Séminaire d'analyse fonctionnelle École Polytechnique

M. BOŻEJKO A. Pełczyński

An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space

Séminaire d'analyse fonctionnelle (Polytechnique) (1978-1979), exp. nº 9, p. 1-9 http://www.numdam.org/item?id=SAF_1978-1979____A8_0

© Séminaire d'analyse fonctionnelle (École Polytechnique), 1978-1979, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91128 PALAISEAU CEDEX Téléphone : 941.82.00 - Poste No Télex : ECOLEX 691 596 F

S E M I N A I R E

D'ANALYSE FONCTIONNELLE

1978-1979

AN ANALOGUE IN COMMUTATIVE HARMONIC ANALYSIS OF THE UNIFORM BOUNDED APPROXIMATION PROPERTY OF BANACH SPACE

M. BOŻEJKO
(Wroclaw University)

A. PEĽCZYŃSKI (Institute of Mathematics Warsaw)

§ O. PROLOGUE.

Recall [5] that a Banach space X has the ubap (= uniform bounded approximation property) if

- (*) there are a k with $1 \le k < \infty$ and a positive sequence (q(m)) such that given a finite dimensional subspace $E \subset X$ there exists an operator u: $X \to X$ satisfying the following conditions
 - (i) u(x) = x for $x \in E$,
 - $(ii) ||u|| \leq k,$
 - (iii) dim $u(X) = q(\dim E)$.

It is known ([5] [4]) that the L^p -spaces and C(K)-spaces and reflexive Orlicz spaces have the ubap. In contrast with the usual (bounded) approximation property,X has ubap iff the dual X^{*} has ubap iff every ultrafilter modeled on X has ubap ([3] [4]).

The study of translation invariant function spaces on compact Abelian groups led us to consider the translation invariant analogue of the ubap ; roughly speaking we modify (*) assuming that X, E, and u are translation invariant.

§ 1. PRELIMINARIES.

In the sequel G is a compact Abelian group, Γ its dual -the discrete group of characters of G (= the continuous homomorphisms of G into the circle group)- m, the normalized Haar measure of G. For $a \in G$ the translation operator τ_a is defined by $(\tau_a f)(x) = f(x - a)$ for f m-measurable function on G and for $x \in G$. A vector space X of m-equivalence classes of m-measurable functions on G is translation invariant if $\tau_a X \subset X$ for every $a \in G$. An operator $u: X \rightarrow Y$ acting between translation invariant vector spaces is translation invariant if $\tau_a u = u\tau_a$ for every $a \in G$.

By $L^{1}(G)$ we denote as usual the Banach space of the m-equivalence classes of m-measurable and m-absolutely integrable complex-valued functions on G ; with the norm $\|f\|_{1} = \int_{G}^{} |f(x)|m(dx)|$. For f, $g \in L^{1}(G)$ we define the convolution $f * g \in L^{1}(G)$ by $(f * g)(x) = \int_{G}^{} f(x-a)g(a)m(da)$. We shall deal with translation invariant Banach spaces for which the operator of convolution by an L^1 function has the operator norm bounded by the norm of the function. To this end it suffices to impose the following conditions on the space ; they can be obviously weakened in various ways.

<u>Definition 1.1</u> : A translation invariant Banach space X is called regular if

(h.0) if $f \in X$ then $f \in L^{1}(G)$; moreover the inclusion $X \to L^{1}(G)$ is one to one and continuous;

- (h.1) the translation $\tau_a : X \rightarrow X$ is an isometry;
- (h.2) for every $f \in X$ the map $a \rightarrow \tau_{A} f$ (from G into X) is continuous.

