SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

T. Figiel
Uniformly convex norms in spaces with unconditional basis
Séminaire d'analyse fonctionnelle (Polytechnique) (1974-1975), exp. nº 24, p. 1-10
<http://www.numdam.org/item?id=SAF_1974-1975
\qquad A23_0>

[^0]ECOLE POLYTECHNIQUE
CENTRE DE FATIE:ATIQUES
1?, rue Descartes
75230 Paris Cedex 05

UNIFORMLY CONVEX NORMS IN SPACES
 WITH UNCONDITIONAL BASIS

par T. FIGIEL

Let ($E\|$.$\|) be a Banach space and let f$ be a non-negative function on $[0,2]$ 。 It is known (cf. [5], [2 7) that if E admits an equivalent norm, say ||| . \|\|, such that for $x, y \in E$

$$
\|x \mid\|=\|y=\|=1 \quad \Rightarrow \quad\left\|\frac{x+y}{2}\right\| \| \leq 1-f(\|x-y\|)
$$

then E is of cotype f in the following sense : there exist positive constants c_{1}, c_{2} such that if $x_{1}, \ldots, x_{n} \in E$ satisfy

$$
\int_{0}^{1}\left\|\sum x_{i} r_{i}(t)\right\| d t \leq c_{1}
$$

(r_{i} denoting the usual Rademacher functions), then

$$
\sum_{i=1}^{n} f\left(\left\|x_{i}\right\|\right) \leq c_{2}
$$

We shall prove the following partial converse to that result. (In the sequel $c_{i}, i=1,2, \ldots$ denote always some positive constants).

Theorem : Suppose E is of cotype f. If E is superreflexive and has an unconditional basis, then there exists an equivalent norm on E, say $\|\|\|$.$\| , such$ that if $x, y \in E$ satisfy $\|x\|\|=\|\|y\| \|=1$, and $\|x-y\| \leq c_{3}$, then

$$
\left\|\left\lvert\, \frac{x+y}{2}\right.\right\| \| \leq 1-c_{4} f(\|x-y\|)
$$

We shall regard the elements of E as (numerical) functions defined on the set N of the indices of the unconditional basis. The expressions like $\left(|x|^{p}+|y|^{p}\right)^{1 / p}$, involving elements of $E(x, y$ in the latter case), are to be understood as functions on N obtained by applying the particular formula pointwise in the scalar sense.

The theorem being trivial if $f(t)=0$ for each $t \in\left[0, c_{1}\right)$, we shall assume that it is not the case. Under this assumption we shall prove that there is a function F on $[0, \infty)$ such that $F \geq f$ on $\left[0, c_{1}\right]$ which has some special properties (to be specified below).

The superreflexivity of E ensures the existence of an equivalent norm on E that is p-convex for some $p>1$ (a proof can be found in [3] or [2]; we shall reproduce the argument later). Since the properties of F that we have mentioned hold true (perhaps with other values of the constants) when $\|$. \| is replaced by any equivalent norm, we may assume that \|.\| has already been p-convex for some $p \in[1,2]$, i.e.

$$
\left\|\left(|\mathbf{x}|^{p}+|\mathbf{y}|^{p}\right)^{1 / p}\right\|^{p} \leq\|\mathbf{x}\|^{p}+\|y\|^{p} \quad, \text { for } x, y \in E
$$

It is easy to check that the assumptions of the following lemma

 will be fulfilled.Lemma 1 : Suppose E is p-convex, $1<p \leq 2$, and F is a function on $[0, \infty]$ such that

$$
\begin{aligned}
& F(0)=0, \quad F(1)>0 \\
& \text { the function } t \mapsto F\left(t^{1 / p}\right) \text { is convex } \\
& \text { the function } t \mapsto F(t) t^{-r} \text { is decreasing for some } r \geq 1 \\
& \text { if } z_{1}, z_{2}, \ldots, z_{n} \in E, n=1,2, \ldots, \text { and }\left\|\left(\sum z_{i}^{2}\right)^{1 / 2}\right\| \leq 1, \text { then } \\
& \sum F\left(\left\|z_{i}\right\|\right) \leq c_{5} .
\end{aligned}
$$

