SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

P. SAPHAR

Une caractérisation des sous espaces de L^P et ses applications

Séminaire d'analyse fonctionnelle (Polytechnique) (1972-1973), exp. nº 14, p. 1-12 http://www.numdam.org/item?id=SAF_1972-1973 A13_0>

© Séminaire Maurey-Schwartz (École Polytechnique), 1972-1973, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FCOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

17, rue Descartes 75230 Paris Cedex 05

UNE_CARACTERISATION_DES_SOUS_ESPACES_DE_LP

ET_SES_APPLICATIONS

par P. SAPHAR

§ 1. NOTATIONS ET RAPPELS DE RESULTATS.

a) Soient E et F deux espaces de Banach tous les deux réels ou tous les deux complexes, E' le dual topologique de E, $\mathfrak{L}(E,F)$ l'espace des applications linéaires continues de E dans F, $\mathfrak{C}(E,F)$ l'espace des applications linéaires compactes de E dans F. On désigne par p un nombre réel tel que $1 \le p \le +\infty$, par p' le nombre conjugué de p $(\frac{1}{p} + \frac{1}{p'} = 1)$, par (x_i) une suite d'éléments de E. On pose :

$$N_{p}(x_{i}) = \left(\sum_{i} \|x_{i}\|^{p}\right)^{\frac{1}{p}} \quad \text{si } p < +\infty$$

$$N_{\infty}(x_{i}) = \sup_{i} \|x_{i}\|$$

$$M_{p}(x_{i}) = \sup_{i} N_{p}(< x_{i}, x^{*} >) .$$

$$x^{*} \in E'$$

$$\|x^{*}\| \leq 1$$

Soit $u \in E \otimes F$, $w = \sum\limits_{i=1}^{n} x_i \otimes y_i$. On pose $g_p(u) = \inf N_p(x_i) M_{p'}(y_i)$, la borne inférieure étant prise sur l'ensemble des représentations de u. On sait que g_p est une \otimes norme (cf. [11]). On note $g_p \setminus l$ a plus grande \otimes norme injective à droite majorée par g_p et par d_p et d_p les normes transposées de g_p et $g_p \setminus (cf. [3] \text{ et } [11])$. A l'aide des normes g_p et d_p on peut définir d'une manière naturelle les espaces $\mathfrak{L}_g^p(E,F)$ et $\mathfrak{L}_d^p(E,F)$ des applications p nucléaires à gauche et à droite, [11].

b) On désigne par $\overline{\Pi}_p(E,F)$ et $I_p(E,F)$ l'espace des applications p absolument sommantes et p intégrales de E dans F (cf. [10], [11]). On sait que :

$$(E \otimes_{g_p} F)' = \prod_{p'} (F, E')$$

et que

$$(E \otimes_{g_{I}} \setminus F)' = I_{p'}(F, E')$$
.

Par ailleurs, la norme $g_p \setminus \text{sur } E \otimes F \text{ (resp. } E' \otimes F) \text{ est la norme induite par } \prod_p (E',F), \text{ (resp. } \prod_p (E,F)), \text{ (cf. [11]).}$

- c) Soient Ω un espace localement compact, μ une mesure de Radon positive sur Ω , posons $L^p = L^p(\Omega,\mu)$. Si E est un espace de Banach, on sait que $E \otimes L^p$ peut être considéré comme un sous-espace de $L^p(\Omega,\mu;E)$. Soit Δ_p la norme induite par $L^p(\Omega,\mu,E)$ sur $E \otimes L^p$. Par ailleurs, sur $E \otimes L^p$, on a les inégalités : $g_p \setminus g_p \leq \Delta_p \leq d_p \leq d_p \leq d_p$, (cf. [1], [12]).
- d) Si E et G sont deux espaces de Banach isomorphes en tant qu'espaces vectoriels topologiques, on définit la distance entre E et G, d(E,G), par $d(E,G) = \inf \|A\| \|A^{-1}\|$, la borne inférieure étant prise sur l'ensemble des applications linéaires continues bijectives, A, de E sur G, (cf. [6]).
- e) On dit que l'espace de Banach F est un espace L^p ou un espace de type L^p s'il est isomorphe en tant qu'espace normé à un espace $L^p(\Omega,\mu)$, Ω étant un espace localement compact et μ une mesure de Radon positive sur Ω . On dit que F est de type SL^p (resp. QL^p) s'il est isomorphe en tant qu'espace vectoriel topologique à un sous-espace (resp. à un espace quotient) d'un espace de type L^p .
- f) Soit L^p un espace de type L^p . On désigne par $\Delta_p(E, L^p)$ l'espace de Banach des applications p décomposées de E dans L^p et par $D_p(E,F)$ l'espace des applications p décomposantes de E dans F, (cf. [12] et [14], exposé n^0 13).