Note that : 1⁰) Every closed translation invariant subspace of a regular translation invariant Banach space is regular itself. 2⁰) If E is a finite dimensional translation invariant subspace of a regular translation invariant Banach space, then $E = \{f = \sum_{\gamma \in M} c_{\gamma}, c_{\gamma} \text{ complex}_{\gamma \in M}$ numbers, $M = E \cap \Gamma\}$. (Hint : Use (h.0) and check 2⁰) for the space $L^{1}(G)$.) Next we have :

<u>Proposition 1.1</u> : Let X be a regular translation invariant Banach space. For every $g \in L^{1}(G)$ define the operator u_{g} of convolution with g by the X-valued integral

$$u_g(f) = \int \tau_a f \cdot g(a) m(da)$$
 for $f \in X$.

Then $u_g: X \to X$ is a bounded linear operator, precisely $||u_g|| \le ||g||_1$; regarding $u_g(f)$ as a function in $L^1(G)$ we have $u_g(f) = f * g$ for every $f \in X$.

<u>Proof</u> : It follows from (h.2) that the X-valued integral $\int \tau_a f g(a) m(da)$ exists. Thus, by (h.0), it equals f*g. Finally, by (h.1),

$$\|\mathbf{u}_{\mathbf{g}}(\mathbf{f})\| \leq \int \|\boldsymbol{\tau}_{\mathbf{a}}\mathbf{f}\| \|\mathbf{g}(\mathbf{a})\| \mathbf{m}(\mathbf{d}\mathbf{a}) = \|\mathbf{g}\|_{1} \|\mathbf{f}\| \cdot \mathbf{Q}.\mathbf{E}.\mathbf{D}.$$

§ 2. THE MAIN RESULT.

We begin by introducing the translation invariant analogue of ubap.

<u>Definition 2.1</u> : A translation invariant Banach space X is said to have the invariant uniform approximation property, abreviated "inv. ubap" if

- (**) there are a k with $1 \le k \le \infty$ and a positive sequence (q(m)) such that given a finite dimensional translation invariant subspace E of X there exists a translation invariant operator $u: X \to X$ satisfying the following conditions
 - (i) u(x) = x for $x \in E$,
 - $(ii) ||u|| \leq k,$
 - (iii) dim $u(X) \le q(\dim E)$.

Now we are ready to state the main result of this paper.

<u>Theorem 2.1</u> : Every regular translation invariant Banach space has the inv. ubap.

To prove Theorem 2.1 it is enough in fact to establish it for the space $L^{1}(G)$ which is in fact equivalent to a result in Harmonic Analysis (cf. Theorem 2.2 below). Recall that the Fourier transform of a $g \in L^{1}(G)$ is the complex valued function \hat{g} on Γ defined by $\hat{g}(\gamma) = \int_{G} g(x) \ \overline{\gamma}(x) \ m(dx)$. Let $S(g) = \{\gamma \in \Gamma : \hat{g}(\gamma) \neq 0\}$. If $M \subset \Gamma$, then |M|denotes the cardinality of M.

<u>Theorem 2.2</u>: For every k with $1 \le k \le \infty$, there exists a positive sequence $(q_k(n))$ such that for every finite set $M \subset \Gamma$ there exists a $g \in L^1(G)$ such that

- (j) $\bigwedge_{g(\gamma)=1}^{\Lambda}$ for $\gamma \in M$,
- $(jj) \qquad \|g\|_{1} \leq k$,
- (jjj) $|S(g)| \le q_k(|M|)$.

To derive Theorem 2.1 from Theorem 2.2 fix k and a translation invariant finite dimensional subspace E of X. By remark 2^{0}) after

Definition 1.1, $E = \{f \in L^1(G) : S(f) \subset M\}$ where $M = E \cap \Gamma$. Clearly dim E = |M|. Pick $g \in L^{1}(G)$ satisfying (j) - (jjj) for this M and $u = u_{g}$. Then (j) implies (i), (jj) implies (ii) (via Proposition 1.1), and (iii) and (h.O) implies (jjj).

