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In [1] L. E. Dor proved that a subspace of 1) which is almost

isometric to a L’ (d) space is well complemented. The purpose of this note is
1

to prove the analogous theorem for 1  p  00 thus solving a problem of

Enflo and Rosenthal [2J and of Dor [1]. Since a detailed proof will appear

shortly in [31, I’ll try to give here a less formal and,hoppfuly, more intuitive

proof.

Theorem 1: let 1  p  00. There exist a X 0 &#x3E; 1 and a function 

defined for 1  À  ÀO’ such that cp(X) 1+ as and if xi, ...x

are functions in L which satisfy

for all sequences al... 1.. a of scalars then [x iln1 is complemented in- . n i i= - 

.

Lp (o.71.) by means of a projection of norm at most cp(x).

It is well known that this implies that any JC - subspace of 

is complemented if X is small enough ( and the norm of the projection tends to

1 as Also~a simple perturbation argument shows that Theorem 1 is

a consequence of

Theorem 2: Let 1 p~, P~2. There exists a function a(e) such that 
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as and if 
.. , x n are functions in L (0,1) which satisfy

for all scalars a,, ... an ’ then there exist disjoint sets ..., An

of s uch that

for all scalars ai .9 4... an.

Indeed, if Theorem 2 is true let P be a norm one projection from

The conc lusi on of Theorem 2 ensures that 

1

is an isomorphism- provided e 
I is small enough (and

So the desired projection is given by

Theorem 2 is a stronger version of the following theorem of Dor [1] :

Let p~2. There exists a function a(e) such that as

e2013~-O and if xi, .".y ~n is a normalized sequence in L (0,1) such that
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for all scalars al, ... , an, then there are dis j oint sets A1’ ... , An

o f s uch that

is the complement of A~:

The case p = 1 easily implies the analogue of Theorem 2 for p = 1.

As we we ’ll see the proof of Theorem 2 for 1  p  oo is also based on Dor’s

theorem, however the deduction of Theorem 2 from Dor’s theorem is much more

complicated in this case.

We divide the proof into three parts. The first one is a reduction

of the general case to the case where the xi are exchangeable.

Fix n and e &#x3E; 0. Given normalized xl, ... , x which satisfy the

n

assumption of Theorem 2 we find disjoint sets ~Ai} as in Dor’s theorem.

Let 11 denote the set of all permutations of 1, ..., n), let be a
TC x e

collection of disjoint subintervals of each of length 1/n! and for

x let tp 
n 

be the natural linear transformation of IT( onto [0,1].

and define a sequence

functions by:
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in a similar manner we define

respectively, instead of

Lemma 1: (a)

for every sequence bly ...~ b n of scalars.

and h i are dis j ointly supported for

l 
are dis jointly supported .

and

is an exchangeable se que nce; i.e., 9 the

distribution of the sequence

is the same as the distribution of

for a
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The proof is very simple, we’l1 prove only (d) and (e),

To prove (e) we notice that for any x , g 6 TT

since both are equal to the distribution of

with respect to 1 - Lebesque measure. °h.7

Lemma 1 reduces the proof of Theorem 2 to showing

for some function b(e), depending on e and p alone, such that 

The second step in the proof c o n s i s ts o f the following inequality
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Lemma 2: In the situation above

f or all .~ - l ~ ~ ~ ~ , n where c( e) depends on p and e alone and

We pospone the proof and continue with the third step which is the

deduction of Theorem 2 from Lemma 2. As we mentioned above we’ll give a

heuristic proof which we hope will give the idea behind the proof. A

complete formal proof, which however looks quite mysterious, can be found

in [3]. ·

The first object is to show that any two partial sums of the hi with

the same number of terms are closed each to the other.

Lemma 3: · Let M , M be two subsets of fly . 1..., nJ of the same cardinality- 1 2 - 

then

where d~ E ) ---~ 0 as e - 0 and depends and p alone .

Proof: First notice that it is enough to prove the lemma for

Ml n M2 = ø , and then it is enought to consider M - (1...)1 2 1

n
t Now since fhj. is exchangeable=

is a 1-unconditional basic sequence so
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If p &#x3E; 2 the proof is more involved:

First notice that by Khinchine’s inequality

for some constant K, p depending only on p.

Now~, let be the first n Rademacher functions, then

which together with (1) finishes the proof.

We are going to use Lemma 2 only for £ = n/2 and f = n/4 (assuming
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for simplicity that n is divisible by 4), for these values

also, using Lemma 3, we can write the conclusion of Lemma 2 as

and depends on e and p alone.

Put

From Clarkson’s inequality we get, for l  p  2,

so (2) with 1 = says that we have an almost equality in Clarkson’s
2

inequality. The same thing holds for p &#x3E; 2. Recall that equality in

Clarkson’s inequality holds if and only if the two functions are disjoint.

This suggests that g + lh and2013h are almost disjoint, that is, there

exist two disjoint sets A and B such that A U B = [0~1] and

for some e(e) with the same properties as the previous functions. (This

can be proved using the proof of Proposition 2.1 in [1]).

Using (3) we can write (2) for ,~ _ ~ in the form (=means that

the difference between the two sides is of the form e(e).n for an appropriate

e(e).
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and this means that

We return now to the proof of Lemma 2. We first need another lemma.

Denote the support of g, by B., i - l, ..., n. By (e) of
1. 1-

Lemma 1, whenever M l and M2 are two s ub set s of the same

cardinality and l  satisfy either i E M 1 and j E M2 or

and

Indeed in each of these two cases there exists it E TT such that

and ~(i) = j~ s o,

The next lemma asserts that, up to a certain error, the same is true without

any restrictions on i and j .
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Lemma +: Let M1’, M2 be subsets of (1, ...,nj with card M - card M- 1 2 l 2

and let i, j satis l  i, j  n then

for some function c(e) depending on p and e alone and such that

Proof : By the remark before the statement of the lemma.., it is enough

to assume that M - M2 {l, ... , ;~ ~ for some l  ~  n and that

First notice that, since

Now, since

and since gi and h. are dis jointly supported,i 1
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and similarly

so that, by the mean value theorem and (l), we get (a) with

(b) is proved in a similar way, noting that

Proof of Lemma 2: By Lemma 4 (b) for each i and j

Summing over j we get that for every i

summing over l  I  L and dividing by L we get
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By Lemma 4 (a), for every i and j ,

so, for every j,

summing over I  j  n we get

combining (5) and (6) we get

The otherside inequality is proved similarly.
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