§ 2. PROPRIETE CARACTERISTIQUE DES SOUS ESPACES DE LP.

Théorème 1 : Soient E un espace de Banach, p un nombre réel tel que $1 \le p < +\infty$, a un nombre réel tel que $a \ge 1$. Alors les conditions suivantes sont équivalentes :

- 1) sur $E \otimes 1^p$, $\Delta_p \leq a g_p \setminus$,
- 2) il existe un espace L^p de dimension infinie tel que sur $E\otimes L^p$, $\triangle_p \leq a\,g_p \backslash \ ,$
- 3) pour tout espace L^p , sur $E \otimes L^p$, $\Delta_p \leq a g_p \setminus$,
- 4) il existe un sous-espace M d'un espace L^p tel que $d(E,M) \le a$,
- 5) pour tout espace de Banach F, sur $E \otimes F$, $/d_p \le a g_p \setminus$,
- 6) il existe un espace \textbf{L}^p de dimension infinie tel que sur $\textbf{E}\otimes \textbf{L}^p,$ $/\textbf{d}_p \leq \textbf{a}\,\textbf{g}_p \backslash \ .$

<u>Démonstration</u>: Montrons que $4) \Rightarrow 5$). Supposons 4) vérifiée. Soient i l'injection canonique de M dans L^p , A une application linéaire continue bijective de E sur M, F un espace de Banach, u un élément de $F \otimes E$ identifié à une application de rang fini de F' dans E. On a le schéma :

$$F' \xrightarrow{u} E \xrightarrow{A} M \xrightarrow{A^{-1}} E$$

$$i \xrightarrow{L^{p}}$$

Donc :

$$\begin{split} \mathbf{g}_{p} \backslash (\mathbf{u}) &= \mathbf{g}_{p} \backslash (\mathbf{A}^{-1} \, \mathbf{A} \, \mathbf{u}) \\ &\leq \| \mathbf{A}^{-1} \| \, \mathbf{g}_{p} \backslash (\mathbf{A} \, \mathbf{u}) \\ &\leq \| \mathbf{A}^{-1} \| \, \mathbf{g}_{p} \backslash (\mathbf{i} \, \mathbf{A} \, \mathbf{u}) \\ &\leq \| \mathbf{A}^{-1} \| \, / \mathbf{d}_{p} \, (\mathbf{i} \, \mathbf{A} \, \mathbf{u}) \, , \, \, \text{car sur } \mathbf{E} \otimes \mathbf{L}^{p}, \, \, \mathbf{g}_{p} \backslash \leq / \mathbf{d}_{p} \, \, , \\ &\leq \| \mathbf{A}^{-1} \| \, \| \mathbf{A} \| \, / \mathbf{d}_{p} (\mathbf{u}) \, \, . \end{split}$$

On conclut que

$$g_p \setminus (u) \le a / d_p(u)$$
.

Ainsi, sur $F \otimes E$, $g_p \setminus a/d_p$. Donc, sur $E \otimes F$, $d_p \leq ag_p \setminus B$. Montrons que 5) \Rightarrow 3).

Supposons 5) vérifiée. Soit L^p un espace de type $L^p.$ Sur $E\otimes L^p,$ on a :

$$g_p \le \Delta_p \le /d_p \le a g_p \setminus$$
.

Donc 3) est vérifiée. Il est clair que 3) ⇒ 2). Montrons que 2) ⇒ 1).

