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V.1

§ 1. TENSOR PRODUCTS OF C(X)-SPACES

Let X., y i= 1,2, be compact Hausdorff spaces. We shall denote
1

then by

C(X.) the Banach algebra of continuous complex-valued functions on
1

Xi (point-wise multiplication, uniform norm),
S(Xi ) the group of unimodular functions in C(Xi ) , i . e.

i 1

S(X. ) _ f I and for all x. E X. , 1},
1/B 1 1 1 1

is the projective tensor product of the Banach1 2 1 2

spaces C(X1) and C(X 2 ).

We recall the following well-known and/or easily established facts, concer-

ning the above spaces :

( i ) V = V ( X 1 x X2 ) is a semi-simple Banach algebra with Gelfand space

X 1 x X2 1
(ii) the convex hull of S(X.) is uniformly dense in the unit ball of

1

C(X.) and therefore
i

(iii) every element FEV(X xX ) has a representation F=£ a f 0g y1 2 k k k

We finally recall the following theorem, sometimes called "the fundamental

theorem in the metric theory of tensor products",

Theorem G (Grothendieck [1]) : Let Xi, y i = 1,2, be compact Hausdorff
1

spaces and let H be a complex Hilbert space with inner product .I.&#x3E;. Let

further Cfi E C(Xi,H) and let I E C(Xi x X2) be defined by

, 
satisfies the inequality

where KC is a universal constant (the complex Grothendieck constant) for

which the bound KC  1.607 is known [2].

Remark : C(X.,H) is the space of H-valued continuous functions and is a

Banach space if we define
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§ 2. A PROBLEM IN HARMONIC ANALYSIS

Let G be a compact Abelian group with dual group r, and let K be

a closed subset of G. We shall say that the set K is a

(i) Kronecker set if rj K is uniformly dense in S(K) (S(K) being

as above the group of unimodular continuous func-

tions on K)o o

(ii) Helson(a) set if the convex hull of r) K is uniformly dense in
the ball of radius a in C(K) .

It follows from the Hahn-Banach theorem that K is a Helson(a) set if for

every measure p on G supported by K, we have

where is the total variation of Po Ð

We recall is a commutative semi-simple Banach algebra
with unit, having G as its Gelfand space, so that 1 1(r) may be identified
with a Banach algebra A(G) of continuous functions on G. If K is a closed

subset of G we shall write l(K) to denote the ideal in A(G) of all functions

vanishing on K, and we shall write A(K) to denote the quotient algebra

A(G)/I(K). e It is clear from this definition that if f E C(K) , then f E A(K)
iff there exists 7E A(G) such that 
It is clear from the above definitions that K is a Helson(a) set if for

every f E C (K) f 11  1, there exists (by definition)

~~n-
Let now K., y i-i 2, be closed subsets of G, such that K. is Helson

i 1

(a.) and let K=K xK be the cartesian product which is a closed subset
1 1 2 

.

of GxG. Since (isometrically) it follows from standard

properties of the projective tensor norm that

in the sense that they are algebraically isomorphic, even though the isomor-

phism is not isometric.
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We use now the fact that since G is abel i an, the addition map s : i G x G- G

(defined by is a group homomorphism with adjoint

s : &#x3E; ir x r, where = ® o (This is clear since ( (g 1’g2 ) ’i~(Y))
(lC+ lC,Y) = 

The ma p s extends by linearity to an algebra homomorphism of into

’ i.e. of A(G) into A(G x G) , and if K 1 and K 2 are closed subsets
of G, ’ we obtain by restricting s to Kl xK2’ y an algebra homomorphism 

of l  K2 ) into A(K1 x K2) . °
Suppose now that K1 and K2 are disjoint closed subsets of G, such that the

union K 1 [JK2 is a Kronecker set. It was observed then by Varopoulos that not

only uniformly dense in J but in fact this is

already true for e This implies that the map
1B 

12
s : ° A(K + K ) - A(K x K ) is an isometric algebra homomorphism of A(K1 + K2)° 

