operatorname{span}(h_i)_{i=k(n)}^{k(n+1)-1}$, where (h_i) is the Haar basis for L_p and $1 = k(1) < k(2) < \dots$ is a suitably chosen sequence of positive integers. The operators $A: X \to Y$ and $B: Y \to L_p$ which factor T are defined in the natural way : for $x \in X$ with $Tx = \sum y_n (y_n \in H_n)$, we define $Ax = (y_n)_{n=1}^{\infty}$. For $y_n \in H_n$ with $(y_n)_{n=1}^{\infty} \in Y$, we define $B(y_n) = \sum y_n \in L_p$. Obviously we have BA = T, but of course we have to show that A and B are bounded if the $(H_n, |\cdot|_n)$ sequence is appropriately defined.

It is convenient to define $|.|_n$ on all of L_p . For appropriate values of M_n , $1 \le M_1 \le M_2 \le M_3 \le \dots$, $|.|_n$ is defined by

$$\left\|\mathbf{f}\right\|_{\mathbf{n}} = \max\left(\mathbf{M}_{\mathbf{n}} \|\mathbf{f}\|_{2}, \|\mathbf{f}\|_{\mathbf{p}}\right),$$

where

$$\|f\|_{2} = (\int_{0}^{1} |f(t)|^{2} dt)^{1/2}$$
, $\|f\|_{p} = (\int_{0}^{1} |f(t)|^{p} dt)^{1/p}$

have their usual meaning. It is evident that each $|\cdot|_n$ is equivalent to $\|\cdot\|_p$ on L_p , but as $M_n \uparrow \infty$ the constant of equivalence tends to infinity.

We break the proof that T factors through Y if (B_n) and (M_n) are defined appropriately into three steps.

Step One. There is a constant
$$K = K(p)$$
 such that $(H_n, |.|_n)$ is
K-isomorphic to a K-complemented subspace of L_n .

Of course, this means that Y is isomorphic to a complemented subspace of $\overset{\ell}{p}$ no matter how M is defined.

Step one is easy, given a result of Rosenthal's [9]. Rosenthal proved that there is a constant $\lambda = \lambda(p)$ so that for any sequence $w = (w_1, w_2, \dots)$ of positive numbers the space $X_{p,w}$ is λ -isomorphic to a λ -complemented subspace of L_p . Here $X_{p,w}$ is the completion of \mathbb{R}^{∞} (or \mathbb{C}^{∞}) under the norm $\|\cdot\|_{w}$ defined by

$$\|(\alpha_{i})\|_{w} = \max((\sum |\alpha_{i}|^{2} w_{i}^{2})^{1/2}, (\sum_{i=1}^{\infty} |\alpha_{i}|^{p})^{1/p})$$

It is easy to see that $(H_n, |.|_n)$ is isometric to a norm 2 complemented subspace of $X_{p,w}$ for some w. Indeed, since each element of H_n is a step function and dim $H_n < \infty$, there is a sequence (even finite) of disjoint intervals (A_i) so that $H_n \subseteq \operatorname{span}(\chi_{A_i})$. Let

$$w_{i} = (meas A_{i})^{\frac{1}{2} - \frac{1}{p}} (= ||\chi_{A_{i}}|| / ||\chi_{A_{i}}||)$$

and set $f_i = (\text{meas } A_i)^{-1/p} \chi_{A_i}$ (so that $||f_i||_p = 1$). Then for any choice (α_i) of scalars,

$$|\Sigma \alpha_{i} f_{i}|_{n} = \max(M_{n}(\Sigma \alpha_{i}^{2} w_{i}^{2})^{1/2} , (\Sigma |\alpha_{i}|^{p})^{1/p}) ;$$

i.e., span χ_{A_i} is, in the $|.|_n$ norm, isometric to $\chi_{p,w}$ when $w = (M_n w_1, M_n w_2, ...)$. Thus, by Rosenthal's theorem, we can complete the proof of step one by observing that $(H_n, |.|_n)$ is norm 2 complemented in $(L_p, |.|_n)$ and hence in span χ_{A_i} . But the orthogonal projection P onto H_n satisfies $||P||_2 = 1$ and (since the Faar functions are a monotone, orthogonal basis for L_p) $||P|| \le 2$, hence $|P|_n \le 2$ by the definition of $|\cdot|_n$.

Step Two. B has norm
$$\leq$$
 5 provided that, given H_1, H_2, \dots, H_n , M_{n+2}
is chosen sufficiently large.

