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IX.1

§ 0. PROLOGUE.

Recall [5] that a Banach space X has the ubap (= uniform

bounded approximation property) if

) there are a k with and a positive sequence (q(m)) such

that given a finite dimensional subspace E c X there exists an

operator u : X- X satisfying the following conditions

(i ) u(x) = x for x E E,

(ii) 11 u 11 :---- k,
(iii) dim u(X) = q(dim E).

It is known ([5] [4]) that the LP-spaces and C(K)-spaces and
reflexive Orlicz spaces have the ubap. In contrast with the usual

(bounded) approximation property,X has ubap iff the dual X has ubap

iff every ultrafilter modeled on X has ubap ([3] [4J).
The study of translation invariant function spaces on compact

Abelian groups led us to consider the translation invariant analogue

of the ubap ; roughly speaking we modify assuming that X, E, and u

are translation invariant.

§ 1. PRELIMINARIES.

In the sequel G is a compact Abelian group, F its dual -the

discrete group of characters of G (= the continuous homomorphisms of G

into the circle group)- m, the normalized Haar measure of G. For aE G

the translation operator T a is defined by (T a f) (x) = f(x - a) for f

m-measurable function on G and for xE G. A vector space X of m-equivalence

classes of m-measurable functions on G is translation invariant if

T XCX for every a E G. An operator u : X- Y acting between translation
a

invariant vector spaces is translation invariant if iau = uia for

every a E G.

By L(G) we denote as usual the Banach space of the m-equiva-
lence classes of m-measurable and m-absolutely integrable complex-valued

functions on G ; with the norm G For f, gE L1 (G)
, G

we define the convolution
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We shall deal with translation invariant Banach spaces for

which the operator of convolution by an Ll function has the operator
norm bounded by the norm of the function. To this end it suffices to

impose the following conditions on the space ; they can be obviously

weakened in various ways.

Definition 1.1 : A translation invariant Banach space X is called

regular if

(h.0) if f E X then fE L(G) ; moreover thé inclusion 
is one to one and continuous ;

(h.l) the translation i a : : X- X is an isometry ;
(h.2) for every f E X the map (from G into X) is continuous.

Note that : 1°) Every closed translation invariant subspace
of a regular translation invariant Banach space is regular itself.

2°) If E is a finite dimensional translation invariant subspace of a re-

gular translation invariant Banach space, then E= (f= Z c 
y 

y, c complex
YEM 

numbers, (Hint : Use (h.0) and check 2°) for the space L1(G).)
Next we have : 

Proposition 1.1 : Let X be a regular translation invariant Banach

space. For every E L1(G) define the operator u 
9 

of convolution with gy g 
g ,

by the X-valued integral

Then u g X-X is a bounded linear operator, precisely Ilu IgII 1 ;
regardi ng u g ( f ) as a function in L ( G ) we have u g (f) = f* g for every
f E X.

Proof : It follows from (h.2) that the X-valued integral

J a f g(a) m(da) exists. Thus, by (h.0) , it equals f g. Finally, by

( h.1 ) ~
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§ 2. THE MAI N RESULT.

We begin by introducing the translation invariant analogue

of ubap.

Definition 2.1 : A translation invariant Banach space X is said to

have the invariant uniform approximation property, abreviated "inv.

ubap" if

(i~*) there are a k with and a positive sequence ( q ( m ) ) such

that given a finite dimensional translation invariant subspace E

of X there exists a translation invariant operator u : X ~ X satis-

fying the following conditions

Now we are ready to state the main result of this paper.

Theorem 2.1 : Every regular translation invariant Banach space has

the inv. ubap.

To prove Theorem 2.1 it is enough in fact to establish it

for the space L1(G) which is in fact equivalent to a result in Harmonic

Analysis (cf. Theorem 2.2 below). Recall that the Fourier transform of

a gE L(G) is the complex valued function g on F defined by
; g(x) 7(x) m(dx). Let g(~~ ) ~ 0~. If then Imi

G

denotes the cardinality of M.

