SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

M. BoŻEJKO
\section*{A. PEŁCZYŃSKI}
An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space

Séminaire d'analyse fonctionnelle (Polytechnique) (1978-1979), exp. nº 9, p. 1-9
<http://www.numdam.org/item?id=SAF_1978-1979
\qquad A8_0>

© Séminaire d'analyse fonctionnelle

(École Polytechnique), 1978-1979, tous droits réservés.
L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

plateau de palaiseau - 91128 Palaiseau cedex

Téléphone : 941.82.00 - Poste N^{\bullet} Télex : ECOLEX 691596 P

S E M I N A I R E D' A N A L Y S E F O N C T I O N N E L L E 1978-1979

AN ANALOGUE IN COMMUTATIVE HARMONIC ANALYSIS OF THE

$\underline{U N I F O R M}$ BOUNDED APPROXIMATION PROPERTY OF BANACH SPACE
M. BOŻEJKO
(Wroclaw University)
A. PEZCZYŃSKI
(Institute of Mathematics Warsaw)
§ 0. PROLOGUE.

Recall [5] that a Banach space X has the ubap (= uniform bounded approximation property) if
(*) there are a k with $1 \leq k<\infty$ and a positive sequence ($q(m)$) such that given a finite dimensional subspace $E \subset X$ there exists an operator $u: X \rightarrow X$ satisfying the following conditions
(i) $u(x)=x$ for $x \in E$,
(ii) $\|u\| \leq k$,
(iii) $\operatorname{dim} u(X)=q(\operatorname{dim} E)$.

It is known ([5] [4]) that the L^{p}-spaces and $C(K)$-spaces and reflexive Orlicz spaces have the ubap. In contrast with the usual (bounded) approximation property, X has ubap iff the dual X^{*} has ubap iff every ultrafilter modeled on X has ubap ([3] [4]).

The study of translation invariant function spaces on compact Abelian groups led us to consider the translation invariant analogue of the ubap; roughly speaking we modify (*) assuming that X, E, and u are translation invariant.

§ 1. PRELIMINARIES.

In the sequel G is a compact Abelian group, Γ its dual - the discrete group of characters of G ($=$ the continuous homomorphisms of G into the circle group)- m, the normalized Haar measure of G. For $a \in G$ the translation operator τ_{a} is defined by $\left(\tau_{a} f\right)(x)=f(x-a)$ for f m-measurable function on G and for $x \in G$. A vector space X of m-equivalence classes of m-measurable functions on G is translation invariant if $\tau_{a} X \subset X$ for every $a \in G$. An operator $u: X \rightarrow Y$ acting between translation invariant vector spaces is translation invariant if $\tau_{a} u=u \tau a f o r$ every $a \in G$.

By $L^{1}(G)$ we denote as usual the Banach space of the m-equivalence classes of m-measurable and m-absolutely integrable complex-valued functions on G; with the norm $\|f\|_{1}=\int_{G}|f(x)| m(d x)$. For $f, g \in L^{1}(G)$ we define the convolution $f * g \in L^{1}(G)$ by $(f * g)(x)=\int_{G} f(x-a) g(a) m(d a)$.

We shall deal with translation invariant Banach spaces for which the operator of convolution by an L^{1} function has the operator norm bounded by the norm of the function. To this end it suffices to impose the following conditions on the space ; they can be obviously weakened in various ways.

Definition 1.1 : A translation invariant Banach space X is called regular if
(h.0) if $f \in X$ then $f \in L^{1}(G)$; moreover the inclusion $X \rightarrow L^{1}(G)$ is one to one and continuous;
(h.1) the translation $\tau_{a}: X \rightarrow X$ is an isometry;
(h.2) for every $f \in X$ the map $a \rightarrow \tau_{a} f$ (from G into X) is continuous.

