SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

G. Schechtman
A disjointness property of l_{p}^{n} sequences in L_{p}
Séminaire d'analyse fonctionnelle (Polytechnique) (1978-1979), exp. nº 21, p. 1-13
<http://www.numdam.org/item?id=SAF_1978-1979
\qquad A18_0>

© Séminaire d'analyse fonctionnelle
(École Polytechnique), 1978-1979, tous droits réservés.
L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

plateau de palaiseau - 91128 palaiseau cedex

Téléphone : 941.82.00 - Poste N•
Télex : ECOLEX 691596 F

S E M I N A I R E D'A N A L Y S E FONCTISNNELLE 1978-1979

G. SCHECHTMAN

(Ohio State University (Columbus))

In [I] L. E. Dor proved that a subspace of $L_{1}(O, I)$ which is ailmost isometric to $a L_{1}^{\prime}(\dot{\mu})$ space is well complemented. The purpose of this note is to prove the analogous theorem for $l<p<\infty$ thus solving a problem of Enflo and Rosenthal [2] and of Dor [1]. Since a detailed proof will appear shortly in [3], I'll try to give here a less formal and,hopefuly, more intuitive proof.

Theorem I: let $I<p<\infty$. There exist a $\lambda_{O}>1$ and a function $\varphi(\lambda)$, defined for $1<\lambda<\lambda_{0}$, such that $\varphi(\lambda) \longrightarrow I^{+}$as $\lambda \longrightarrow 1^{+}$and if $x_{1}, \ldots x_{n}$ are functions in $I_{p}(0,1)$ which satisfy

$$
\lambda^{-1}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq \lambda\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

for all sequences a_{1}, \ldots, a_{n} of scalars then $\left[x_{i}\right]_{i=1}^{n}$ is complemented in $I_{p}(0,1)$ by means of a projection of norm at most $\varphi(\lambda)$.

It is well known that thisimplies that any $\mathcal{L}_{p, \lambda}$ subspace of $I_{p}(0,1)$ is complemented if λ is small enough (and the norm of the projection tends to I as $\lambda \longrightarrow I$). Also, a simple perturbation argument shows that Theorem I is a consequence of

Theorem 2: Let $1<p<\infty, p \neq 2$. There exists a function $a(\epsilon)$ such that $a(\epsilon) \longrightarrow 0$
as $\varepsilon \longrightarrow 0$ and, if x_{1}, \ldots, x_{n} are functions in $L_{p}(0, I)$ which satisfy

$$
(1-\varepsilon)\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{I / p} \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq(I+\varepsilon)\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{I / p}
$$

for all scalars a_{1}, \ldots, a_{n}, then there exist disjoint sets A_{1}, \ldots, A_{n} of $[0,1]$ such that

$$
\left\|\sum_{i=1}^{n} a_{i}\left(x_{i}-x_{i \mid A_{i}}\right)\right\| \leq a(\epsilon)\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

for all scalars a_{1}, \ldots, a_{n}.

Indeed, if Theorem 2 is true let P be a norm one projection from $L_{p}(0, I)$ onto $\left[x_{i} \mid A_{i}\right]_{i=1}^{n}$. The conclusion of Theorem 2 ensures that $\left.P^{p} \mid x_{i}\right]_{i=1}^{\infty}$
is an isomorphism provided ϵ is small enough (and $\left\|\left(P \mid\left[x_{i}\right]_{i=1}^{n}\right)^{-1}\right\| \longrightarrow 1$ as $\varepsilon \longrightarrow 0)$. So the desired projection is given by $\left(\left.P\right|_{\left[x_{i}\right]_{i=1}^{n}}\right)^{-1} P$.