Supposons 2) vérifiée sur $L^p(\Omega,\mu)$. Soit (e_i) la base canonique de 1^p . Il existe une application linéaire isométrique φ de 1^p dans L^p telle que la famille $(\varphi(e_i))_i$ dans L^p soit formée de fonctions à support deux à deux disjoints dans Ω . Soit $u \in E \otimes 1^p$. On a, par hypothèse :

$$\Delta_{\mathbf{p}}((\mathbf{1}_{\mathbf{E}} \otimes \varphi)\mathbf{u}) \leq \mathbf{a} \mathbf{g}_{\mathbf{p}} \setminus ((\mathbf{1}_{\mathbf{E}} \otimes \varphi)\mathbf{u})$$

L'application ϕ étant une isométrie, il est clair que $g_p\backslash ((1_E\otimes \phi)u)=g_p\backslash (u)\,. \mbox{ Par ailleurs, on vérifie immédiatement que} \\ \Delta_p(u)=\Delta_p((1_E\otimes \phi)u)\,. \mbox{ Donc, on a aussi} :$

$$\Delta_{\mathbf{p}}(\mathbf{u}) \leq a \, \mathbf{g}_{\mathbf{p}} \setminus (\mathbf{u})$$
.

Montrons que $1) \Rightarrow 4$).

Supposons 1) vérifiée. Soient (x_i) et (y_j) deux suites d'éléments de E, avec $1 \le i \le n$, $1 \le j \le p$, telles que pour tout x' de E', $\sum_{j=1}^{n} |\langle y_j, x' \rangle|^p \ge \sum_{i=1}^{n} |\langle x_i, x' \rangle|^p.$ Soit $u \in E \otimes 1^p$ défini par $u = \sum_{i=1}^{n} x_i \otimes e_i$. Identifions u à une application de rang fini de E' dans 1^p . L'inégalité $\sum_{i=1}^{n} |\langle x_i, x' \rangle|^p \le \sum_{j=1}^{n} |\langle y_j, x' \rangle|^p$ implique que i

$$g_{p} \setminus (u) \leq N_{p}(y_{j})$$
.

Par ailleurs, $\Delta_{p}(u) \leq a g_{p}(u)$ ou

$$N_p(x_i) \le a g_p(u) \le a N_p(y_j)$$
.

D'après [6], theorem 7.3, on conclut que 4) est vérifiée. Il est par ailleurs clair que $5) \Rightarrow 6) \Rightarrow 2$). Le théorème est donc obtenu.

Remarque : La caractérisation des sous espaces de L^p par S. Kwapien [5] ou J. R. Holub [4] est équivalente à : $4) \Leftrightarrow 5$). Pour des résultats voisins faisant intervenir des sous espaces de L^p voir aussi [2].

Corollaire 1 : Soient E un espace de Banach, p un nombre réel tel que $1 , <math>L^p$ un espace de type L^p de dimension infinie. Alors les conditions suivantes sont équivalentes

- 1) $\Pi_{\mathbf{p}}(\mathbf{E}, \mathbf{L}^{\mathbf{p}}) = \Delta_{\mathbf{p}}(\mathbf{E}, \mathbf{L}^{\mathbf{p}})$
- $(2) \qquad \prod_{p} (E, L^{p}) = D_{p} (E, L^{p})$
- 3) E est de type QL^p .

De plus, si elles sont vérifiées on a : $\mathcal{T}_p(E,L^p) = \mathfrak{L}_g^p(E,L^p)$. Ce résultat découle directement du théorème 1.

Pour le résultat suivant, on désigne par $N_1^{\mathbb{Q}}(E,F)$ l'ensemble des applications quasi-nucléaires de E dans F, (cf. [8]).

