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§ 1. TENSOR PRODUCTS OF C(X)-SPACES

Let Xi, i=1,2, be compact Hausdorff spaces. We shall denote
then by
C(Xi) the Banach algebra of continuous complex-valued functions on
Xi (point-wise multiplication, uniform norm),
S(Xi) the group of unimodular functioms in C(Xi)’ i.e.
s(x;) = (] fe C(X;) and for all x, € X, , If(xi)l =13,
V(Xlx X2)= C(Xl)@;C(Xz) is the projective tensor product of the Banach
spaces C(Xl) and C(Xz).

We recall the following well-known and/or easily established facts, concer-
ning the above spaces
(i) V::V(Xlx Xz) is a semi-simple Banach algebra with Gelfand space
Xlx X2 ,
(ii) the convex hull of S(Xi) is uniformly dense in the unit ball of
C(Xi) and therefore

(iii) every element F€ V(X x XZ) has a representation F=3 a f ®g, ,

1
with ¥ |ak| <e, £ €8(X)), g €5(X,).

We finally recall the following theorem, sometimes called '"the fundamental

theorem in the metric theory of tensor products",

Theorem G (Grothendieck [1]) : Let X,, i=1,2, be compact Hausdorff
e — i
spaces and let H be a complex Hilbert space with inner product <.|.>. Let

further ¢. € C(Xi,H) and let &¢ C(Xlx Xz) be defined by
@(xl,xz) = <w1(x1)|@2(x2)>

Then &€ V(Xlx Xz) and HéHA satisfies the inequality

:‘Muv(xlx x2)

HQHA < K¢« leuc(xl,H)' H(P.‘2.HC(X2,H)

where KC is a universal constant (the complex Grothendieck constant) for

which the bound KC< 1.607 is known [2].

Remark : C(Xi,H) is the space of H-valued continuous functions and is a

Banach space if we define HfHC(X gy = max Hf(x)HH.
i’ xeX.



§ 2. A PROBLEM IN HARMONIC ANALYSIS

Let G be a compact Abelian group with dual group I, and let K be
a closed subset of G. We shall say that the set K is a

(i) Kronecker set if FIK is uniformly dense in S(K) (S(K) being

as above the group of unimodular continuous func-
tions on K).
(ii) Helson(a) set if the convex hull of FIK is uniformly dense in

the ball of radius a in C(K).

It follows from the Hahn-Banach theorem that K is a Helson(g) set if for

every measure p on G supported by K, we have

sup |j (g,y)dp(g)l = Q. HPHM ’
vel G

where Hp”M is the total variation of u.

We recall that zl(r) is a commutative semi-simple Banach algebra
with unit, having G as its Gelfand space, so that zl(r) may be identified
with a Banach algebra A(G) of continuous functions on G. If K is a closed
subset of G we shall write I(K) to denote the ideal in A(G) of all functions
vanishing on K, and we shall write A(K) to denote the quotient algebra
A(G)/I(K). It is clear from this definition that if f€ C(K), then fe€ A(K)
iff there exists f¢ A(G) such that Tl = 1.

It is clear from the above definitions that K is a Helson(a) set if for
every fe C(K), ||f|[< 1, there exists ?G A(G), H?
H?Hzl(l”) < a.

“A(G) = (by definition)

Let now Ki’ i=1,2, be closed subsets of G, such that Ki is Helson
(ai) and let K::K1><K2 be the cartesian product which is a closed subset
n
of Gx G. Since A(Gx G) » A(G)® A(G) (isometrically) it follows from standard

properties of the projective tensor norm that
A(GX G)/I(K, xK,) ~ C(K)BC(K,)
1 27 7 1 2

in the sense that they are algebraically isomorphic, even though the isomor-

phism is not isometric.



We use now the fact that since G is abelian, the addition map s: Gx G- G
(defined by s(gl,gz) =g, + gz) is a group homomorphism with adjoint

S: T aTxT, where s(y) v®y . (This is clear since ((gl,gz),é‘(y)) =
(S(g1’g2)’Y) = (g1+g2,y) = (gl,y)(gz,y) = ((gl,gz),\(@y) )

The map S extends by linearity to an algebra homomorphism of £ (F) into

4 (Fx '), i.e. of A(G) into A(Gx G), and if K, and K, are closed subsets

of G, we obtain by restricting 2 to K, xK , an algebra homomorphism Q(

1 2 K K )
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of A(K1+K2) into A(le K2).

Suppose now that K1 and K2 are disjoint closed subsets of G, such that the

union KllJK2 is a Kronecker set. It was observed then by Varopoulos that not

only is I'x | uniformly dense in S(Kl)x S(K2), but in fact this is

K1 K2
S

already true for

(1“)' This implies that the map

K ><K2
A(K + K, )—oA(K x K, ) is an isometric algebra homomorphlsm of A(K + K, )

onto A(leK ) and since as we saw above A(K x K, )~ A(K )®A(K )~

c(K )®C(K ) it follows that A(K + K, ) is 1sometr10ally and algebralcally

1somorph1c to C(K )®C(K ) [4].
In the rest of this note we shall now study the following

Problem : Does there exist a number ags 0 < a < 1, such that whenever K1

and K2 are disjoint closed subsets of G such that KluK2 is a Helson(a) ,

a>a_ , set, then A(K +K ) is algebraically isomorphic to C(K )®C(K ) ?