Theorem 2 is a stronger version of the following theorem of Dor [1]:

Let $\quad 1 \leq p<\infty, \quad p \neq 2$. There exists a function $a(\varepsilon)$ such that $a(\epsilon) \rightarrow 0$ as ϵ and if x_{1}, \ldots, x_{n} is a normalized sequence in $I_{p}(0, I)$ such that

$$
(1-\varepsilon)\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq(1+\varepsilon)\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{I / p}
$$

for all scalars a_{1}, \ldots, a_{n}, then there are disjoint sets A_{1}, \ldots, A_{n} of $[0,1]$ such that

$$
\left\|x_{i \mid A_{i}}{ }^{c}\right\| \leq a(\varepsilon), \quad i=1, \ldots, n . \quad\left(A_{i}^{c} \text { is the complement of } A\right) .
$$

The case $p=1$ easily implies the analogue of Theorem 2 for $p=1$. As we we'll see the proof of Theorem 2 for $1<p<\infty$ is also based on Dor's theorem, however the deduction of Theorem 2 from Dor's theorem is much more complicated in this case.

We divide the proof into three parts. The first one is a reduction of the general case to the case where the x_{i} are exchangeable.

Fix n and $\varepsilon>0$. Given normalized x_{1}, \ldots, x_{n} which satisfy the assumption of Theorem 2 we find disjoint sets $\left\{A_{i}\right\}_{i=1}^{n}$ as in Dor's theorem. Let π denote the set of all permutations of $(1, \ldots, n)$, let $\left\{I_{\pi}\right\}_{\pi \in \pi}$ be a collection of disjoint subintervals of $[0,1]$ each of length $1 / n$: and for $\pi \varepsilon \pi$, let φ_{π} be the natural linear transformation of I_{π} onto $[0,1]$.

Fix $\left\{a_{i}\right\}_{i=1}^{\infty}$ such that $\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}=n^{1 / p}$ and define a sequence $\left\{f_{i}\right\}^{n}{ }_{i=1}^{n}$
of $L_{p}(0,1)$ functions by:

$$
f_{i}(t)=a_{\pi(i)_{\pi}^{x}(i)}\left(\varphi_{\pi}(t)\right) \text { for } l \leq i \leq n, \pi \in \pi \text { and } t \in I_{\pi}
$$

in a similar manner we define $\left\{g_{i}\right\}_{i=1}^{n}$ and $\left\{h_{i}\right\}_{i=1}^{n}$ using $x_{i} \mid A_{i}$ and $x_{i}-x_{i} \mid A_{i}$, respectively, instead of x_{i}.

Lemma 1: (a)

$$
(1-\varepsilon)\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i=1}^{n} b_{i} f_{i}\right\| \leq(1+\varepsilon)\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}
$$

for every sequence $\quad b_{1}, \ldots, b_{n}$ of scalars.
(b) $f_{i}=h_{i}+g_{i}, g_{i}$ and h_{i} are disjointly supported for
each $i=1, \ldots, n$. g_{1}, \ldots, g_{n} are disjointly supported.
(c) $\left\|f_{i}\right\|=1, \quad\left\|h_{i}\right\|<a(\epsilon) \quad$ and $\quad\left\|g_{i}\right\|>\left(1-a(\epsilon)^{p}\right)^{1 / p}, \quad i=1, \ldots, n$.
(d) $\left\|\sum_{i=1}^{n} h_{i}\right\|=\left\|\sum_{i=1}^{n} a_{i} z_{i}\right\|$
(e) $\left\{\left(g_{i}, h_{i}\right)\right\}_{i=1}^{n}$ is an exchangeable sequence; i.e., the
distribution of the sequence

$$
\left(g_{1}, h_{1}, g_{2}, h_{2}, \ldots, g_{n}, h_{n}\right)
$$

is the same as the distribution of

$$
\left(g_{\pi(1)}, h_{\pi(1)}, g_{\pi(2)}, h_{\pi(2)}, \cdots, g_{\pi(n)}, h_{\pi(n)}\right)
$$

for any $\quad \pi \in \pi$.