For the proof of Theorem 2.2 it is convenient to introduce more notation. For $M\subset \Gamma$ we denote by χ_M the characteristic function of M. By $\ell^1(\Gamma)$ we denote the Banach space of all complex valued functions φ on Γ with $\|\varphi\|_1 = \sup_{M} \sum_{\gamma \in M} |\varphi(\gamma)|$ where the supremum is taken over all finite subsets M of Γ . For $\varphi, \psi \in \ell^1(\Gamma)$ we define $\varphi * \psi \in \ell^1(\Gamma)$ by $(\varphi * \psi)(\gamma) = \sum_{\sigma \in \Gamma} \varphi(\gamma - \sigma)\psi(\sigma)$. For $\varphi \in \ell^1(\Gamma)$ the Fourier transform of φ is the function $\widehat{\phi}$ defined by $\widehat{\phi}(\mathbf{x}) = \sum_{\mathbf{y} \in \Gamma} \phi(\mathbf{y}) \mathbf{y}(\mathbf{x})$ for $\mathbf{x} \in G$. Finally if M and N are subsets of Γ and $\gamma \in \Gamma$ then M + N, γ + M and -M have the usual meaning : $M + N = \{ \sigma \in \Gamma : \sigma = \gamma_1 + \gamma_2 \text{ with } \gamma_1 \in M \text{ and } \gamma_2 \in N \}, \gamma + M = \{ \gamma \} + M,$ and $-M = \{\sigma \in \Gamma : -\sigma \in M\}$.

The proof of Theorem 2.2 is based upon the next lemmas :

Lemma 2.1 : Let $\varepsilon > 0$. Assume that for a finite set $M \subset \Gamma$ there exists a finite set W such that

$$(1) \qquad |\mathbf{M} + \mathbf{W}| \leq (1 + \varepsilon) |\mathbf{W}|$$

Let

$$g = |w|^{-1} \chi_{W+M}^{*} \chi_{-W}^{*} = |w|^{-1} \chi_{W+M}^{*} \cdot \chi_{-W}^{*}$$

Then

$$\hat{g}(\gamma) = 1 \text{ for } \gamma \in M$$
, $\|g\|_{1} \leq (1+\varepsilon)^{1/2}$, $|S(g)| \leq (1+\varepsilon)|W|^{2}$

<u>Proof</u> : Clearly $\hat{g} = |W|^{-1} \chi_{W+M} * \chi_{-W}$. If $Y \in M$, then

$$|\mathbf{W}|_{\mathbf{g}}^{\mathbf{G}}(\mathbf{Y}) = \sum_{\sigma \in \Gamma} \chi_{\mathbf{W}+\mathbf{M}} (\mathbf{Y} - \sigma) \chi_{-\mathbf{W}}^{\mathbf{G}}(\sigma)$$
$$= |\{\sigma: \mathbf{Y} - \sigma \in \mathbf{W} + \mathbf{M}\} \cap \{\sigma: -\sigma \in \mathbf{W}\}$$
$$= |\{\sigma: -\sigma \in \mathbf{W}\}| = |\mathbf{W}| \quad .$$

Thus $\hat{g}(\gamma) = 1$.

Using the Schwarz inequality, Parseval identity, and (1) we

get

$$\begin{aligned} \|\mathbf{w}\| \|\|\mathbf{g}\|_{1} &= \int_{\mathbf{G}} |\hat{\mathbf{X}}_{\mathbf{W}+\mathbf{M}}(\mathbf{x}) \cdot \hat{\mathbf{X}}_{-\mathbf{W}}(\mathbf{x}) \|_{\mathbf{m}(\mathbf{d}\mathbf{x})} \\ &\leq (\int_{\mathbf{G}} |\mathbf{X}_{\mathbf{W}+\mathbf{M}}(\mathbf{x})|^{2} \|\mathbf{m}(\mathbf{d}\mathbf{x}))^{1/2} (\int_{\mathbf{G}} |\mathbf{X}_{-\mathbf{W}}(\mathbf{x})|^{2} \|\mathbf{m}(\mathbf{d}\mathbf{x}))^{1/2} \\ &\leq \|\mathbf{W}+\mathbf{M}\|^{1/2} \|\|^{1/2} \\ &\leq (1+\epsilon)^{1/2} \|\|\| . \end{aligned}$$

Hence $\|g\|_{1} \le (1 + \varepsilon)^{1/2}$.