Then the formula

$$
\|x\|=\inf \left\{t>0: \sum F\left(\left\|x_{i}\right\| / t\right) \leq F(1), \text { whenever }|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}\right\}
$$

defines an equivalent p-convex norm on E such that $\left\|\left\|\left(x^{2}+y^{2}\right)^{1 / 2}\right\|\right\| \leq 1$ implies

$$
F(\|y y\|) \leq c_{7}(1-\|x\|)
$$

Proof : It is clear that $\|\mid x\| \geq\|x\|$ for $x \in E$. On the other hand, if $c_{6}=\left(c_{5} / F(1)\right)^{1 / p}$ and $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$, then $c_{6} \geq 1$, hence

$$
\Sigma F\left(\left\|x_{i}\right\| / c_{6}\|x\|\right) \leq c_{6}^{-p} \Sigma F\left(\left\|x_{i}\right\| /\|x\|\right) \leq F(1)
$$

This implies that $\|x\|\left\|c_{6}\right\| x \|$.
Now, if $|z|=\left(|x|^{p}+|y|^{p}\right)^{1 / p}$, where $x, y \in E \backslash\{0\}$ and $\|\mid x\|^{p}+\|y\|^{p}=1$, then, for any function a on \mathbb{N} with $|a| \leq 1$, we have

$$
\begin{aligned}
& F(\|a z\|)=F\left(\|\left(|a x|^{p}+|a y|^{p}\right)^{1 / p}| |\right) \\
& \leq F\left(\left(\|a x\|^{p}+\|a y\|^{p}\right)^{1 / p}\right) \\
& =F\left(\left(\| \|_{x}\left\|^{p}\left(\|a x\| /\left\|\left.\right|_{x}\right\|\right)^{p}+\right\|\left\|_{y}\right\|^{p}(\|a y\| /\|y \mid\|)^{p}\right)^{1 / p}\right) \\
& \leq\left\|\left.\right|_{x}\right\|^{p} F\left(\|a x\| /\left\|\left.\right|_{x}\right\| \|\right)+\| \|_{y} \|^{p} F(\|a y\| /\|\mid y\|) .
\end{aligned}
$$

Hence, given any sequence a_{1}, \ldots, a_{n} of such functions that satisfies $\sum_{i=1}^{n} a_{i}^{2}=1$, applying the latter estimate for $i=1,2, \ldots, n$ and adding up these inequalities we obtain

$$
\sum_{i=1}^{n} F\left(\left\|a_{i} z\right\|\right) \leq\left(\|\mid x\|^{p}+\| \|_{y} \|^{p}\right) F(1)=F(1) .
$$

The system (a_{i}) being arbitrary, we have established that $|||||\mid$ is p-convex, hence, a fortiori, it is a norm on E.

To check the last statement assume $\left\|\left\|\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}\right\|\right\| \leq 1, x \neq 0$, $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$. Since $\sum_{i=1}^{n} F\left(\left\|x_{i}\right\|\right)+F(\|y\|) \leq F(1)$, we have
$\sum_{i=1}^{n} F\left(\left\|x_{i}\right\| /(1-F(\|y\|) / F(1))^{1 / r}\right) \leq[1-F(\|y\|) / F(1)]^{-1} \sum_{i=1}^{n} F\left(\left\|x_{i}\right\|\right) \leq F(1)$.

Therefore

$$
\|\mathrm{x}\| \| \leq(1-F(\|y\|) / F(1))^{1 / r} \leq 1-\mathbf{r}^{-1} F(\|y\|) / F(1)
$$

and finally

$$
F(\|y\|) \leq F\left(c_{6}\|y\|\right) \leq c_{6}^{r} F(\|y\|) \leq c_{6}^{r} r F(1)\left(1-\| \|_{x} \|\right)=c_{7}(1-\| \| x \|) .
$$

This completes the proof of the lemma. We also need the following simple facts.

Lemma 2 : Given real numbers p, t, s, with $1 \leq p \leq 2$. Let

$$
z=\left[\frac{1}{2}\left(|t|^{p}+|s|^{p}\right)\right]^{1 / p}, \quad w=\left(z^{2}-\left(\frac{t-s}{2}\right)^{2}\right)^{1 / 2}
$$

Then

$$
\left|\frac{t+s}{2}\right| \leq(2-p) z+(p-1) w
$$

$\underline{\text { Proof }: ~ B y ~ t h e ~ h o m o g e n e i t y, ~ i t ~ s u f f i c e s ~ t o ~ c o n s i d e r ~ t h e ~ c a s e ~} z=1$. Then
 Recall that the modulus of convexity of ℓ_{p} satisfies $\delta_{\ell_{p}}(\varepsilon) \geq \frac{p-1}{8} \varepsilon^{2}(a$ short proof can be found in [2], Proposition 24).