$$
\begin{aligned}
& \text { The proof is very simple, we'll prove only (d) and (e), } \\
& \begin{aligned}
\left\|_{i=1}^{n} h_{i}\right\| & \left.=\left.\left(\sum_{\pi \in \pi} \int_{l}^{n} \mid \sum_{i=1}^{n} a_{\pi}(i) z_{\pi}(i) i_{\pi}(t)\right)\right|^{p} d t\right)^{I / p} \\
& =\left(\frac{1}{n} \sum_{\pi \in \pi}^{n} \int_{i}^{1}\left|\sum_{i=1}^{n} a_{\pi}(i)_{\pi}^{z}(i)\right|^{p}\right)^{l / p} \\
& =\left(\frac{l}{n!} \sum_{\pi \in \pi} \int_{0}\left|\sum_{i=1}^{n} a_{i} z_{i}\right|^{p}\right)^{l / p} \\
& =\left\|\sum_{i=1}^{n} a_{i} z_{i}\right\|
\end{aligned}
\end{aligned}
$$

To prove (e) we notice that for any $\pi, \rho \in \pi$

$$
\text { dist }\left\{\left(g_{i},\left.h_{i}\right|_{\mid I_{\pi}}\right\}_{i=1}^{n}=\operatorname{dist}\left\{\left.\left(g_{\rho(i)}, h_{\rho}(i)\right)\right|_{\pi \rho}-1\right\}_{i=1}^{n}\right.
$$

since both are equal to the distribution of

$$
\left\{\left(a_{\pi(i)} y_{\pi(i)}, a_{\pi(i)} z_{\pi(i)}\right)\right\}_{i=1}^{n}
$$

With respect to $\frac{1}{\bar{n}} \mathbf{T}^{\text {. Lebesque measure. }}$

Lemma 1 reduces the proof of Theorem 2 to showing

$$
\left\|\cdot \sum_{i=1}^{n} h_{i}\right\|^{p} \leq b(\epsilon) \cdot n
$$

for some function $b(\epsilon)$, depending on ϵ and p alone, such that $b(\epsilon) \longrightarrow 0$ as $\epsilon \longrightarrow 0$.

The second step in the proof consists of the following inequality

Lemma 2: In the situation above

$$
\left.\left|\int_{0}^{1}\right| \sum_{j=1}^{n} g_{j}+\left.\sum_{k=1}^{\ell} h_{k}\right|^{p}-\frac{n}{l} \int_{0}^{I}\left|\sum_{i=1}^{\ell} f_{i}\right|^{p}+\frac{h-l}{\ell} \int_{0}^{1}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p} \right\rvert\, \leq \frac{n^{2}}{\ell} c(\epsilon)
$$

for all $\ell=1, \ldots, n$ where $c(\epsilon)$ depends on p and ϵ alone and

$$
c(\epsilon) \longrightarrow 0 \quad \text { as } \quad \epsilon \longrightarrow 0
$$

We pospone the proof and continue with the third step which is the deduction of Theorem 2 from Lemma 2. As we mentioned above we'll give a heuristic proof which we hope will give the idea behind the proof. A complete formal proof, which however looks quite mysterious, can be found in [3].

The first object is to show that any two partial sums of the h_{i} with the same number of terms are closed each to the other.

Lemma 3: Let M_{1}, M_{2} be two subsets of $\{1, \ldots, n\}$ of the same cardinality
then

$$
\left\|\sum_{k \in M_{1}} h_{k}-\sum_{k \in M_{2}} h_{k}\right\|^{p} \leq d(\varepsilon) \cdot n
$$

where $d(\varepsilon) \longrightarrow 0$ as $\epsilon \longrightarrow 0$ and depends on ε and p alone.