Finally if $\widehat{g}(\gamma) \neq 0$, then $\sum_{\sigma \in \Gamma} \chi_{W+M}(\gamma - \sigma)\chi_{-W}(\sigma) \neq 0$. Thus $\gamma \in \sigma + (W+M)$ for some $\sigma \in -W$. Hence $\gamma \in -W + (W+M)$. Thus, by (1), $|S(g)| \leq |-W + (W+M)| \leq |W| |W+M| \leq (1+\epsilon) |W|^2$. Q.E.D.

To complete the proof of Theorem 2.2, in view of Lemma 2.1 we have to construct for a given set $M \subset \Gamma$ a set $W \subset \Gamma$ so that (1) is satisfied and the cardinality of W depends on the cardinality of M only. Without loss of generality one may assume that M contains the neutral element O of Γ . The next Lemma goes back to Følner [2].

Lemma 2.2 : Let m and n be positive integers. Let $M = \{\sigma_1, \sigma_2, \dots, \sigma_m\} \subset \Gamma$ with $\sigma_1 = 0$. Let

$$W_{n} = \{0, \sigma_{1}, 2\sigma_{1}, \dots, n\sigma_{1}\} + \{0, \sigma_{2}, 2\sigma_{2}, \dots, n\sigma_{2}\} + \dots$$
$$\dots + \{0, \sigma_{m}, 2\sigma_{m}, \dots, n\sigma_{m}\} .$$

Then

$$\left| M + W_{n} \right| \leq \left(1 + \frac{m}{n+1} \right) \left| W_{n} \right|$$

Lemma 2.2 is an easy consequence of the next one :

Lemma 2.3 : Let $0 \in F \subset \Gamma$ with $|F| < \infty$ and let $\sigma \in \Gamma$. Let $F_{\sigma} = F$, $F_{n} = \{0, \sigma, 2\sigma, \dots, n\sigma\} + F$ for $n = 1, 2, \dots$ Then

(2)
$$|(\sigma + F_n) \setminus F_n| \leq (n+1)^{-1} |F_n|$$

<u>Proof</u> : Put $S_0 = F$, $S_n = F_n \setminus F_{n-1}$ for $n = 1, 2, \dots$ Then, for $n \ge 1$,

$$S_{n} \subset \sigma + S_{n-1}$$

The case n = 1 is trivial. Let $n \ge 2$ and let $\tau \in S_n$. Then $\tau \in F_n$ and $\tau \notin F_{n-1}$. Hence, for some $\varphi \in F$, $\tau = n\sigma + \varphi = \sigma + (n-1)\sigma + \varphi$. Claim : $(n-1)\sigma + \varphi \in S_{n-1}$. Otherwise, for some $\varphi_1 \in F$, $(n-2)\sigma + \varphi_1 = (n-1)\sigma + \varphi \in F_{n-2}$; thus $\tau = (n-1)\sigma + \phi_1 \in F_{n-1}$, a contradiction. This proves (3). Thus

(4)
$$|\mathbf{F}| = |\mathbf{S}_0| \ge |\mathbf{S}_1| \ge \dots \ge |\mathbf{S}_n| \ge |\mathbf{S}_{n+1}|$$

Clearly

$$\mathbf{F}_{\mathbf{n}} = (\mathbf{F}_{\mathbf{n}} \setminus \mathbf{F}_{\mathbf{n-1}}) \cup (\mathbf{F}_{\mathbf{n-1}} \setminus \mathbf{F}_{\mathbf{n-2}}) \cup \cdots \cup (\mathbf{F}_{\mathbf{1}} \setminus \mathbf{F}_{\mathbf{0}}) \cup \mathbf{F}_{\mathbf{0}}$$