<u>Corollaire 2</u> : Soit E un espace de Banach. Alors les conditions suivantes sont équivalentes

- 1) il existe un espace L^1 de dimension infinie tel que $\pi_1(E, L^1) = I_1(E, L^1)$
- 2) pour tout espace L^1 , $\mathcal{T}_1(E, L^1) = I_1(E, L^1)$
- 3) il existe un espace L^1 de dimension infinie tel que $\mathcal{L}_g^1(E, L^1) = N_1^Q(E, L^1)$
- 4) pour tout espace L^1 , $\mathfrak{L}_g^1(E, L^1) = N_1^Q(E, L^1)$
- 5) E' est de type SL¹.

<u>Démonstration</u>: Montrons que 1) \Rightarrow 5). Supposons 1) vérifiée. Désignons par i la norme des applications linéaires continues intégrales. D'après 1) il existe un nombre k>0 tel que pour tout $T \in T_1(E,L^1)$ on ait $\pi_1(T) \leq i_1(T) \leq k \pi_1(T)$. Soient $u \in E' \otimes L^1$ et j l'injection canonique de L^1 dans (L^1) ". On identifie u à une application de rang fini de E dans L^1 . On a :

$$g_1 \setminus (u) \leq g_1(u), car g_1 \setminus g_1$$

 $g_1(u) = g_1(ju), \text{ car l'injection de } E \otimes_{g_1} L^1 \text{ dans } E \otimes_{g_1} (L^1)'' \text{ est une isométrie ; par ailleurs,}$

$$g_1(j_u) = i_1(u) \le k g_1(u)$$
.

Donc,

$$g_1(u) \le g_1(u) \le k g_1(u)$$
.

Ainsi, sur $E' \otimes L^1$ les normes g_1 et $g_1 \setminus$ sont équivalentes. De plus, sur $E' \otimes L^1$, on sait d'après Grothendieck ([3]) que $g_1 = \Delta_1$. D'après le théorème 1, on conclut que 5) est vérifiée. Montrons que 5) \Rightarrow 2). Supposons 5) vérifiée et soit L^1 un espace de type L^1 . Alors sur $E' \otimes L^1$, $g_1 \setminus$ et Δ_1 sont équivalentes d'après le théorème 1. Puisque $g_1 = \Delta_1$ sur $E' \otimes L^1$, on conclut que les normes g_1 et $g_1 \setminus$ sont équivalentes sur $E' \otimes L^1$. On en déduit que sur $E \otimes (L^1)'$ les normes d_0 et d_0 sont équivalentes. Par dualité, on conclut que $d_1 \in \mathcal{T}_1$ ($d_1 \in \mathcal{T}_1$) les normes $d_1 \in \mathcal{T}_1$ ($d_1 \in \mathcal{T}_1$) La condition 2) en découle.

Il est clair que 2) \Rightarrow 1) et que 4) \Rightarrow 3).

Montrons que 3) \Rightarrow 5). Supposons 3) vérifiée. Alors, sur E' \otimes L¹, \mathbf{g}_1 et \mathbf{g}_1 sont équivalentes. Puisque sur E' \otimes L¹ $\mathbf{g}_1 = \Delta_1$, on obtient immédiatement la condition 5).

On montre de manière analogue que 5) ⇒ 4).

Remarque : On sait d'après [16] que la condition $\overline{W}_1(E,F) = I_1(E,F)$, (resp. $\mathfrak{L}_g^1(E,F) = N_1^Q(E,F)$), pour tout espace de Banach F, caractérise le fait que E soit un espace \mathfrak{L}^{∞} de Lindenstrauss et Pelczynski (cf. [6]).

Par dualité, on déduit du corollaire 2, le résultat suivant :

<u>Corollaire 3</u>: Soit E un espace de Banach. Alors les conditions suivantes sont équivalentes:

1) il existe un espace L^1 de dimension infinie tel que :

$$\mathfrak{L}(L^1,E) = I_{\infty}(L^1,E) .$$

- 2) pour tout espace L^1 , $\mathfrak{L}(L^1, E) = I_{\infty}(L^1, E)$
- 3) il existe un espace L¹ de dimension infinie tel que :

$$C(L^1, E) = \mathcal{L}_{g}^{\infty}(L^1, E)$$

- 4) pour tout espace L^1 , $C(L^1, E) = f_g^{\infty}(L^1, E)$
- 5) E' est de type SL^1 .