Proof: First notice that it is enough to prove the lemma for
$M_{1} \cap M_{2}=\varnothing$, and then it is enought to consider $M_{1}=\{1, \ldots, \ell\}$, $M_{2}=\{\ell+1, \ldots, 2 \ell\}$ for some $1 \leq \ell \leq \frac{n}{2}$. Now since $\left\{h_{i}\right\}_{i=1}^{n}$ is exchangeable $h_{l}-h_{\ell+1,} h_{2}-h_{\ell+2}, \ldots, h_{\ell}-h_{2 \ell}$ is a l-unconditional basic sequence so
if $1<p<2$

$$
\left\|\sum_{i=1}^{\ell} h_{i}-\sum_{i=\ell+1}^{2 \ell} h_{i}\right\| \leq\left\|h_{i}-h_{\ell+1}\right\| \cdot \ell^{I / p} \leq 2 \varepsilon_{1} I / p
$$

If $p>2$ the proof is more involved:

First notice that by Khinchine's inequality,
(I) $\quad\left\|\sum_{i=1}^{\ell} h_{i}-\sum_{i=l+1}^{2 l} h_{i}\right\| \leq K_{p}\left\|\left(\sum_{i=1}^{\ell}\left|h_{i}-h_{\ell+1}\right|^{2}\right)^{1 / 2}\right\| \leq K_{p} 2^{1 / 2}\left\|\left(\sum_{i=1}^{2 l}\left|h_{i}\right|^{2}\right)^{1 / 2}\right\|$
for some constant K_{p} depending only on p. Now, let r_{1}, \ldots, r_{n} be the first n Rademacher functions, then

$$
\begin{aligned}
& 2 \ell(I+\varepsilon)^{p} \geq \int_{0}^{1} \int_{0}^{I} 1 \sum_{i=1}^{2 \ell} r_{i}(t) f_{i}(s)^{p} d t d s \geq \int_{0}^{1}\left(\int_{0}^{l}\left|\sum_{i=1}^{2 \ell} r_{i}(t) f_{i}(s)\right|^{2} d t\right)^{p / 2} d s \\
& =\int_{0}^{1}\left(\sum_{i=1}^{2 l}\left|f_{i}(s)\right|^{2}\right)^{p / 2} d s=\int_{0}^{1}\left(\sum_{i=1}^{2 \ell}\left|g_{i}(s)\right|^{2}+\sum_{i=1}^{2 \ell}\left|h_{i}(s)\right|^{2}\right)^{p / 2} d s \\
& \geq \int_{0}^{1}\left(\sum_{i=1}^{2 \ell}\left|g_{i}(s)\right|^{2}\right)^{p / s}+\int_{0}^{1}\left(\sum_{i=1}^{2 \ell}\left|h_{i}(s)\right|^{2}\right)^{p / 2} \\
& =\int_{0}^{1}\left|\sum_{i=1}^{2 l} g_{i}(s)\right|^{p}+\int_{0}^{1}\left(\sum_{i=1}^{2 l}\left|h_{i}(s)\right|^{2}\right)^{p / 2} \\
& \geq\left(1-\epsilon^{p}\right) 2 \ell+\left\|\left(\sum_{i=1}^{2 \ell}\left|h_{i}\right|^{2}\right)^{1 / 2}\right\|^{p}
\end{aligned}
$$

which together with (I) finishes the proof.

We are going to use Lemma 2 only for $\ell=n / 2$ and $\ell=n / 4$ (assuming
for simplicity that n is divisible by 4), for these values $\frac{n^{2}}{\ell}<4 . n$ also, using Lemma 3, we can write the conclusion of Lemma 2 as
(2) $\left.\quad \int_{0}^{l}\left|\sum_{j=1}^{n} g_{j}+\frac{\ell}{n} \sum_{k=1}^{n} h_{k}\right|^{p}+\frac{n-\ell}{\ell} \int_{0}^{l}\left|\frac{\ell}{n} \sum_{k=1}^{n} h_{k}\right|^{p}-n \right\rvert\, \leq n \cdot d(\varepsilon)$
$\ell=\frac{n}{2}$ or $\ell=\frac{n}{4}, \quad \mathrm{~d}(\varepsilon) \longrightarrow 0$ as $\epsilon \longrightarrow 0$ and depends on ϵ and p alone.