Thus

$$|\mathbf{F}_{n}| = \sum_{\substack{k=0 \\ n}}^{n-1} |\mathbf{F}_{n-k} \setminus \mathbf{F}_{n-k-1}| + |\mathbf{F}|$$
$$= \sum_{\substack{k=0 \\ k=0}}^{n} |\mathbf{S}_{n-k}| \cdot$$

Hence, in view of (4),

$$|\mathbf{F}_{\mathbf{n}}| \geq (\mathbf{n}+1) |\mathbf{S}_{\mathbf{n}}|$$

Next observe that

(6)
$$(\sigma + F_n) \setminus F_n = S_{n+1}$$
.

Indeed $(\sigma + F_n) \setminus F_n \subset F_{n+1} \setminus F_n = S_{n+1}$. Conversely if $\tau \in S_{n+1}$ then $\tau \notin F_n$ and $\tau = (n+1)\sigma + \varphi$ for some $\varphi \in F$. Thus $\tau = \sigma + n\sigma + \varphi \in \sigma + F_n$. Hence $S_{n+1} \subset (\sigma + F_n) \setminus F_n$. This proves (6).

Combining (4), (5) and (6) we get

$$|(\sigma + F_n) \setminus F_n| = |S_{n+1}| \le |S_n| \le (n+1)^{-1}|F_n|$$
 Q.E.D.

Proof of Lemma 2.2 : Fix n and for i = 1, 2, ..., m put

$$\mathbf{F}^{i} = \{0, \sigma_{1}, \dots, n\sigma_{1}\} + \{0, \sigma_{2}, \dots, n\sigma_{2}\} + \dots + \{0, \sigma_{i-1}, \dots, n\sigma_{i-1}\} + \{0, \sigma_{i+1}, \dots, n\sigma_{i+1}\} + \dots + \{0, \sigma_{m}, \dots, n\sigma_{m}\}$$

Then $W_n = \{0, \sigma_i, \dots, n\sigma_i\} + F^i$ for $i = 1, 2, \dots, m$. Thus applying Lemma 2.3 for $\sigma = \sigma_i$ and $F = F^i$ we get

$$|(\sigma_i + W_n) \setminus W_n| \leq (n+1)^{-1} |W_n|$$
 $(i = 1, 2, \dots, m)$.

Thus

$$\begin{split} |\mathsf{M} + \mathsf{W}_{n}| &\leq |\mathsf{W}_{n}| + |\mathsf{M} + \mathsf{W}_{n} \setminus \mathsf{W}_{n}| \leq |\mathsf{W}_{n}| + \sum_{i=1}^{m} |(\sigma_{i} + \mathsf{W}_{n}) \setminus \mathsf{W}_{n}| \\ &\leq (1 + \frac{m}{n+1})|\mathsf{W}_{n}| \quad . \end{split} \qquad Q.E.D.$$

<u>Proof of Theorem 2.2</u>: Put $\varepsilon = k^2 - 1$. Let $M \subset \Gamma$ with $0 \in M$ and $|M| = m < \infty$ be given. Pick n so that $\frac{m}{n+1} \le \varepsilon$, say $n = \left[\frac{m}{\varepsilon}\right] \le \frac{m}{k^2 - 1}$. If W_n is that of Lemma 2.2, then $|W_n| \le n^m$. For M and W_n construct g as in Lemma 2.1. Then

$$\left\|\mathbf{g}\right\|_{1} \leq (1+\varepsilon)^{1/2} = \mathbf{k}$$

and

$$|S(g)| \le (1 + \varepsilon) |W_n|^2 \le k^2 n^{2m} \le k^2 \left(\frac{m}{k^2 - 1}\right)^{2m} = q_k(m)$$
. Q.E.D.

§ 3. FINAL REMARKS.