Thus we have

$$
\begin{aligned}
z-\left|\frac{t+s}{2}\right| & =1-\left\|\frac{x+y}{2}\right\| \geq \delta_{\ell}(\|x-y\|) \\
& =\delta_{\ell}(|t-s|) \geq \frac{p-1}{2}\left(\frac{t-s}{2}\right)^{2} \\
& \geq(p-1)\left[1-\left(1-\left(\frac{t-s}{2}\right)^{2}\right)^{1 / 2}\right]=(p-1)(z-w)
\end{aligned}
$$

which is equivalent to the statement of the lemma.

Lemma 3 : Suppose ($E,\| \| \|$) is $\|$-convex, $1 \leq p \leq 2$, and h is a function such that whenever $u, v \in E$ and $\left\|\left\|\left(u^{2}+v^{2}\right)^{1 / 2}\right\|\right\| \leq 1$ one has $h(\|\|\|\|) \leq 1-\|\|\|\|$. Let x, y be vectors in E with $\|x\|\|\|,\|y\| \leq 1$.

Then

$$
\left\|\frac{x+y}{2}\right\| \| \leq 1-(p-1) h\left(\frac{1}{2}\|x-y\|\right)
$$

Proof : Let

$$
z=\left[\frac{1}{2}\left(|x|^{p}+|y|^{p}\right)\right]^{1 / p}, \quad w=\left(z^{2}-\left|\frac{x-y}{2}\right|^{2}\right)^{1 / 2}
$$

Since, by the p-convexity, $\mid\|z\| \leq 1$, our assumption on h yields

$$
h\left(\frac{1}{2}\||x-y \||) \leq 1-\| \|_{w} \| \mid\right.
$$

By Lemma $2,\left|\frac{x+y}{2}\right| \leq(2-p) z+(p-1) w$. Using the triangle inequality we get the desired estimate

$$
\begin{aligned}
\left\|\left|\frac { \mathbf { x } + \mathrm { y } } { 2 } \left\|\left|=\left\|\left|\frac{\mathrm{x}+\mathrm{y}}{2}\right|\right\|\right|\right.\right.\right. & \leq\||(2-p) z+(p-1) w \|| \\
& \leq(2-p)\| \|_{\mathrm{z}}\| \|+(p-1)\||w|\| \\
& \leq 2-p+(p-1)\left(1-h\left(\frac{1}{2}\|\mid x-y\|\right)\right)
\end{aligned}
$$

The theorem follows now immediately. By Lemma 1, we can put $h(t)=c_{7}^{-1} F(t)$ and it remains to note that, if $t \leq c_{1}$, then

$$
(p-1) c_{7}^{-1} F\left(\frac{1}{2} t\right) \geq c_{8} F(t) \geq c_{8} f(t)
$$

where $c_{8}=2^{-r}(p-1) c_{7}^{-1}$.
It remains to construct the function F. This done in a number of steps.
We know that

$$
\int\left\|\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}\right\| \leq \mathrm{c}_{1} \Rightarrow \Sigma \mathrm{f}\left(\left\|\mathrm{x}_{\mathrm{i}}\right\|\right) \leq \mathrm{c}_{2}
$$

By the principle of contraction, if we let $f_{1}(u)=\sup \{f(t): 0 \leq t \leq u\}$ for $u \in\left[0, c_{1}\right]$ and $f_{1}(u)=f_{1}\left(c_{1}\right)$ for $u>c_{1}$, then $f_{1} \geq f$ on $\left[0, c_{1}\right], f_{1}$ is nondecreasing and still

$$
\int\left\|\Sigma x_{i} r_{i}\right\| \leq c_{1} \Rightarrow \Sigma f_{1}\left(\left\|x_{i}\right\|\right) \leq c_{2}
$$

Now, since $f_{1}(t)>0$ for some $t<c_{1}$, the space E does not contain $\ell_{\infty}^{\mathrm{n}}$ uniformly (the latter follows also from the super-reflexivity of E, and hence, by Théorème 4 and Corollaire 1 of [6], we have
(i) there is a $q<\infty$ such that

$$
\int\left\|\Sigma \mathrm{x}_{\mathbf{i}} \mathrm{r}_{\mathbf{i}}\right\| \leq \mathrm{c}_{1} \quad \Rightarrow \quad \Sigma\left\|\mathrm{x}_{\mathbf{i}}\right\|^{\mathrm{q}} \leq c_{9} \quad ;
$$