Suppose that the blocking (H_n) of the Haar functions and numbers (M_n) are given. We want to compute that for $y_n \in H_n$, $\|\Sigma |y_n\|_p \leq 5(\Sigma |y_n|_n^p)^{1/p}$, as long as each M_{n+2} is big relative to the modulus of uniform integrability of H₁ + ... + H_n.

Let $M = \{n : |y_n|_n \ge 2^n ||y_n||_p\}$. Certainly $||\Sigma y_n||_p \le ||\sum_{\substack{n \notin M}} y_n||_p + \sum_{\substack{n \notin M}} ||y_n||_p \le ||\sum_{\substack{n \notin M}} y_n||_p + (\sum_{\substack{n \notin M}} ||y_n||_p)^{1/p}$, so we need check only that

$$(*) \quad \left\| \sum_{2n \notin M} y_{2n} \right\| \leq 2(\sum |y_n|_n^p)^{1/p} , \quad \left\| \sum_{2n-1 \notin M} y_{2n-1} \right\|_p \leq 2(\sum |y_n|_n^p)^{1/p} .$$

For n \notin M we have that $M_n \|y_n\|_2 \le \|y_n\|_n \le 2^n \|y_n\|_p$, so that $\|y_n\|_2 / \|y_n\|_p \le 2^n M_n^{-1}$. Now if $2^n M_n^{-1}$ is very small, this means that y_n is essentially supported on a set of very small measure, hence if y is a fairly flat function in L_p , then $\|y + y_n\|_p^p \gtrsim \|y\|_p^p + \|y_n\|_p^p$. Thus if M_{n+2} is chosen big relative to the modulus of uniform integrability of $H_1 + \cdots + H_n$, then $\|\sum_{2n\notin M} y_{2n}\|_p \approx (\sum_{2n\notin M} \|y_{2n}\|_p^p)^{1/p}$ and $\|\sum_{2n-1\notin M} y_{2n-1}\|_p \approx (\sum_{2n-1\notin M} \|y_{2n-1}\|_p^p)^{1/p}$; in particular, we can guarantee that (*) holds.

Recalling that the blocking $H_n = \operatorname{span}(h_i) \frac{k(n+1)-1}{i=k(n)}$ is defined by the increasing sequence $1 = k(1) < k(2) < \dots$, we state

Step Three. A has norm
$$\leq K ||T||$$
 (where $K = K_p$ is a constant which
depends only on p) provided that, given M_n (n > 1),
k(n) is sufficiently big relative to M_n .

Let $\|S\|_2$ be the norm of operator S when considered as an operator into L_2 . Let R_n be the orthogonal projection from L_2 onto $\overline{\text{span}(h_i)}_{i=n}^{\infty}$ in L_2 . Our hypothesis that T is compact as an operator into L_2 implies that $\|R_n T\|_2 \rightarrow 0$ as $n \rightarrow \infty$. Suppose now that $\|R_{k(n)}T\|_2 \leq 2^{-n} \|R_n^{-1}\|\|T\|$ for $n = 2, 3, \ldots$ For $x \in X$ with $Tx = \sum_{n=1}^{\infty} y_n (y_n \in H_n)$, we need to show

$$\|\mathbf{A}\mathbf{x}\| = \left(\sum_{n=1}^{\infty} \|\mathbf{y}_n\|_n^p\right)^{1/p} \leq K\|\mathbf{T}\| \|\mathbf{x}\| .$$

XVII.4

Let $M = \{n : \|y_n\|_n = \|y_n\|_p\}$. Since the Haar system forms an unconditional basis for L_p and L_p has cotype p, there is a constant $0 \le \lambda = \lambda(p)$ so that

$$\|\Sigma \mathbf{y}_{\mathbf{n}}\|_{\mathbf{p}} \ge \lambda^{-1} (\Sigma \|\mathbf{y}_{\mathbf{n}}\|_{\mathbf{p}}^{\mathbf{p}})^{1/\mathbf{p}}$$

thus

$$\left(\sum_{n \in M} |\mathbf{y}_{n}|^{p}\right)^{1/p} = \left(\sum_{n \in M} \|\mathbf{y}_{n}\|_{p}^{p}\right)^{1/p} \leq \lambda \|\sum_{n=1}^{\infty} |\mathbf{y}_{n}\|_{p} = \lambda \|\mathbf{T}\mathbf{x}\| \leq \lambda \|\mathbf{T}\| \|\mathbf{x}\|$$

m

Observing that $1 \in M$ (since $M_1 = 1$), we have that

$$(\sum_{\substack{n \notin M}} |\mathbf{y}_{n}|_{n}^{p})^{1/p} \leq \sum_{\substack{n \notin M}} M_{n} ||\mathbf{y}_{n}||_{2} \leq \sum_{\substack{n \notin M}} M_{n} ||\sum_{\substack{k=n}} \mathbf{y}_{k}||_{2} \leq \sum_{\substack{n \notin M}} M_{n} ||\sum_{\substack{k=n}} \mathbf{y}_{k}||_{2} \leq M_{n} ||\mathbf{x}||_{n=2}$$

Thus

$$\left(\sum_{n=1}^{\infty} |\mathbf{y}_{n}|_{n}^{p}\right)^{1/p} \leq (\lambda + 1) ||\mathbf{T}|| ||\mathbf{x}||$$

as desired.

