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In this seminar we prove the following theorem 

Theorem A : Let T be a bounded linear operator from a Banach space X

into L 
P 

(= L [0,lj), Then T factors through Î 
P 

if and only i f

T is compact when considered as an operator into L2.

The "only if" part is an immediate consequence of the fact

that every operator from £ p to 2 2 is compact when p&#x3E; 2 (cf. Proposition

2.C.3 in 7). The "if" part generalizes an earlier result of Johnson-

Odell [5J which says that if X is a subspace of L 
p 

(p&#x3E; 2) which does

not contain an isomorphic copy of 2, then X embeds into Ï p , because
p

it is an easy consequence of the results in [6] that the restriction to

such an X of the injection from Lp into L2 is compact.

Proof of Theorem A : We factor T through a space of the form

Y= 1.1n»î , where each space (H , 1 . 1 ) is finite dimensional.
n n n n

P
We will observe that the spaces (H 1.1n) are uniformly isomorphic to

n n

uniformly complemented subspaces of L , and hence Y is isomorphic to
P

a complemented subspaces . (Of course, this implies that Y is
P

isomorphic to Î 
p 

by a result of Peczynski’s [8], but we don’t need

this fact, since it is clear that if T factors through a complemented

subspace then T factors through 2 . )
P P

The spaces (’n) are chosen to be a blocking of the Haar basis
, n ..

for L . " That is, where (hi) is the Haar basisp n 
" 

1 1= n 1

for L p and 1= k(l) k(2)... is a suitably chosen seauence of positive
P 

&#x26;

integers. The operators A : X- Y and B : Y L p which factor T are defined
in the natural way : for x E X with yn (y É H ) , we define

n n n

Ax: (y) 00 1. " For y E H with (y) 00 E Y, we define y E L . "
n n=1 n n n n= n n p

0bviously we have BA= T, but of course we have to show that A and B are

bounded if the sequence is appropriately defined.
n n

It is convenient to define 1.1 n on all of L . For appropriate
n p 

"

values of M , 1.MMM_..., 1.1 is defined by
n i 2 o n

where
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have their usual meaning. It is evident that each !.) 
n 

is équivalent

to ’ . II on L , but as M t 00 the constant of equivalence tends to infi-
p p n 

’

ni ty. 
p n

nity.

We break the proof that T factors through Y i f (11 ) and (M )
n n

are defined appropriately into three steps.

Step One. There i s a c onstant K = K ( p ) such tha t (H ,1. 1 ) is20132013-201320132013 20132013201320132013201320132013201320132013201320132013201320132013 20132013201320132013201320132013 n n-

K-isomorphic to a K-complemented subspace of L .
. P

Of course, this means that Y is isomorphic to a complemented

subspace of 
p 

no matter how Mn is defincd.
Step one is easy, given a result of Rosenthal’s [9J. Rosenthal

proved that there is a constant so that for any séquence

w= (w 1 ,w,...) J of positive numbers the space X is X-isomorphic to a

B-cofnplemented subspace of L . Here X 
w 

is the completion (or
co, , ,, 

P p
 ) under the norm Il.11 w defined p by 

p,w

It is easy to see that (H , . ) ) is isometric to a norm 2 complemented
n n

subscace of X for some w. Indeed, since each element of H is a step~ 

p,w n

function and dim H n  ~~, there is a sequence (even finite) of disjoint

intervals (A.) so that H Let
i n - A.

1

and set f. 
1 
--- (meas A. 1 )- 1/p XA (so that Then for any choice

} 1 1 
" r’p

(~.) of scalars,

Le., span XA 
i 
is, in the 1.1 

n 
norm, isometric to X plw when

1

w= nw2’ ’ ’ ’ Thus, 1 1 by Rosenthal’ s theorem, we can comp lete the

proof of step one by observing that is norm 2 complemented in

(L p 11.1n) and hence in span XA . 
. But the orthogonale projection P onto’ 

p n 
1 i 

’

n sati sfi es ;BrI12-= 1 and ( si nce the l’aar func t i ons are a rx&#x3E;notonv, or’tho-
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gonal basis for L ) ))P))  2, hence fp)  2 by the définition of 1.’ Î n .