(ii) there is a c_{10} so that

$$
\left\|\left(\Sigma \mathrm{x}_{\mathbf{i}}^{2}\right)^{1 / 2}\right\| \leq \mathrm{c}_{10} \Rightarrow \int\left\|\Sigma \mathrm{x}_{\mathbf{i}} \mathrm{r}_{\mathrm{i}}\right\| \leq \mathrm{c}_{1}
$$

Given $A>1$ let $\varphi(A)$ denote the l.u.b. of the sums $\sum_{i=1}^{n} f_{1}\left(A\left\|x_{i}\right\|\right)$
where the sequence $x_{1}, x_{2}, \ldots, x_{n} \in E$ satisfies $\left\|\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\right\| \leq c_{10}$. We shall prove that

$$
\varphi(\mathrm{A}) \leq \mathrm{c}_{11} \mathrm{~A}^{q}
$$

To this end pick $x_{1}, \ldots, x_{n} \in E$ such that

$$
\left\|\left(\Sigma \mathbf{x}_{\mathbf{i}}^{2}\right)^{1 / 2}\right\| \leq \mathrm{c}_{10} \quad \text { and } \quad \Sigma \mathrm{f}\left(\mathrm{~A}\left\|\mathrm{x}_{\mathrm{i}}\right\|\right) \geq \frac{1}{2} \varphi(\mathrm{~A})
$$

and define inductively the sequence

$$
0=s_{o}<s_{1}<\cdots<s_{k} \leq n
$$

of integers so that, for $\mathrm{j}=1,2, \ldots 0, \mathrm{k}$,

$$
\left\|\left(\sum_{s_{j-1}^{+1}}^{s_{j}^{-1}} x_{i}^{2}\right)^{1 / 2}\right\|<c_{10} / A \quad,\left\|\left(\sum_{s_{j-1}+1}^{s_{j}} x_{i}^{2}\right)^{1 / 2}\right\| \geq c_{10^{/ A}}
$$

and

$$
\left\|\left(\sum_{s_{k^{+1}}^{n}}^{n} x_{i}^{2}\right)^{1 / 2}\right\|<c_{10^{/ A}}
$$

Using (ii) and the definitions we get easily

$$
\Sigma f_{1}\left(A\left\|x_{i}\right\|\right) \leq(2 k+1) c_{2} \leq 3 k c_{2}
$$

XXIV. 7

Let $\mathbf{y}_{\mathbf{j}}=\left({\underset{\mathrm{s}}{\mathbf{j}-1}+1}_{\mathbf{s}_{\mathbf{j}}}^{\mathbf{x}_{\mathbf{i}}}\right)^{1 / 2}, \mathrm{j}=1,2, \ldots 0, \mathrm{k}$. Then

$$
\left\|\left(\sum_{j=1}^{k} y_{j}^{2}\right)^{1 / 2}\right\| \leq\left\|\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\right\| \leq c_{10}
$$

hence $\int\left\|\Sigma \mathbf{y}_{\mathbf{j}} \mathbf{r}_{\mathrm{j}}\right\| \leq \mathrm{c}_{1}$, whence

$$
c_{3} \geq \sum_{j=1}^{k}\left\|y_{j}\right\|^{q} \geq k\left(c_{10} / A\right)^{q}
$$

Thus we get the promised estimate

$$
\varphi(A) \leq 6 c_{2} k \leq 6 c_{2} c_{3} c_{10}^{-q} A^{q}=c_{11} A^{q} .
$$

Now fix an $r>q$ and let

$$
f_{2}(t)=\sum_{n=0}^{\infty} 2^{-r n} f_{1}\left(2^{n} t\right)
$$

Then, whenever $\left\|\left(\Sigma \mathrm{x}_{\mathrm{i}}^{2}\right)^{1 / 2}\right\| \leq \mathrm{c}_{10}$, one has

$$
\begin{aligned}
& \underset{i}{\sum} f_{2}\left(\left\|\mathbf{x}_{\mathbf{i}}\right\|\right)=\underset{\mathrm{i} m}{\sum \sum 2^{-r m} \mathbf{f}_{1}\left(2^{m}\left\|\mathbf{x}_{\mathrm{i}}\right\|\right)} \\
& \leq \sum_{\mathrm{m}} 2^{-\mathrm{rm}} \varphi\left(2^{\mathrm{m}}\right) \leq \mathrm{c}_{12}<\infty .
\end{aligned}
$$