Of course, to complete the proof that T factors through ℓ_p , we only have to make the obvious observation that the sufficient conditions in steps two and three for the boundedness of B and A are not mutually exclusive.

We conclude this seminar by giving acounter example to a conjecture made in [2]. Recall that a Banach space X is said to be of <u>type</u> p-<u>Banach-Saks</u> (where $1) provided there is a constant <math>\lambda$ so that every normalized weakly null sequence in X has a subsequence $\{x_n\}_{n=1}^{\infty}$ which satisfies for $n = 1, 2, \ldots$

$$\left\| \sum_{\substack{i=1 \\ i=1}}^{n} x_{i} \right\| \leq \lambda n^{1/p}$$

•

In [2] we conjectured (in a stronger form) that every operator from L $_p$ (2 \infty) into a space which is of type p-Banach-Saks factors through $\stackrel{j}{\mu}$. This conjectured had been verified in [3] in case T has closed range.

The counter example X can be taken to be the dual of a space (say, X^*) which is the q-convexification (1/p + 1/q = 1) of the space

constructed in [4]. (In fact, one could use the simpler space from [1].) X^* is a reflexive space which is q-convex relative to its natural basis, the unit vector basis $\{\delta_n\}_{n=1}^{\infty}$. The space ℓ_q does not embed into X^* , but X^* has the following property for each n = 1,2,... :

(*) $\begin{cases} If \{y_i\}_{i=1}^{2^n} \text{ are disjointly supported unit vectors in } X^* \text{ and} \\ and y_i \in \text{span}(\delta_k)_{k=n+1}^{\infty} \text{ for } i \leq i \leq 2^n, \text{ then } \{y_i\}_{i=1}^{2^n} \text{ is } 2\text{-equivalent} \\ \text{ to the unit vector basis for } \mathbb{A}_q^2^n \end{cases}$

Property (*) implies that the basis $\{\delta_n\}_{n=1}^{\infty}$ for X^* admits a lower ℓ_r estimate for all r > q; consequently, the formal identity map $I: \ell_2 \rightarrow X$ is a bounded operator. Now X is p-concave relative to the unit vector basis and no subsequence of this basis can be equivalent to the unit vector basis for ℓ_p , so a routine gliding hump argument shows that 1 cannot factor through ℓ_p . Since ℓ_2 embeds into L_p as a complemented subspace, there is also an operator from L_p into X which does not factor through ℓ_p .

Finally, to verify that X is of type p-Banach-Saks, it is enough to observe that if $\{x_i\}_{i=1}^{\infty}$ are disjointly supported unit vectors in X, $x_k \in \text{span}(\delta_i)_{i=k+1}^{\infty}$ for $k = 1, 2, \ldots$, then for every n, we have from (*) that

$$\| \sum_{i=1}^{2^{n}} x_{i} \| \leq n + \| \sum_{i=n+1}^{2^{n}} x_{i} \| \leq n + 2 \cdot 2^{n/p} \leq 3 \cdot 2^{n/p}$$

REFERENCES

- [1] T. Figiel and W.B. Johnson, A uniformly convex Banach space which contains no $k_{\rm p}$, Compositio Math. 29 (1974), 179-190.
- [2] W.B. Johnson, Operators into L which factor through & p, J. London Math. Soc. (2) 14 (1976), 333-339.
- [3] W.B. Johnson, Quotients of L which are quotients of $\stackrel{\ell}{p}$, Compositio Math.
- [4] W.B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205.
- [5] W.B. Johnson and E.W. Odell, Subspaces of L which embed into $\frac{k}{p}$, Compositio Math. 28 (1974), 34-49.
- [6] M.I. Kadec and A. Pe/czynski, Bases, lacunary sequences, and complemented subspaces in the spaces L_n, Studia Math. 21 (1962), 161-176.
- [7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I, Sequence spaces, Springer-Verlag, Ergebnisse No. 92 (1977).
- [8] A. Peźczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- [9] K.P. Rosenthal, On the subspaces of L^p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