Corollaire 4 : Soient E un espace de Banach, L^{∞} un espace de type L^{∞} de dimension infinie. Alors les conditions suivantes sont équivalentes

- 1) $\mathfrak{L}_{\mathbf{d}}^{\infty}(\mathbf{E}, \mathbf{L}^{\infty}) = \mathcal{C}(\mathbf{E}, \mathbf{L}^{\infty}),$
- 2) E est de type SL^1 .

Donc sur $E''\otimes (L^{\infty})'$, $g_1\setminus \text{cst \'equivalente \`a }g_1$. Puisque $(L^{\infty})'$ est de type L^1 , on en déduit que E'' est de type SL^1 . Donc, il en est de même de E. La condition 1) est obtenue.

Montrons que 2) \Rightarrow 1). La condition 2) entraîne que pour tout espace L^1 , de type L^1 , les normes g_1 et g_1 \ sont équivalentes sur $E\otimes L^1$. Donc, sur

 $\text{E'}\otimes\text{L}^{\infty}\text{, les normes }\epsilon\text{ et }d_{\infty}\text{ sont \'equivalentes. On a bien 2)}\Rightarrow\text{1).}$

Corollaire 5 : Soient E un espace de Banach, a un nombre réel positif, p un nombre réel tel que $1 \le p < +\infty$, $L^p(\Omega,\mu)$ un espace de type L^p de dimension infinie. Alors les deux conditions suivantes sont équivalentes : 1) pour tout élément $f \in L^p(\Omega,\mu;E)$, il existe une application linéaire continue T de E dans l^p , telle que :

$$\frac{1}{a} \left(\int_{\Omega} \|f(t)\|^{p} d\mu(t) \right)^{\frac{1}{p}} \leq \left(\int_{\Omega} \|T \circ f(t)\|^{p} d\mu(t) \right)^{\frac{1}{p}} \leq \left(\int \|f(t)\|^{p} d\mu(t) \right)^{\frac{1}{p}}.$$

2) E est de type ${\rm SL}^p$.

Soit T l'application associée à f d'après 1). Pour tout x de E on a :

$$Tx = (\langle x, x_j' \rangle)_j \text{ avec } x_j' \in E' \text{ et } ||T|| = M_p(x_j') = 1.$$

On peut écrire

$$\begin{split} \left(\int_{\Omega} \left\|T \circ f(t)\right\|^{p} d\mu(t)\right)^{\frac{1}{p}} &= \left(\int_{\Omega} \sum_{j} \left| < f(t), x_{j}^{!} > \right|^{p} d\mu(t)\right)^{\frac{1}{p}} \\ &= \left(\sum_{j} \left\|U x_{j}^{!}\right\|^{p}\right)^{\frac{1}{p}} \\ &\leq g_{p} \setminus (f) . \end{split}$$

Donc

$$\frac{1}{a} \left(\int_{\Omega} \| f(t) \|^{p} d\mu(t) \right)^{\frac{1}{p}} \leq g_{p} \setminus (f) ,$$

ou encore :

$$\Delta_{\mathbf{p}}(\mathbf{f}) \leq \mathbf{a} \, \mathbf{g}_{\mathbf{p}} \setminus (\mathbf{f})$$
.

D'après le théorème 1, la condition 2) est donc vérifiée.

Montrons que 2) \Rightarrow 1). Supposons 2) vérifiée. D'après le théorème 1, il existe a > 0 tel que, pour tout élément $f \in E \otimes L^p$ on ait :

$$\frac{1}{a} \Delta_{p}(f) \leq g_{p} \setminus (f) .$$

Soit $\epsilon > 0$. Il existe une suite finie $(x_j^!)$ d'éléments de E' telle que $M_p(x_j^!) = 1$ et :

$$\left(\int_{\Omega} \sum_{j} \left| \langle f(t), x_{j}^{!} \rangle \right|^{p} d\mu(t)\right)^{\frac{1}{p}} \geq (1 - \epsilon)g_{p} \setminus (f)$$