$$
\text { Put } \quad g=\sum_{i=1}^{n} g_{i}, \quad h=\sum_{i=1}^{n} h_{i}
$$

From Clarkson's inequality we get, for $\quad 1<p<2$,

$$
\left\|g+\frac{1}{2} h\right\|^{p}+\left\|\frac{1}{2} h\right\|^{p} \leq \frac{1}{2}\left(\|g+h\|^{p}+\|g\|^{p}\right) \leq\left(1+\frac{\epsilon}{2}\right) n
$$

so (2) with $\ell=\frac{n}{2}$ says that we have an almost equality in Clarkson's inequality. The same thing holds for $p>2$. Recall that equality in Clarkson's inequality holds if and only if the two functions are disjoint. This suggests that $g+\frac{1}{2} h$ and $\frac{1}{2} h$ are almost disjoint, that is, there exist two disjoint sets A and B such that $A \cup B=[0,1]$ and

$$
\begin{equation*}
\|h \mid A\|^{p}<e(\varepsilon): n, \quad\left\|\left(g+\frac{1}{2} h\right)_{\mid B}\right\|^{p}<e(\varepsilon) \cdot n \tag{3}
\end{equation*}
$$

for some $e(\epsilon)$ with the same properties as the previous functions. (This can be proved using the proof of Proposition 2.1 in [1]).

$$
\text { Using (3) we can write (2) for } \ell=\frac{n}{4} \text { in the form (} \approx \text { means that }
$$ the difference between the two sides is of the form $e(\epsilon) . n$ for an appropriate $e(\epsilon)$.

$$
n \approx \int_{0}^{1}\left|g+\frac{1}{4} h\right|^{p}+3 \int_{0}^{1}\left|\frac{1}{4} h\right|^{p}
$$

$$
\text { xxI. } 9
$$

$$
\begin{aligned}
& \approx \int_{A}|g|^{p}+\int_{B}\left|g+\frac{1}{4} h\right|^{p}+3 \int_{B}\left|\frac{1}{4} h\right|^{p} \\
& \approx \int_{A}|g|^{p}+\int_{B}\left|\frac{1}{2^{p}} g\right|^{p}+\left(2^{p}-1\right) \int_{B}\left|\frac{1}{2} g\right|^{p}+\left(4-2^{p}\right) \int_{B}\left|\frac{1}{1} h\right|^{p} \\
& \approx \int_{A}|g|^{p} \cdot \int_{B}|g|^{p}+\frac{4}{4^{p}}-2^{p} \int_{0}^{1}|h|^{p} \\
& \approx n+\frac{4-2^{p}}{4^{p}}\|h\|^{p}
\end{aligned}
$$

and this means that

$$
\|h\|^{p} \leq b(\varepsilon) \cdot n
$$

We return now to the proof of Lemma 2. We first need another lemma.
Denote the support of g_{i} by B_{i}, $i=l, \ldots, n$. By (e) of
Lemma 1 , whenever M_{1} and M_{2} are two subsets of $\{1, \ldots, n\}$ of the same cardinality and $I \leq i, j \leq n$ satisfy either $i \in M_{1}$ and $j \in M_{2}$ or i $\notin M_{1}$ and $j \notin M_{2}$

$$
\int_{B_{i}}\left|\sum_{k \in M_{1}} h_{k}\right|^{p}=\int_{B_{j}}\left|\sum_{k \in M_{2}} h_{k}\right|^{p}
$$

and

$$
\int_{B_{i}}\left|g_{i}+\sum_{k \in M_{1}} h_{k}\right|^{p}=\int_{B_{j}}\left|g_{j}+\sum_{k \in M_{2}} h_{k}\right|^{p}
$$

Indeed in each of these two cases there exists $\pi \in \pi$ such that $\pi\left(M_{1}\right)=M_{2}$ and $\pi(i)=j$, so,

$$
\operatorname{dist}\left(g_{i}, \sum_{k \in M_{1}} h_{k}\right)=\operatorname{dist}\left(g_{j}, \sum_{k \in M_{1}} h_{\pi}(k)\right)=\operatorname{dist}\left(g_{j}, \sum_{k \in M_{2}} h_{k}\right) .
$$

The next lemma asserts that, up to a certain error, the same is true without any restrictions on i and j.