Now let $f_{3}(t)=\sup _{u>t} f_{2}(u)(t / u)^{r}$, since for all s

$$
f_{2}(2 s)=2^{r}\left(f_{2}(s)-f_{1}(s)\right) \leq 2^{r} f_{2}(s),
$$

we obtain that, whenever $0<t \leq 2^{k} t \leq u<2^{k+1} t$,

$$
f_{2}(u) \leq f_{2}\left(2^{k+1} t\right) \leq f_{2}(t)\left(2^{r}\right)^{k+1} \leq 2^{r}(u / t)^{r} f_{2}(t) .
$$

Consequently, $f_{1}(t) \leq f_{2}(t) \leq f_{3}(t) \leq 2^{r} f_{2}(t)$ and

$$
\left\|\left(\Sigma \mathbf{x}_{\mathbf{i}}^{2}\right)^{1 / 2}\right\| \leq c_{10} \Rightarrow \Sigma f_{3}\left(\left\|x_{i}\right\|\right) \leq 2^{r} c_{12}
$$

Observe that $f_{3}(t) t^{-r}$ is a decreasing function of t.

$$
\text { Let } f_{4}(t)=\sup _{u \geq 1} u f_{3}(t / \sqrt{u}) \text { and let } f_{5}(t)=\sup _{m \geq 1} m f_{3}(t / \sqrt{m})
$$

(m running over the positive integers). If $m \leqq u<m+1$, then

$$
u f(t / \sqrt{u}) \leq(m+1) f(t / \sqrt{m}) \leq 2 m f(t / \sqrt{m}) \leq 2 f_{5}(t)
$$

On the other hand, if $\left\|\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\right\| \leq c_{10}$ and m_{1}, \ldots, m_{n} are positive integers, then letting $y_{i j}=m_{i}^{-1 / 2} x_{i}$, for $j=1,2$, , ., m_{i}, we get

$$
\sum_{i}^{\Sigma} m_{i} f_{3}\left(\left\|x_{i}\right\| / \sqrt{m}\right)=\sum_{i, j} f_{3}\left(\left\|y_{i j}\right\|\right) \leq 2^{r} c_{12}
$$

It follows easily that $\left\|\left(\Sigma \mathbf{x}_{i}^{2}\right)^{1 / 2}\right\| \leq c_{10}$ implies

$$
\sum f_{4}\left(\left\|x_{i}\right\|\right) \leq 2^{r+1} c_{12}=c_{13}
$$

Clearly, $f_{4} \geq \mathrm{f}_{3}, \mathrm{f}_{4}(\mathrm{t}) / \mathrm{t}^{2} \boldsymbol{T}, \mathrm{f}_{4}(\mathrm{t}) / \mathrm{t}^{\mathrm{r}} \underset{V}{ }$.

Now let φ denote the lower convex envelope of the function g, where $g(t)=f_{4}(\sqrt{t})$. Then

$$
f_{4}(t) \geq g\left(t^{2}\right) \geq \varphi\left(t^{2}\right) \geq g\left(\frac{1}{2} t^{2}\right) \geq f_{4}\left(2^{-1 / 2} t\right) \geq 2^{-r / 2} f_{4}(t)
$$

(The third inequality can be proved as follows. Suppose an s does not satisfy $\varphi(s) \geq g(s)$ 。Then there exist $0<u<s<v$ such that

$$
\varphi(s)=\frac{v-s}{v-u} g(u)+\frac{s-u}{v-u} g(v)
$$

If $u<\frac{1}{2} s$, then $g(v)(s-u) /(v-u) \geq g(v) \frac{1}{2} \mathrm{~s} / \mathrm{v} \geq \mathrm{g}\left(\frac{1}{2} \mathrm{~s}\right)$, the other summand being non-negative. In the opposite case one simply has $g(v) \geq g(u) \geq g\left(\frac{1}{2} s\right)$).