Soit T l'application linéaire continue de E dans l^p définie par $x \rightarrow (\langle x, x_j^r \rangle)_j$. On peut écrire :

$$\frac{1}{a} \Delta_{p}(f) \leq g_{p}(f)$$

$$\leq \frac{1}{1-\epsilon} \left(\int_{\Omega} \sum_{j} \left| \langle f(t), x_{j}^{*} \rangle \right|^{p} d\mu(t) \right)^{\frac{1}{p}}$$

ou encore

$$\frac{1-\epsilon}{a} \left(\int_{\Omega} \left\| f(t) \right\|^{p} d\mu(t) \right)^{\frac{1}{p}} \leq \left(\int_{\Omega} \left\| T \circ f(t) \right\|^{p} d\mu(t) \right)^{\frac{1}{p}}.$$

Le résultat est obtenu (avec la constante $a_1 = \frac{a_1}{1-\epsilon}$).

§ 3. PROPRIETE CARACTERISTIQUE DES SOUS ESPACES QUOTIENTS DES ESPACES LP.

Théorème 2 : Soient E un espace de Banach, p un nombre réel tel que $1 \le p < +\infty$, b un nombre réel tel que $b \ge 1$. Alors les conditions suivantes sont équivalentes :

- 1) sur $E \otimes 1^p$, $b d_p \leq \Delta_p$,
- 2) il existe un espace L^p de dimension infinie tel que sur $E\otimes L^p$, $b\ d_p \le \Delta_p \quad ,$
- 3) pour tout espace L^p , sur $E \otimes L^p$, $b d_p \leq \Delta_p$,
- 4) il existe un espace de Banach M, quotient d'un espace L^p , tel que $d(E,M) \le b$,
- 5) pour tout espace de Banach F, sur $E \otimes F$, $b d_p \leq g_p$,
- 6) il existe un espace L^p de dimension infinie tel que, sur $E\otimes L^p$, $\ \ \, \text{for} \ \, d_p \leq g_p \ .$

 $\underline{\underline{\text{D\'emonstration}}}$: Pour p = 1, il est trivial que toutes les conditions sont vérifiées, pour tout espace de Banach, avec b = 1.

Pour p \neq 1, le théorème se déduit du théorème 1 en utilisant des techniques de dualité de produit tensoriel et le fait que l'espace $L^p'(\Omega,\mu,E')$ s'identifie à un sous espace de Banach de $(E \otimes_{\Delta_p} L^p)'$, qui lui est égal

si E est réflexif.

Corollaire 1 : Soient E un espace de Banach, p un nombre réel tel que $1 , <math>L^p$ un espace de type L^p de dimension infinie. Alors, les conditions suivantes sont équivalentes :

- 1) $\mathfrak{L}_{\mathbf{d}}^{\mathbf{p}}(\mathbf{E}, \mathbf{L}^{\mathbf{p}}) = \mathfrak{L}_{\mathbf{g}}^{\mathbf{p}}(\mathbf{E}, \mathbf{L}^{\mathbf{p}})$,
- 2) $\mathfrak{g}_{d}^{p}(E,L^{p}) = \Delta_{p}(E,L^{p})$,
- 3) E est de type $SL^{p'}$.

De plus, si elles sont vérifiées, on a : $\mathcal{L}_g^p(E, L^p) = D_p(E, L^p)$.

<u>Corollaire 2</u>: Soient E un espace de Banach et a un nombre réel tel que $a \ge 1$. Alors les conditions suivantes sont équivalentes :

- 1) il existe un espace L^2 de dimension infinie tel que, sur $E \otimes L^2$, $\Delta_2 \leq a g_2$ (resp. $a d_2 \leq \Delta_2$),
- 2) pour tout espace L^2 , sur $E \otimes L^2$, $\Delta_2 \le a g_2$ (resp. $a d_2 \le \Delta_2$,
- 3) il existe un espace de Hilbert H_1 tel que $d(E,H_1) \le a$. Ce corollaire est une conséquence directe, pour p=2, des théorèmes 1 et 2 si l'on tient compte des relations :

$$g_2 = g_2 \setminus et d_2 = /d_2 (cf. [13])$$
.