Lemma 4: Let M_{1}, M_{2} be subsets of $\{1, \ldots, n\}$ with card $M_{1}=$ card M_{2} and let i, j satisfy $1 \leq i, j \leq n$ then
(a)

$$
\left.\left|\int_{B_{i}}\right| \sum_{k \in M_{1}} h_{k}\right|^{p}-\int_{B_{i}}\left|\sum_{k \in M_{2}} h_{k}\right|^{p} \mid<c(\epsilon)
$$

(b)

$$
\left|\int_{B_{i}}\right| g_{i}+\left.\sum_{k \in M_{1}} h_{k}\right|^{p}-\int_{B_{j}}\left|g_{j}+\sum_{k \not M_{2}} h_{k}\right|^{p} \mid<c(\varepsilon)
$$

for some function $c(\varepsilon)$ depending on p and ε alone and such that $c(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof: By the remark before the statement of the lemma, it is enough to assume that $M_{1}=M_{2}\{1, \ldots, l\}$ for some $1 \leq \ell<n$ and that $I \leq \mathrm{i} \leq \ell<\mathrm{j} \leq \mathrm{n}$. First notice that, since

$$
\operatorname{dist}\left(g_{i}, \sum_{k=1}^{\ell} h_{k}\right)=\operatorname{dist}\left(g_{r}, \sum_{k=1}^{\ell} h_{k}\right) \text { for all } 1 \leq r \leq \ell \text {, }
$$

(4)

$$
\begin{aligned}
\left(\int_{B_{i}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p} & =\left(\frac{1}{\ell} \sum_{r=1}^{\ell} \int_{B_{r}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p} \leq \frac{1}{\ell^{I / p}}\left\|\sum_{k=1}^{\ell} h_{k}\right\| \\
& \leq \frac{1}{e^{1 / p}}\left(\left\|\sum_{k=1}^{\ell} f_{k}\right\|+\left\|\sum_{k=1}^{\ell} g_{k}\right\|\right) \leq 2+\varepsilon
\end{aligned}
$$

Now, since

$$
\operatorname{dist}\left(g_{j}, \sum_{k=1}^{\ell} h_{k}\right)=\operatorname{dist}\left(g_{i}, \sum_{\substack{k=1 \\ k \neq i}}^{\ell+1} h_{k}\right),
$$

and since g_{i} and h_{i} are disjointly supported,

$$
\begin{aligned}
\left(\int_{B_{j}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p} & =\left(\int_{B_{i}}\left|\sum_{\substack{k=1 \\
k \neq i}}^{\ell+1} h_{k}\right|^{p}\right)^{1 / p}=\left(\int_{B_{i}}\left|\sum_{k=1}^{\ell+1} h_{k}\right|^{p}\right)^{1 / p} \\
& \leq\left(\int_{B_{i}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p}+\varepsilon
\end{aligned}
$$

and similarly

$$
\left(\int_{B_{j}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p} \geq\left(\int_{B_{i}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}\right)^{1 / p}-\varepsilon
$$

so that, by the mean value theorem and (1), we get (a) with $c(\varepsilon)=p(2+2 \varepsilon)^{p-1} \varepsilon$. (b) is proved in a similar way, noting that

$$
\left(\int_{B_{i}}\left|g_{i}+\sum_{k=1}^{\ell} n_{k}\right|^{p}\right)^{1 / p} \leq\left\|g_{i}\right\|+2+\varepsilon \leq 3+\varepsilon
$$