 1° . A routine argument using duality between $L^{1}(G)$ and $L^{\infty}(G)$ gives that the assertion of Theorem 2.2 is equivalent to the following.

For every k with $1 \le k \le \infty$ there exists a sequence $(q_k(m))$ such that for every subset $M \subset \Gamma$ there exists a set W with $M \subset W \subset \Gamma$ and $|W| \le q_k(|M|)$ such that if $h \in L^{\infty}(G)$ and $\hat{h}(\gamma) = 0$ for $\gamma \in W \setminus M$ then $|\sum_{\gamma \in M} \hat{h}(\gamma)| \le k ||h||_{\infty}$.

2°. If for some set $M \subset \Gamma$ with $0 \in M$ there exists a $g \in L^{1}(G)$ such that $\widehat{g}(\gamma) = 1$ for $\gamma \in M$, $|S(g)| < \infty$ and $||g||_{1} = 1$ then M is contained in a finite subgroup Γ_{0} of Γ with $|\Gamma_{0}| \leq |S(g)|$.

 $\begin{array}{lll} \underline{\operatorname{Proof}} & : & \operatorname{Let} \ \varphi_n = \sum\limits_{j=0}^n \ (n+1)^{-1}(\widehat{g})^j. \ \text{Then} \ \varphi_n \ \text{tends} \ (\text{in} \ \mathbb{1}^1(\Gamma)) \ \text{to} \ \text{the} \\ & \text{characteristic function of a subset, say} \ \Gamma_o, \ \text{of} \ \Gamma. \ \text{Clearly} \ \mathbb{M} \subset \Gamma_o \subset S(g) \\ & \text{and} \ \|\widehat{\chi}_{\Gamma}\| = \lim\limits_{n} \ \|\widehat{\varphi}_n\|_1 \leq \|g\|_1 = 1. \ \text{Thus} \ \|\widehat{\chi}_{\Gamma}\| = 1. \ \text{Since} \ 0 \in \mathbb{M} \subset \Gamma_o, \ \text{the} \\ & \text{proof of Cohen's idempotent measure theorem (cf. [1]) yields that} \ \Gamma_o \\ & \text{is a subgroup of } \Gamma. \qquad Q.E.D. \end{array}$

 3° . It follows from 2° that for arbitrary compact Abelian group Theorem 2.2 can not be extended to the case k = 1. In fact we have :

<u>Proposition 3.1</u>: A compact Abelian group G satisfies the assertion of Theorem 2.2 for k = 1 iff there exists a positive integer n_0 such that G is a product of a family of cyclic groups $(Z_{n(\alpha)})_{\alpha \in A}$ with $n(\alpha) \leq n_0$ for $\alpha \in A$.

4°. In particular if G is the Cantor group $(\mathbb{Z}_2)^{\underline{n}}$ (<u>n</u> any cardinal number) then every M with $0 \in M$ and |M| = m generates a subgroup Γ_0 with $|\Gamma_0| \leq 2^{m-1}$. Hence in this case one gets $q_1(m) = 2^{m-1}$ (m = 1, 2, ...). From this fact one gets that for $(\mathbb{Z}_2)^{\underline{n}}$ one has $q_k(m) \leq (k+1)2^{m/k}$.

5°. No satisfactory estimation from below for $(q_k(m))$ seems to be known even in the case of the Cantor group $(\mathbb{Z}_2)^{\underline{n}}$.

REFERENCES

- [1] Amemiya I. and Ito T., A simple proof of the theorem of P.J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774-776.
- [2] E. Følner, Math..Scand. 3 (1955), 243-254.
- [3] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math.
- [4] J. Lindenstrauss and L. Tzafriri, The uniform approximation property in Orlicz spaces, Israel J. Math. 23 (1976), 142-155.
- [5] A. Peźczynski and H.P. Rosenthal, Localization techniques in L p spaces, Studia Math. 52 (1975), 263-289.