Note that : 1°) Every closed translation invariant subspace of a regular translation invariant Banach space is regular itself. 2°) If E is a finite dimensional translation invariant subspace of a regular translation invariant Banach space, then $E=\left\{f=\sum_{Y \in M} c_{\gamma} \gamma, c_{\gamma}\right.$ complex numbers, $M=E \cap \Gamma\}$. (Hint : Use (h.0) and check 2°) for the space $L^{1}(G)$.)

Next we have :

Proposition 1.1 : Let X be a regular translation invariant Banach space. For every $g \in L^{1}(G)$ define the operator u_{g} of convolution with g by the X-valued integral

$$
u_{g}(f)=f_{a} \tau_{a} f \cdot g(a) m(d a) \quad \text { for } f \in X
$$

Then $u_{g}: X \rightarrow X$ is a bounded linear operator, precisely $\left\|u_{g}\right\| \leq\|g\|_{1}$; regarding $u_{g}(f)$ as a function in $L^{1}(G)$ we have $u_{g}(f)=f * g$ for every $\mathbf{f} \in \mathbf{X}$.

Proof : It follows from (h.2) that the X-valued integral $\int \tau_{a} f g(a) m(d a)$ exists. Thus, by (h.0), it equals f*g. Finally, by (h.1),

$$
\left.\left\|u_{g}(f)\right\| \leq \int\left\|\tau_{a} f\right\|_{g} \operatorname{la}\right) \mid m(d a)=\|g\|_{1}\|f\| \quad . \quad \text { Q.E.D. }
$$

§ 2. THE MAIN RESULT.

We begin by introducing the translation invariant analogue of ubap.

Definition 2.1 : A translation invariant Banach space X is said to have the invariant uniform approximation property, abreviated "inv. ubap" if
(**) there are a k with $1 \leq k<\infty$ and a positive sequence ($q(m)$) such that given a finite dimensional translation invariant subspace E of X there exists a translation invariant operator $u: X \rightarrow X$ satisfying the following conditions
(i) $u(x)=x$ for $x \in E$,
(ii) $\quad\|u\| \leq k$,
(iii) $\operatorname{dim} u(X) \leq q(\operatorname{dim} E)$.

Now we are ready to state the main result of this paper.

Theorem 2.1 : Every regular translation invariant Banach space has the inv. ubap.

To prove Theorem 2.1 it is enough in fact to establish it for the space $L^{1}(G)$ which is in fact equivalent to a result in Harmonic Analysis (cf. Theorem 2.2 below). Recall that the Fourier transform of a $g \in L^{1}(G)$ is the complex valued function \hat{g} on Γ defined by $\hat{g}(\gamma)=\int_{G} g(x) \bar{\gamma}(x) m(d x)$. Let $S(g)=\left\{\gamma \in I^{\prime}: \hat{g}(\gamma) \neq 0\right\}$. If $M \subset \Gamma$, then $|M|$ denotes the cardinality of M.

Theorem 2.2 : For every k with $1<k<\infty$, there exists a positive sequence $\left(q_{k}(n)\right)$ such that for every finite set $M \subset L^{\prime}$ there exists a $g \in L^{1}(G)$ such that

$$
\begin{equation*}
\hat{g}(\gamma)=1 \text { for } \gamma \in M \tag{j}
\end{equation*}
$$

(jj) $\|\mathrm{g}\|_{1} \leq \mathrm{k} \quad$,
(jjj) $\quad|S(g)| \leq q_{k}(|M|) \quad$.

To derive Theorem 2.1 from Theorem 2.2 fix k and a translation invariant finite dimensional subspace E of X. By remark 2°) after

Definition 1.1, $E=\left\{f \in L^{1}(G): S(f) \subset M\right\}$ where $M=E \cap \Gamma$. Clearly dim $E=|M|$. Pick $g \in L^{1}(G)$ satisfying (j) - ($j j j$) for this M and $u=u_{g}$. Then (j) implies (i), (jj) implies (ii) (via Proposition 1.1), and (iii) and (h.O) implies (jjj).