Let us define

$$
F(t)=2^{r / 2} \sup _{u>t}(t / u)^{r} \varphi\left(u^{2}\right)
$$

Clearly, F satisfies $F \leq 2^{r / 2} f_{4}, F(t) / t^{r} \downarrow$, and F is a convex function of \sqrt{t}. Consider an arbitrary sequence $x_{1}, \ldots, x_{n} \in E$ with $\left\|\left\|\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\right\|\right\| \leq 1$ 。 Let $y_{i}=c x_{i}$, where $c=\min \left(c_{10}, 1\right)$. Then

$$
\begin{aligned}
\Sigma F\left(\left\|x_{i}\right\|\right) & \leq 2^{r / 2} \Sigma f_{4}\left(c^{-1}\left\|y_{i}\right\|\right) \\
& \leq 2^{r / 2} c^{-r} \sum f_{4}\left(\left\|y_{i}\right\|\right) \\
& \leq 2^{r / 2} c^{-r} c_{13}=c_{5}
\end{aligned}
$$

Thus F satisfies all the assumptions of Lemma 1.
For the sake of completeness let us recall how one can introduce a p-convex norm on E. Since E is superreflexive, there are q, $L<\infty$ such that every operator T from c_{o} to $E^{\#}$ has its q-absolutely summing norm $\leq L\|T\|$. It follows easily that if $x_{1}, \ldots, x_{n} \in E^{*}$, then

$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q} \leq L\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}\right\|
$$

that $\sum^{n} \quad\left|a_{i}\right|^{q}=1$ we set for $x \in E^{*} \quad\left(a_{1}, \ldots, a_{n}\right)$ of functions on \mathbb{N} such $i=1$

$$
\begin{aligned}
& \|x\|_{a}=\left(\sum_{i=1}^{n}\left\|a_{i} x\right\|^{q}\right)^{1 / q} \\
& \left\|\|x\|=\sup _{a}\right\| x \|_{a}
\end{aligned}
$$

Plainly, $\|\|\|$.$\| is a norm on E^{*}$ (being the supremum of the norms $\|\|$.$a , that satisfies \|.\| \leq\|\|.\|\leq\| . \|$. Moreover, for any $x, y \in E^{*}$ one has

$$
\left\||x|^{q}+\right\|\|y\|^{q} \leq\left.\left\|\left(|x|^{q}+|y|^{q}\right)^{1 / q}\right\|\right|^{q}
$$

It is a standard exercise on duality to check that the norm on E dual to ｜｜｜．｜｜｜is p－convex，with $p=q /(q-1)$ 。This completes the proof。
$\underline{\text { Remark } 1}:$ The example of ℓ_{1}（which is of type f ，where $f(t)=t^{2}$ ，but not uniformly convexifiable）shows that it is necessary to assume the super－ reflexivity of E ．The other assumption can be weakened，but not just dropped． For instance，it is enough to assume that E be complemented subspace of a Banach lattice（the proof combines the renorming techniques applied above with those used in［4］）．On the other hand，（after this talk was given） G．Pisier has constructed an example of a superreflexive Banach space that is of cotype t^{p} but does not admit an equivalent p－uniformly convex norm for some $p<\infty$ ．

Remark 2 ：The methods employed above are mostly taken from［2］，where mainly the renormings related to properties of disjointly supported elements were considered．The results can easily be dualized to relate the＂type＂and the moduli of uniform smoothness of superreflexive spaces with local uncon－ ditional structure．

Remark 3 ：Let us just mention（without proof）an application of the theorem。 W．J．Davis has constructed in［1］a uniformly convex space Y with a symmetric basis that contains the space E as a complemented subspace．Now，Y can be shown to admit the moduli of convexity not worse than those of E ．

REFERENCES

［1］W．J．Davis ：Embedding spaces with unconditional bases．To appear。
［2］T．Figiel ：On the moduli of convexity and smoothness．Studia Math． To appear．
［3］T．Figiel and W．B．Johnson ：A uniformly convex Banach space which contains no ℓ_{p} ．Compositio Math。29（1974）．
［4］T．Figiel，W．B．Johnson and L．Tzafriri ：On Banach lattices and spaces having local unconditional structure，with applications to Lorentz function spaces．J．of Approximation． 13 （1975）．
［5］T．Figiel et G．Pisier ：Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses．C．R．Acad．Sci． 279 Série A（1974）611－614．
［6］B．Maurey ：Séminaire Maurey－Schwartz 1973－74，Exposés XXIV et XXV．

[^0]: © Séminaire Maurey-Schwartz
 (École Polytechnique), 1974-1975, tous droits réservés.
 L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