Proof of Lemma 2: By Lemma 4(b) for each i and j,

$$
\int_{B_{j}}\left|g_{j}+\sum_{k=1}^{\ell} h_{k}\right|^{p} \leq \int_{B_{i}}\left|g_{i}+\sum_{k=1}^{\ell} h_{k}\right|^{p}+c(\varepsilon)
$$

Summing over j we get that for every i

$$
\begin{aligned}
& \int_{0}^{1}\left|\sum_{j=1}^{n} g_{j}+\sum_{k=1}^{\ell} h_{k}\right|^{p}=\sum_{j=1}^{n} \int_{B_{j}}\left|g_{j}+\sum_{k=1}^{\ell} h_{k}\right|^{p} \leq \\
& \leq n \int_{B_{i}}\left|g_{i}+\sum_{k=1}^{\ell} h_{k}\right|^{p}+n \cdot c(\varepsilon)
\end{aligned}
$$

Summing over $l \leq i \leq \ell$ and dividing by ℓ we get
(5)

$$
\int_{0}^{1}\left|\sum_{j=1}^{n} g_{j}+\sum_{k=1}^{\ell} h_{k}\right|^{p} \leq \frac{n}{\ell} \sum_{i=1}^{\ell} \int_{B_{i}}\left|g_{i}+\sum_{k=1}^{\ell} h_{k}\right|^{p}+n . c(\varepsilon)
$$

$$
\begin{aligned}
& =\frac{n}{\ell} \int_{\bigcup_{i=1}^{\ell} B_{i}}\left|\sum_{i=1}^{\ell} g_{i}+\sum_{k=1}^{\ell} n_{k}\right|^{p}+n c(\varepsilon) \\
& =\left.\left.\frac{n}{\ell} \int_{0}^{1}\right|_{i=1} ^{\ell} f_{i}\right|^{p}-\frac{n}{\ell} \int_{n}{ }_{i=\ell+1} B_{i}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}+n c(\varepsilon) .
\end{aligned}
$$

By Lemma 4(a), for every i and j,

$$
\int_{B_{i}}\left|\sum_{k=1}^{l} h_{k}\right|^{p} \geq \int_{B_{j}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}-c(\varepsilon)
$$

so, for every j,

$$
\int_{\substack{n \\ i=\ell+1}}\left|\sum_{k=1}^{\ell}{B_{k}}^{h_{k}}\right|^{p} \geq(n-\ell) \int_{B_{j}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}-(n-\ell) c(\varepsilon)
$$

summing over $1 \leq j \leq n$ we get
(6)

$$
\int_{\substack{n \\ i=\ell+1}}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p} \geq\left.\left.\frac{n-\ell}{n} \int_{0}^{1}\right|_{k=1} ^{\ell} h_{k}\right|^{p}-(n-\ell) c(\varepsilon)
$$

combining (5) and
(6) we get

$$
\int_{0}^{1}\left|\sum_{j=1}^{\ell} g_{j}+\sum_{k=1}^{\ell} h_{k}\right|^{p} \leq \frac{n}{\ell} \int_{0}^{1}\left|\sum_{i=1}^{\ell} f_{i}\right|^{p}-\frac{n-\ell}{\ell} \int_{0}^{l}\left|\sum_{k=1}^{\ell} h_{k}\right|^{p}+\frac{n^{2}}{\ell} c(\varepsilon)
$$

The otherside inequality is proved similarly.

REFERENCES

(I) L. E. Dor, On projections in L_{1}, Ann of Math. 102 (1975), 463-474.
(2) P. Enflo and H.P. Rosenthal, Some results concerning $I_{p}(\mu)$ spaces, J. Funct. Anal. 14(1973), 325-348.
(3) G. Schechtman, Almost isometric I_{p} subspaces of $I_{p}(0, I)$, to appear in the J. of the London Math. Soc.