For the proof of Theorem 2.2 it is convenient to introduce more notation. For $M \subset \Gamma$ we denote by X_{M} the characteristic function of M. By $\ell^{1}(\Gamma)$ we denote the Banach space of all complex valued functions φ on Γ with $\|\varphi\|_{1}=\sup _{M} \sum_{\gamma \in M}|\varphi(\gamma)|$ where the supremum is taken over all finite subsets M of Γ. For $\varphi, \psi \in \ell^{1}(\Gamma)$ we define $\varphi * \psi \in \ell^{1}(\Gamma)$ by $(\varphi * \psi)(\gamma)=\sum_{\sigma \in \Gamma} \varphi(\gamma-\sigma) \psi(\sigma)$. For $\varphi \in \ell^{1}(\Gamma)$ the Fourier transform of φ is the function $\hat{\varphi}$ defined by $\hat{\varphi}(x)=\sum_{\gamma \in \Gamma} \varphi(\gamma) \gamma(x)$ for $x \in G$. Finally if M and N are subsets of Γ and $\gamma \in \Gamma$ then $M+N, \gamma+M$ and $-M$ have the usual meaning : $M+N=\left\{\sigma \in \Gamma: \sigma=\gamma_{1}+\gamma_{2}\right.$ with $\gamma_{1} \in M$ and $\left.\gamma_{2} \in N\right\}, \gamma+M=\{\gamma\}+M$, and $-M=\{\sigma \in \Gamma:-\sigma \in M\}$.

The proof of Theorem 2.2 is based upon the next lemmas :

Lemma 2.1 : Let $\varepsilon>0$. Assume that for a finite set $M \subset \Gamma$ there exists a finite set W such that

$$
\begin{equation*}
|M+W| \leq(1+\varepsilon)|W| \tag{1}
\end{equation*}
$$

Let

$$
g=|W|^{-1} \overbrace{W+M}^{*} x_{-W}=|W|^{-1} \hat{x}_{W+M} \cdot \hat{x}_{-W}
$$

Then

$$
\hat{g}(\gamma)=1 \text { for } \gamma \in M, \quad\|g\|_{1} \leq(1+\varepsilon)^{1 / 2}, \quad|S(g)| \leq(1+\varepsilon)|W|^{2}
$$

$\underline{\text { Proof }}:$ Clearly $\hat{g}=|W|^{-1} X_{W+M}{ }^{*} X_{-W}$. If $Y \in M$, then

$$
\begin{aligned}
|\mathbf{W}| \hat{\mathbf{g}}(\gamma) & =\sum_{\sigma \in \Gamma} X_{W+M}(\gamma-\sigma) X_{-W}(\sigma) \\
& =\mid\{\sigma: \gamma-\sigma \in W+M\} \cap\{\sigma:-\sigma \in W\} \\
& =|\{\sigma:-\sigma \in W\}|=|W|
\end{aligned}
$$

Thus $\hat{g}(v)=1$.

Using the Schwarz inequality, Parseval identity, and (1) we get

$$
\begin{aligned}
|W|\|g\|_{1} & =\int_{G}\left|\hat{x}_{W+M}(x) \cdot \hat{x}_{-W}(x)\right| m(d x) \\
& \leq\left(\int_{G}\left|x_{W+M}(x)\right|^{2} m(d x)\right)^{1 / 2}\left(\int_{G}\left|X_{-W}(x)\right|^{2}{ }_{m}(d x)\right)^{1 / 2} \\
& \leq|W+M|^{1 / 2}|W|^{1 / 2} \\
& \leq(1+\varepsilon)^{1 / 2}|W| .
\end{aligned}
$$

Hence $\|g\|_{1} \leq(1+\varepsilon)^{1 / 2}$.
Finally if $\hat{g}(\gamma) \neq 0$, then $\sum_{\sigma \in \Gamma} X_{W+M}(Y-\sigma) X_{-W}(\sigma) \neq 0$. Thus
$y \in \sigma+(W+M)$ for some $\sigma \in-W$. Hence $\gamma \in-W+(W+M)$. Thus, by (1), $|S(g)| \leq|-W+(W+M)| \leq|W||W+M| \leq(1+\varepsilon)|W|^{2}$. Q.E.D.