1 2 1 2 A 
1 2

onto A(KlxK2) and since as we saw above 1 1 2

follows that A(Kl + K) is isometrically and algebraically
" 

A 
1 -’

i somorphi c 4 ] . °

In the rest of this note we shall now study the following

Problem : ° Does there exist a number a , o y 0a  1, such that whenever K1201320132013201320132013 o 0 1

and K 2 are disjoint closed subsets of G such that Kl U K2 is a Helson(a) ,1 
2

a a y set , then A (K + K ) is algebraically isomorphic to C(K 1) 0 C(K 2 ) ?o 
’ 1 2 1 2

Remark : The purpose of posing the problem as a search for a number a , y
/’B 

o

means that when proving that A(K + K ) is isomorphic to wep g 1 2 1 2

are not allowed to use any additional assumptions on the sets K1 and K2
besides the assumption that Kl U K2 is Helson (a) with a &#x3E; a .1 2 o

3.

Using theorem G above we shall presently show that the answer

to the problem raised above is yes, by proving the following

Theorem : Let K1 and K 2 be disjoint compact subsets of the compact abelian
group G, such that K 1U K 2 is a Helson(l.-f3) set in G, 1.

A
algebraically isomorphic °
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Before attempting to prove the theorem we shall see that there

is an a priori lower bound for the possible values of ao for which the
answer to the problem could be positive, by proving the following

Proposition i There exist closed subset.s K1 and K2 of the circle group T, 9
such that K1 UK2 is "    l ° K 2) is not al g ebraicall y

i somorphi c t o C (K ) Q9 o

Proof : A simple necessary condition for two Banach algebras to be alge-

braically isomorphic is that they have the same Gelfand space. In the pre-

sent case the Gelfand space of is K x K while the Gelfand1 2 1 2

space of A(K1+ K2) is K 1 + K2 o These spaces are connected by the function s

mapping K1xK 2 onto K2 o Since s is a continuous map of a compact space

onto a Hausdorff space, s is bi~continuous whenever it is injective. We

shall now first show that if the map s : i K 1x K2 ~ K1 + K2 is not injective
then l  2 cannot be °  for We assume thus that

K1 2 k21k2 E K2 and that

We define then the measure pM(K UK ) as

and we see that for any -y E r, we have

as is easily verified by direct calculation of III
The subset of T that satisfies the condition of the proposition is obtained

by choosing 4 points in the circle, satisfying the above algebraic relation

over the integers, but no other relation. It is a matter of elementary cal-

culus (though not simple calculus) to prove that such a set is then

Helson( 2- 1/2 ).
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To prove the theorem we shall need the following

Lemma : Let X and Y be compact spaces, let be positive numbers,"’ 

i i-1
let f. i E C(X) , g. 1 E C(Y) , Ilf. 1 s 1, BBg.BB 1 00  1, and let t be a positive number

such that

Then

Proof : Using the identity

we have

We have therefore

Using now theorem G we have
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To prove the theorem we now let K1 and K2 be compact subsets of G, such

that K 1 U K is a Helsond - p) set, with j3  (2 + choose now 6 &#x3E; 3,

such that 8(2 + 2KC)  1. e To prove the theorem it suffices to find, for each

and g I = 1, a function FEA(K 1+ K ) , such that
1 2 1 2

llf © g - F li  6  2 + 2Kc&#x3E; o Towards this we define cp E C(K1 U K2) by’ "/B C 1 2

By the assumptions on has a representation

. We then write

Putting now a. = A 1 . 41 r., 7 I 
see

i 11 11

that the assumptions of the lemma are satisfied, so

and therefore also

This proves the theorem, and using our estimate of Kc 9 we see that A(K1+K2)’ C 1 2

i s algebraically i somorphi c t o fK UK set
1 (&#x26;* 2 1 2

with a&#x3E;0.81 . 0

For a more extensive study of the problem considered in this note,

including in particular a study of "the real case" which is somewhat differ-

ent, and algebras of type A(K1 + K2 + K3) etc. we have to refer to [3].15
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