Step Two. B bas provided that, given ~i’~2’ " " ~ ’~n ’ a ~n+2
i s chosen large.

Suppose that the blocki n (H ) of the Haar functions and num-
n

bers (M ) are given. We want to compute that for y EH, ,

II , y !I 
n 1/ P 

, as long as each 11 is 

nn 

to the1 2:: y )) B 5(z Îjr Î), as longç as each i s big r e 1 a t ive t 0 theE 
n p 

5(E 
n n 

) , as long as each 
n+"" 

is big relative to thé

modulus of uniform integrability of H1 + ... + Hn .

--,,- - -

, so we need check only that

For we have that M , so that

Ynil Now is very small, this means that y 
n

is essentially supported on a set of very small measure, hence if y is

a fairly fiât function in L , then tty Thus if
p n p p n p

is chosen big relative to the modulus of uniform integrability of
11 T Gr

H1 + ... + Hn’ then
) 
and

in particular, we can guarantee

that holds.

Recalling that the blocking H - is definedg g 
n 

p 
1 1=k(n)

by the increasing sequence 1 = k( 1 )  k( 2)  ... , we state

Step Three. A has norm  KIITII (where K = K P is a constant which

depends on :y on p ) provided that, given Mn ( n &#x3E; ~ ) ,
k(n) is sufficiently big relative to Mn.n

Let IISII 2 be the norm of operator S when considered as an
operator into L2. Let Rn be the orthogonal projection from L2 onto
- 00

span(hi)i=n in L2. Our hypothesis that T is compacts as an operator

into L 2 implies that IBRnTI12-tO as n--. Suppose now that
n &#x3E; 

00

M -111 T Il II for n _ 2, 3, ... For x E X wi th Tx Z y n 2 n 
n= 1 

n t. n n

we need to show

ce ,
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Let Since the Haar s,ystem forms an

unconditional basis for L and L has cotype p, there is a constant

0  À = À( p) so that

thus

Observing that 1Er.1 (since M1 = 1 ) , we have that

Thus

as desired.

Of course, to complete the proof that T factors through Î p ,

we only have to make the obvious observation that the sufficient condi-

tions in steps two and three for the boundedness of B and A are not

mutually exclusive.

We conclude this seminar by giving acounter example to a conjec-

ture made in [2J. Recall that a Banach space X is said to be of type

p-Banach-Saks (where provided there is a constant ~. so that

every normalized weakly null sequence in X has a subsequence lx 
, 

- 

n n--l

which satisfies for n = 1,2, ...

In L2j we conjectured (in a stronger form) that every operator from L 
p

(2 p (0) into a space which is of type p-Banach-Saks factors through L . .

This conjectured had been verified in L3] in case T has closed ran,ze.

The counter example X can be taken to be the dual of a space
oi

(say, X ) which is the q-convexification (1/p+ 1/q= 1) of the space
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constructed i n (In fact, one could use the xin;pler. xpace 
;

X i a reflexive space which i s q-convex relat i ve tu ils natural ja&#x3E;ix,

thé unit vector basis . The space £ does not embed into X j but
v n n=1 qx 

X has the following property for each n= 1,2,... :

r 2n v

1 
are di s joi nt ly supported uni t vectors in XiB’ and

112013! n

(7) and 
1 

then 
t 
i 

i 
n 

i 1=1

to the unit vector basis for 2 .

q
,ce oi 

Property () impli es that thé for X ÎB’ admi ts a

lower il’ estimate for all r &#x3E; g ; çonsequently, the formal i denti ty map

1 : ~ -~X is a bounded operator. Now X is p-concave relative to the unit

vector basis and no subsequence of this basis can be equivalent to the

unit vector basis for £ , so a routine gliding hump argument shows that
P 

1 cannot factor through À . Since 2 embeds into L as a complemented
P 2 P

subspace, there is also an operator from L 
p 

into X which does not factor

through
P

Finally, to verify that X is of type p-Banach-Saks, it is enough

to observe that if are disjointly supported unit vectors in X,
i 1=

x E for k= 1,2,..., then for every n, we have from ()

that
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