Voici un résultat identique au corollaire 2, mais exprimé en langage d'applications linéaires :

<u>Corollaire 3</u>: Soit E un espace de Banach. Alors, les conditions suivantes sont équivalentes:

- 1) il existe un espace L^2 de dimension infinie tel que $\mathfrak{L}_g^2(E,L^2) = \Delta_2(E,L^2)$, resp. $\mathfrak{L}_d^2(E,L^2) = \Delta_2(E,L^2)$,
- 2) pour tout espace L^2 , $\mathbf{f}_{g}^{2}(E, L^2) = \Delta_{2}(E, L^2)$, (resp. $\mathbf{f}_{d}^{2}(E, L^2) = \Delta_{2}(E, L^2)$,
- 3) E est isomorphe en tant qu'espace vectoriel topologique à un espace de Hilbert.

Ce résultat généralise un résultat de Tin Kin Wong (cf. [15], prop. 5).

§ 4. UNE PROPRIETE DES APPLICATIONS P ABSOLUMENT SOMMANTES.

Soient p un nombre réel tel que p > 2 et E un espace de Banach. A Pietsch (cf. [10]) a conjecturé que $\overline{\mathbb{T}}_q(E,L^p)=\overline{\mathbb{T}}_{p+\epsilon}(E,L^p)$ pour tout nombre réel q tel que p < q < $\pm \infty$ et tout ϵ > 0. Nous avons pu obtenir le résultat suivant :

Théorème 3 : Soient s et p deux nombres réels tels que $1 \le s < p' < 2 < p < +\infty$.

Alors, pour tout couple d'espaces L^S et L^p on a :

$$\begin{split} & \mathcal{H}_a(L^s,L^p) = I_a(L^s,L^p) = \mathcal{H}_{s^{\,\mathfrak{l}}}(L^s,L^p)\,, \ \, \text{pour} \, \, \, p < a \leq s^{\,\mathfrak{l}} \,\,, \\ \text{et} & \\ & \mathcal{H}_b(L^p,L^s) = I_b(L^p,L^s) = \mathcal{H}_s(L^p,L^s) \,\,, \,\, \text{pour} \,\, s \leq b < p^{\,\mathfrak{l}} \,\,. \end{split}$$

Démonstration :

$$g_s \ge g_b \ge g_b \setminus \ge \lambda g_s \setminus \ge \mu g_s$$
.

Donc sur $L^{p^{\dagger}} \otimes L^{s}$, g_{s} , g_{s} , g_{b} et g_{b} sont équivalentes, pour $s \le b < p^{\dagger}$.

Soit n un entier tel que $n\geq 1$ et 1^p_n l'espace de Banach des suites finies $a=(a_i)$, $1\leq i\leq n$ muni de la norme $\|a\|=(\sum\limits_{i=1}^n |a_i|^p)^{1/p}$. Soient m et n deux nombres entiers tels que $m\geq 1$ et $n\geq 1$. On déduit de 1) que sur $1^p_n \otimes 1^s_n$ on a aussi :

$$g_s \ge g_h \ge g_h \setminus \ge \lambda g_s \setminus \ge \mu g_s$$
 quels que soient m et n .

On en déduit que quels que soient les espaces L^p et L^s sur $L^{p'} \otimes L^s$ les normes

 g_s , g_s , g_b et g_b ($s \le b < p'$) sont équivalentes à l'aide du théorème III de [7]. D'après le lemme 1 de [12], il découle que :

$$\Pi_b(L^p, L^s) = I_b(L^p, L^s) = \Pi_s(L^p, L^s), \text{ pour } s \leq b < p'.$$

Par dualité, on conclut que :

$$\Pi_a(L^s, L^p) = I_a(L^s, L^p) = \Pi_{s'}(L^s, L^p), \text{ pour } s \le b < p'$$
.

Remarque 1 : Les résultats du théorème 3 peuvent sans difficulté se généraliser aux espaces \mathfrak{L}^p et \mathfrak{L}^s de J. Lindenstrauss et A. Pelczynski (cf. $\lceil 7 \rceil$).