To complete the proof of Theorem 2.2, in view of Lemma 2.1 we have to construct for a given set $M \subset \Gamma$ a set $W \subset \Gamma$ so that (1) is satisfied and the cardinality of W depends on the cardinality of M only. Without loss of generality one may assume that M contains the neutral element 0 of Γ. The next Lemma goes back to Folner [2].
$\underline{\text { Lemma } 2.2}:$ Let m and n be positive integers. Let $M=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\} \subset \Gamma$ with $\sigma_{1}=0$. Let

$$
\begin{aligned}
W_{n}=\left\{0, \sigma_{1}, 2 \sigma_{1}, \ldots, n \sigma_{1}\right\}+\left\{0, \sigma_{2}, 2 \sigma_{2}, \ldots, n \sigma_{2}\right\} & +\ldots \\
& \cdots+\left\{0, \sigma_{m}, 2 \sigma_{m}, \ldots, n \sigma_{m}\right\}
\end{aligned}
$$

Then

$$
\left|M+W_{n}\right| \leq\left(1+\frac{m}{n+1}\right)\left|W_{n}\right|
$$

Lemma 2.2 is an easy consequence of the next one :

Lemma 2.3 : Let $0 \in F \subset I$ with $|F|<\infty$ and let $\sigma \in \Gamma$. Let $F_{o}=F$, $F_{n}=\{0, \sigma, 2 \sigma, \ldots, n \sigma\}+F$ for $n=1,2, \ldots$ Then

$$
\begin{equation*}
\left|\left(\sigma+F_{n}\right) \backslash F_{n}\right| \leq(n+1)^{-1}\left|F_{n}\right| . \tag{2}
\end{equation*}
$$

Proof : Put $S_{o}=F, S_{n}=F_{n} \backslash F_{n-1}$ for $n=1,2, \ldots$ Then, for $n \geq 1$,

$$
\begin{equation*}
S_{n} \subset \sigma+S_{n-1} \tag{3}
\end{equation*}
$$

The case $n=1$ is trivial. Let $n \geq 2$ and let $\tau \in S_{n}$. Then $\tau \in F_{n}$ and $\tau \notin \mathrm{F}_{\mathrm{n}-1}$. Hence, for some $\varphi \in \mathrm{F}, \tau=\mathrm{n} \sigma+\varphi=\sigma+(\mathrm{n}-1) \sigma+\varphi$. Claim : $(\mathrm{n}-1) \sigma+\varphi \in \mathrm{S}_{\mathrm{n}-1}$. Otherwise, for some $\varphi_{1} \in \mathrm{~F},(\mathrm{n}-2) \sigma+\varphi_{1}=(\mathrm{n}-1) \sigma+\varphi \in \mathrm{F}_{\mathrm{n}-2}$; thus $\tau=(\mathrm{n}-1) \sigma+\varphi_{1} \in \mathrm{~F}_{\mathrm{n}-1}$, a contradiction. This proves (3).

Thus
(4)

$$
|F|=\left|s_{0}\right| \geq\left|s_{1}\right| \geq \ldots \geq\left|s_{n}\right| \geq\left|s_{n+1}\right|
$$

Clearly

$$
F_{n}=\left(F_{n} \backslash F_{n-1}\right) \cup\left(F_{n-1} \backslash F_{n-2}\right) \cup \cdots \cup\left(F_{1} \backslash F_{o}\right) \cup F_{o}
$$

Thus

$$
\begin{aligned}
\left|F_{n}\right| & =\sum_{k=0}^{n-1}\left|F_{n-k} \backslash F_{n-k-1}\right|+|F| \\
& =\sum_{k=0}^{n}\left|S_{n-k}\right| .
\end{aligned}
$$

Hence, in view of (4),

$$
\begin{equation*}
\left|F_{n}\right| \geq(n+1)\left|S_{n}\right| \tag{5}
\end{equation*}
$$