Theorem 2.2 : For every k with there exists a positive

sequence ( qk( n ) ) such that for every finite set Mcl’ there exists a

g E L1(G) such that

To derive Theorem 2.1 from Theorem 2.2 fix k and a translation

invariant finite dimensional subspace E of X. By remark 20) after
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Definition 1.1, S(f) c MI where M= En 1. Clearly dim E = lml.
Pick gE L1(G) satisfying (j) - (jjj) for this M and u = u . Then (j)

lli
implies (i), (jj) implies (ii) (via Proposition 1.1), and (iii) and

(h.0) implies (jjj).
For the proof of Theorem 2.2 it is convenient to introduce

more notation. For Me: F we denote by XM the characteristic function of M.

By (F) we denote the Banach space of all complex valued functions W on
where the supremum is taken over all finite

subsets M of

the Fourier transform of (P is

A
the function (P defined by Finally if M and

N are subsets of F and y E 1 then M + N, y + M and -M have the usual mea-

The proof of Theorem 2.2 is based upon the next lemmas :

Lemma 2.1 : : Assume that for a finite set MC F there exists

a finite set W such that

Let

Then

Proof : Clearly then

Thus
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Using the Schwarz inequality, Parseval identity, and (1) we

get

Hence

Finally if

for some (j E -W. Hence

Q.E.D.

To complete the proof of Theorem 2.2, in view of Lemma 2.1 we ha-

ve to construct for a given set Mc F a set W(rr so that (1) is satisfied

and the cardinality of W depends on the cardinality of M only. Without

loss of generality one may assume that M contains the neutral element 0

of r. The next Lemma goes back to 

Lemma 2.2 : Let m and n be positive integers. Let

with 0’1 = O. Let

Then

Lemma 2.2 is an easy consequence of the next one :



IX.6

Proof : Then, for n à 1,

The case n = 1 is trivial. Let n &#x3E; 2 and let T E S . Then and
n n

Hence, for some YE Fi + Y. Claim :

Thus

Clearly

Thus

Hence, in view of (4),

Next observe that

. then Te F n
and T = + (P for some (P E F. Thus Hence

n

proves ( 6 ) .

Combining (4), (5) and (6) we get
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Proof of Lemma 2.2 : Fix n and for i = 1,2,...,m put

Then Thus applying Lemma 2.3

Thus

Proof of Theorem 2.2 : Put

be given. Pick n so that If W is that of
n

Lemma 2.2, then For M and W n construct g as in Lemma 2.1. Then

and

§ 3. FINAL REMARKS.

1°. A routine argument using duality between L (G) and
L (G) gives that the assertion of Theorem 2.2 is equivalent to the

following.

For every k with 1  there exists a sequence (qk(m)) such

that for every subset MOEI’ there exists a set W with McWcl’ and

’W,1 s q ( 1 MI ) such that if h E L~ ( G ) and ~(y) = 0 for y E then

20. If for some set Mcl" with 0 E M there exists a g E 

such that Ùi(y ) = 1 for ~y E M, 1  00 and 1 then M is contained

in a finite subgroup l’ 
0 

of l’ with il,01 1..( IS(g)’. -
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Proof : Let Then Y tends ( i n ~ 1 ( ~~ ) ) to the
n

characteristic function of a subset, say

proof of Cohen’s idempotent" measure theorem (cf. [l]) yields that 1 
0

is a subgroup of F. Q.E.D.

30. It follows from 2 0 that for arbitrary compact Abelian

group Theorem 2.2 can not be extended to the case k= 1. In fact we have :

Proposition 3.1 : : A compact Abelian group G satisfies the assertion

of Theorem 2.2 for k= 1 iff there exists a positive integer n 
o 

such

that G is a product of a family of cyclic groups with

for ce E A.
o

Proof : The assumption on G yields that every finite subset Mer F

generates a subgroup 1" of 1 with 0 :9 (n 0 . We define g= 
o

It follows from 2 0 that the condition imposed on G is necessary.

4 0. In particular if G is the Cantor group (29 2 )n n any car-
dinal number) then every M with 0 E M and IMI = m generates a subgroup

r o with Ir 0 1 --. 2m-.Hence 1 Hence in this case one gets q 1(m) 2 m-1 (m =1,2,...).
From this fact one gets that for (29 2 )n one has qk(m) S (k+1)2 m/k-

5 . No satisfactory estimation from below for (q k(m»seems
to be known even in the case of the Cantor group (2Z~)2013 .
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