Remark : The purpose of posing the problem as a search for a number ao s
means that when proving that A(K + K, ) is isomorphic to C(K )®C(K ) we
are not allowed to use any addltlonal assumptions on the sets and K

1 2
besides the assumption that K1UK2 is Helson (a¢) with a> a -

§3.

Using theorem G above we shall presently show that the answer

to the problem raised above is yes, by proving the following

Theorem : Let K1 and K2 be disjoint compact subsets of the compact abelian

group G, such that K UK, is a Helson(1 -pB) set in G where B.(2 + 2KC) <1.
Then A(K +K ) is algebraically isomorphic to C(K ) C(Kz).



V.4

Before attempting to prove the theorem we shall see that there
is an a priori lower bound for the possible values of a, for which the

answer to the problem could be positive, by proving the following

Proposition : There exist closed subsets K1 and K2 of the circle group T,
such that K1UK2 is Helson 2_1/2) while A(K1+ KZ) is not algebraically

. . 1 A
isomorphic to C(Kl) ® C(K2) .

Proof : A simple necessary condition for two Banach algebras to be alge-
braically isomorphic is that they have the same Gelfand space. In the pre-
sent case the Gelfand space of C(Kl)gC(K2) is K, xK, while the Gel fand

2

space of A(K1+K2) is K1+K These spaces are connected by the function s

o
mapping le K2 onto K1+ K2° Since s is a continuous map of a compact space
onto a Hausdorff space, s is bicontinuous whenever it is injective. We

shall now first show that if the map s: le K2«=.K1+K2 is not injective

-1/2

then K1UK2 cannot be Helson (a) for any a > 2 We assume thus that

1 !
kl,klé Kl’ 1«12,k26K2 and that

and we see that for any yv€ [, we have

l}/l\(y)l = |(k1,y) + (k2,Y) + (k'l,y) - (ké,y)l
= lz+wsru-zwu| = |u(zu+ wi+ 1~ (zu)(wa))
=|1+z'+W'-Z'W'|381/2 ,

as is easily verified by direct calculation of I}/}(y)lzn

The subset of T that satisfies the condition of the proposition is obtained
by choosing 4 points in the circle, satisfying the above algebraic relation
over the integers, but no other relation. It is a matter of elementary cal-
culus (though not simple calculus) to prove that such a set is then

Helson ( 2—1/2) .



To prove the theorem we shall need the following

Lemma : Let X and Y be compact spaces, let {ai}?—l be positive numbers,
let f. € c(x), g, € c(y), HfiHQ351’ Hginmszl, and let t be a positive number
such that

> ai =1
Hl— by aifi”m <t, It~z aigiHoo <t
Then
I1-x aifigiHA < (24»2Kc)t
Proof : Using the identity
(1-figi) = (l—fi)+ (1—gi)- (1~ fi)(l—gi)
we have

(1-3% aifigi) = 3 ai(lufigi) = (1-7% aifi)+ (1-% aigi)
-—Zai(l—fi)(l-gi)
We have therefore

”1- v a,f

i igiHA st+t+ |z ai(l- fi)(l-gi)“A

Using now theorem G we have

b ai(l— fi)(l-gi)HA <K

2,1/2
c m;x {(za.i l1 -fil ) / }

X max {(2ai ll-gi|2)1/2}
Y

Now v a_|1- filzg l2(s ai(l—fi)l < 2t, and we get the same estimate for
i
2
% aill_gi' .

We have thus |[1-3 a_f

. 1/2
i'i

8. =<2t+K (2t)1/2(2t) = (2+2K.)t, so the lemma
10A C C

is proved.



To prove the theorem we now let K1 and K, be compact subsets of G, such

2
that K1U K2 is a Helson(1-B) set, with < (2+ 2KC)—1. We choose now &> B,
such that &(2 + 2KC) < 1. To prove the theorem it suffices to find, for each
fe C(Kl)’ |f] =1, and g¢ C(Kz), lg| =1, a function F¢ A(K1+K2), such that

Hf@g-F“A < &6(2+ 2KC), Towards this we define ¢¢ C(KluKz) by

By the assumptions on K1UK ¢ has a representation

2’
-1
({):Ebiyi, 'Yief, Z'bileS(l—é) .

We write b, = ri.exp(i ai), with r,>0. We then write

-1 e
F = A Zriexp(21 ai)YiEA(K1+K2)

1

Putting now a; = A . r., ii =f . exp(i ai) Yi+ 8;°8. exp(i ai) Yy We see

that the assumptions of the lemma are satisfied, so
I1-x aifigill,\ < (24 2KC)6 ,
and therefore also
lf®e- FH/\ = |[(fog)(1- zaifigi)u/\ < (24 2KC)6

This proves the theorem, and using our estimate of K we see that A(K1+K )

c’ 2
is dgebraically isomorphic to C(Kl)@C(Kz) if K UK, is a Helson (a) set

with a>0.81.

For a more extensive study of the problem considered in this note,
including in particular a study of '"the real case'" which is somewhat differ-

ent, and algebras of type A(K1+K +K3) etc. we have to refer to [3].
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