Remarque 2 : Pour s = 1, on retrouve un résultat déjà indiqué dans le théorème 9 de $\lceil 12 \rceil$.

BIBLIOGRAPHIE

- [1] S. Chevet: Sur certains produits tensoriels topologiques d'espaces de Banach, Z. Wahrscheinlichkeitstheorie Verw. Geb. 11 (1969), p. 120-138.
- [2] D. J. H. Garling: Lattice bounding, Radonifying and absolutely summing mappings (à paraître).
- [3] A. Grothendieck: Résumé de la théorie métrique des produits tensoriels topologiques, Boletin da Sociedade de Mathematica de Sao Paulo 8 (1956), p. 1-79.
- [4] J. R. Holub : A characterization of subspaces of $L^p(\mu),$ Studia Mathematica, XLII (1972), p. 265-270.
- [5] S. Kwapien: On operators factorizable through L^p spaces, Bulletin de la S. M. F., Mémoire 31-32, 1972, p. 215-225.
- [6] J. Lindenstrauss and A. Pelczynski : Absolutely summing operators in \mathbf{f}^p spaces and their applications, Studia Mathematica, XXIX (1968), p. 275-326.
- [7] J. Lindenstrauss and H. Rosenthal : the \mathfrak{L}^p spaces, Israël Journal of Mathematics, vol. 7, No 4 (1969), p. 325-349.
- [8] A. Pietsch and A. Persson : p nuklear und p integrale Abbildungen in Banachraumen, Studia Mathematica, 33 (1969), p. 19-62.
- [9] A. Persson: On some properties of p nuclear and p integral operators, Studia Mathematica 33 (1969), p. 213-222.

- [10] A. Pietsch: Absolutely summing operators in g spaces, I and II, Séminaire Goulaouic-Schwartz 1970-1971 (Ecole Polytechnique, Paris).
- [11] P. Saphar : Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Mathematica, 38 (1970), p. 71-100.
- [12] P. Saphar : Applications p décomposantes et p absolument sommantes, Israël Journal of Mathematics, vol. 11, No 2 (1972), p. 164-179.
- [13] P. Saphar: Applications à puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach, Ann. E. N. S. 83 (1966), p. 113-152.
- [14] L. Schwartz : Séminaire de l'Ecole Polytechnique 1969-1970.
- [15] Tin Kin Wong : Absolutely summing operators between subspaces of L^p spaces (à paraître).
- [16] C. P. Segal and J. R. Retherford: Fully nuclear and completely nuclear operators with applications to \mathfrak{L}^1 and \mathfrak{L}^∞ spaces, Transactions of the A. M. S. vol. 163 (1972), p. 457-492.

SEMINAIRE MAUREY-SCHWARTZ 1972-1973

Exposé N^o XIV

$\mathbf{E}_{-}\mathbf{R}_{-}\mathbf{R}_{-}\mathbf{A}_{-}\mathbf{T}_{-}\mathbf{A}$

Pages

Au lieu de:

<u>Lire</u>:

XIV.3 Diagramme suivant la ligne 4 $F \xrightarrow{u} E \xrightarrow{A} M \xrightarrow{A^{-1}} E$

 $F \xrightarrow{u} E \xrightarrow{A} M \xrightarrow{A^{-1}} E$ $\downarrow i$ $\downarrow L^p$

XIV.3 Ligne 9

 $\leq \|A^{-1}\|/d_p (i A u), car$ $\sup E \otimes L^p, g_p \leq /d_p,$ $\leq \|\mathbf{A}^{-1}\|/\mathbf{d}_{\mathbf{p}}(\mathbf{i} \mathbf{A} \mathbf{u}), \operatorname{car}$ $\operatorname{sur} \mathbf{F} \otimes \mathbf{L}^{\mathbf{p}}, \mathbf{g}_{\mathbf{p}} \leq \mathbf{d}_{\mathbf{p}},$

XIV. 7 Ligne 6 continue T de E dans 1^p, telle que :

continue T de E
dans 1^p, de norme 1,
telle que :