Next observe that

$$
\begin{equation*}
\left(\sigma+F_{n}\right) \backslash F_{n}=S_{n+1} \tag{6}
\end{equation*}
$$

Indeed $\left(\sigma+F_{n}\right) \backslash F_{n} \subset F_{n+1} \backslash F_{n}=S_{n+1}$. Conversely if $\tau \in S_{n+1}$ then $\tau \notin F_{n}$ and $\tau=(\mathrm{n}+1) \sigma+\varphi$ for some $\varphi \in \mathrm{F}$. Thus $\tau=\sigma+\mathrm{n} \sigma+\varphi \in \sigma+\mathrm{F}_{\mathrm{n}}$. Hence $S_{\mathrm{n}+1} \subset\left(\sigma+\mathrm{F}_{\mathrm{n}}\right) \backslash \mathrm{F}_{\mathrm{n}}$. This proves (6).

Combining (4), (5) and (6) we get

$$
\left|\left(\sigma+F_{n}\right) \backslash F_{n}\right|=\left|s_{n+1}\right| \leq\left|s_{n}\right| \leq(n+1)^{-1}\left|F_{n}\right| \quad \text { Q.E.D. }
$$

$\underline{\text { Proof of Lemma 2.2 }: ~ F i x ~} n$ and for $i=1,2, \ldots, m$ put

$$
\begin{aligned}
\mathbf{F}^{i}= & \left\{0, \sigma_{1}, \ldots, n \sigma_{1}\right\}+\left\{0, \sigma_{2}, \ldots, n \sigma_{2}\right\}+\cdots+\left\{0, \sigma_{i-1}, \ldots, n \sigma_{i-1}\right\}+ \\
& +\left\{0, \sigma_{i+1}, \ldots, n \sigma_{i+1}\right\}+\cdots+\left\{0, \sigma_{m}, \ldots, n \sigma_{m}\right\} .
\end{aligned}
$$

Then $W_{n}=\left\{0, \sigma_{i}, \ldots, n \sigma_{i}\right\}+F^{i}$ for $i=1,2, \ldots, m$. Thus applying Lemma 2.3 for $\sigma=\sigma_{i}$ and $F=F^{i}$ we get

$$
\left|\left(\sigma_{i}+W_{n}\right) \backslash W_{n}\right| \leq(n+1)^{-1}\left|w_{n}\right| \quad(i=1,2, \ldots, m) .
$$

Thus

$$
\begin{aligned}
\left|M+W_{n}\right| & \leq\left|W_{n}\right|+\left|M+W_{n} \backslash W_{n}\right| \leq\left|W_{n}\right|+\sum_{i=1}^{m}\left|\left(\sigma_{i}+W_{n}\right) \backslash W_{n}\right| \\
& \leq\left(1+\frac{m}{n+1}\right)\left|W_{n}\right|
\end{aligned}
$$

Proof of Theorem 2.2 : Put $\varepsilon=k^{2}-1$. Let $M \subset \Gamma$ with $0 \in M$ and $|M|=m<\infty$ be given. Pick n so that $\frac{m}{n+1} \leq \varepsilon$, say $n=\left[\frac{m}{\varepsilon}\right] \leq \frac{m}{k^{2}-1}$. If W_{n} is that of Lemma 2.2, then $\left|W_{n}\right| \leq n^{m}$. For M and W_{n} construct g as in Lemma 2.1. Then

$$
\|g\|_{1} s(1+\varepsilon)^{1 / 2}=\mathbf{k}
$$

and

$$
|S(g)| \leq(1+\varepsilon)\left|W_{n}\right|^{2} \leq k^{2} n^{2 m} \leq k^{2}\left(\frac{m}{k^{2}-1}\right)^{2 m}=q_{k}(m) \quad \text {. } \quad \text { Q.E.D. }
$$

§ 3. FINAL REMARKS.

1°. A routine argument using duality between $L^{1}(G)$ and $L^{\infty}(G)$ gives that the assertion of Theorem 2.2 is equivalent to the following.

For every k with $1<k<\infty$ there exists a sequence ($\left.q_{k}(m)\right)$ such that for every subset $M \subset l^{\prime}$ there exists a set W with $M \subset W \subset \Gamma$ and $|W| \leq q_{k}(|M|)$ such that if $h \in L^{\infty}(G)$ and $\hat{h}(\gamma)=0$ for $\gamma \in W \nmid M$ then $\left|\sum_{\gamma \in M} \hat{h}^{k}(\gamma)\right| \leq k \quad\|h\|_{\infty}$.
2^{0}. If for some set $M \subset I^{\prime}$ with $0 \in M$ there exists a $g \in L^{1}(G)$ such that $\hat{g}(\gamma)=1$ for $\gamma \in M,|S(g)|<\infty$ and $\|g\|_{1}=1$ then M is contained in a finite subgroup Γ_{o} of I^{+}with $\left|1_{o}\right| \leqslant|S(g)|$.
$\underline{\text { Proof }}: \operatorname{Let} \varphi_{n}=\sum_{j=0}^{n}(n+1)^{-1}(\hat{g})^{j}$. Then φ_{n} tends (in $\left.\ell^{1}(\Gamma)\right)$ to the characteristic function of a subset, say Γ_{0}, of I. Clearly $M \subset \Gamma_{0} \subset S(g)$ and $\left\|\hat{X}_{\Gamma_{0}}\right\|_{1}=\underset{n}{\lim }\left\|\hat{\varphi}_{n}\right\|_{1} \leq\|g\|_{1}=1$. Thus $\left\|\hat{X}_{\Gamma_{0}}\right\|_{1}=1$. Since $0 \in M \subset \Gamma_{o}$, the proof of Cohen's idempotent measure theorem (cf. [1]) yields that Γ_{o} is a subgroup of I^{\prime}. Q.E.D.
3°. It follows from 2^{0} that for arbitrary compact Abelian group Theorem 2.2 can not be extended to the case $k=1$. In fact we have :

Proposition 3.1 : A compact Abelian group G satisfies the assertion of Theorem 2.2 for $k=1$ iff there exists a positive integer n_{o} such that G is a product of a family of cyclic groups $\left(Z_{n(\alpha)}\right)_{\alpha \in A}$ with $\mathbf{n}(\alpha) \leq \mathbf{n}_{\mathbf{o}}$ for $\alpha \in \mathrm{A}$.
$\underline{\text { Proof }}:$ The assumption on G yields that every finite subset $M \subset \Gamma$ generates a subgroup Γ_{o} of Γ with $\left|\Gamma_{o}\right| \leq\left(n_{o}!\right)|M|$. We define $g=\hat{X}_{\Gamma}$. It follows from 2^{0} that the condition imposed on G is necessary.
4°. In particular if G is the Cantor group $\left(\mathbb{Z}_{2}\right) \underline{n}$ (\underline{n} any cardinal number) then every M with $0 \in M$ and $|M|=m$ generates a subgroup Γ_{0} with $\left|\Gamma_{o}\right| \leq 2^{m-1}$. Hence in this case one gets $q_{1}(m)=2^{m-1}(m=1,2, \ldots)$. From this fact one gets that for $\left(\mathbb{Z}_{2}\right) \xrightarrow{n}$ one has $q_{k}(m) \leq(k+1) 2^{m / k}$.
5°. No satisfactory estimation from below for ($\left.q_{k}(m)\right)$ seems to be known even in the case of the Cantor group $\left(\mathbb{Z}_{2}\right)^{\text {n }}$.

REFERENCES

[1] Amemiya I. and Ito T., A simple proof of the theorem of P.J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774-776.
[2] E. Følner, Math..Scand. 3 (1955), 243-254.
[3] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math.
[4] J. Lindenstrauss and L. Tzafriri, The uniform approximation property in Orlicz spaces, Israel J. Math. 23 (1976), 142-155.
[5] A. Pextczynski and H.P. Rosenthal, Localization techniques in L_{p} spaces, Studia Math. 52 (1975), 263-289.

