SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

L. SCHWARTZ

Applications *p*-radonifiantes, 0

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 11, p. 1-9 http://www.numdam.org/item?id=SAF_1969-1970____A11_0

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE L. SCHWARTZ 1969-1970

APPLICATIONS p-RADONIFIANTES, 0

§ 1. LE THEOREME FONDAMENTAL

Nous avons défini, pour un Banach E, les probabilités cylindriques λ de type p, $0 , de type p approximables ou très approximables, pris, sur un Banach G, les probabilités de Radon d'ordre p, enfin les applications <math>u: E \to G$, linéaires continues, p-radonifiantes, approximativement ou très approximativement p-radonifiantes (exposé V, $\delta \delta 1, 2, 3$), et introduit les notations $\|\lambda\|_p$, $\|\lambda\|_p^*$, $\|\lambda\|_p^*$, $\|\lambda\|_p^*$, $\|\lambda\|_p^*$ (prop. V,5;1). On peut remplacer E par $\sigma(F',F)$, F Banach, ou G par $\sigma(H',H)$, H Banach, u étant alors faiblement continue de E dans G; le dual est alors E' = F ou G' = H; pour le calcul du type et de l'ordre, r'est toujours la fonction norme qui intervient sur E, F, G, ou H, autrement, dit pour λ cylindrique sur $\sigma(F',F)$, $\|\lambda\|_p^* = \sup_{\xi \in F, \|\xi\| \le 1} \|\xi(\lambda)\|_p$, et, pour λ de Radon sur $\sigma(H',H)$,

$$\|\lambda\|_{p} = \left(\int \|\mathbf{x}\|^{p} \, d\lambda(\mathbf{x})\right)^{1/p} \quad \text{pour p fini, et } \|\lambda\|_{\infty} = \sup \, \text{ess}_{\lambda} \|\mathbf{x}\|.$$

Théorème fondamental (XI,1;1) . Soient E, G des Banach, u une application linéaire continue de E dans G. Alors les propriétés suivantes sont équivalentes :

- 1) uest p-sommante (0 ;
- 2) u est approximativement p-radonifiante de E dans $\sigma(G'',G')$;
- 3) u est très approximativement p-radonifiante de ${ t E}$ dans $\sigma({ t G}",{ t G}")$;
- 4) Il existe une constante M finie ≥ 0 telle que, pour toute probabilité de Radon λ sur E, portée par un ensemble fini, on ait :

$$\|\mathbf{u}(\lambda)\|_{\mathbf{p}} \leq \mathbf{M} \|\lambda\|_{\mathbf{p}}^{*}$$
; (XI,1;2)

dans ce cas la formule reste vraie pour toute probabilité cylindrique λ de type p approximable, en remplaçant au 2e ne membre, $\|\lambda\|_p^{\infty}$ par $\|\lambda\|_p^{*a}$, et le plus petit M possible est $\pi_p(u)$, quasi-norme p-sommante (exposé N°7).

(L'idée de comparer les applications p-sommantes et p-radonifiantes revient à S. Kwapien).

<u>Démonstration</u>: on sait que 2 et 3 sont équivalentes (prop. V, 5; 1); nous ne parlerons plus que de 3.

Montrons l'implication $3 \Rightarrow 1$. Soit $a = \begin{pmatrix} a \\ n \end{pmatrix}_{n \in \mathbb{N}}$ une suite de points de E, $u(a) = u(a_n)_{n \in \mathbb{N}}$ la suite image, avec $||a||_p^2 = \sup_{\xi \in E^+, ||\xi|| \le 1} ||\langle a, \xi \rangle||_1^p = \sup_p (a)$

de l'exposé 8, et $\|\mathbf{u}(\mathbf{a})\|_{\mathbf{p}} = N_{\mathbf{p}}(\mathbf{a})$ de l'exposé 8. Soit $\lambda_{\mathbf{a},\mathbf{c}}$ la probabilité de Radon sur E :

$$\lambda_{\mathbf{a}, \mathbf{c}} = \sum_{\mathbf{n} \in \mathbb{N}} c_{\mathbf{n}} \delta_{(\mathbf{c}_{\mathbf{n}}^{-1/p} \mathbf{a}_{\mathbf{n}})},$$

où $c = (c_n)_{n \in \mathbb{N}}$ est une suite arbitraire de nombres > 0 avec $\sum_{n \in \mathbb{N}} c_n = 1$.

(Le cas $p = +\infty$ n'a rien de gênant, car $c_n^{-1/p} = 1$). Alors $\|\lambda_a, c\|_p^* = \|a\|_p^*$, $\|u(\lambda_a, c)\|_p = \|u(a)\|_p$. Si la suite a est scalairement 1^p , la probabilité cylindrique λ_a , c est de type p; elle est même de type p très approximable, car, si on considère la "tronquée"

$$\lambda_{a,c,N} = \sum_{n < N} c_n \delta_{\left(c_n - 1/p a_n\right)} + \left(\sum_{n > N} c_n\right) \delta_{\left(0\right)}$$

(on ne supprime pas de masses, on en ramène à l'origine, de manière que la masse totale reste 1), $\lambda_{a,c,N}$ converge étroitement donc cylindriquement vers $\lambda_{a,c}$ pour N infini, et $\|\lambda_{a,c,N}\|_p^* \le \|\lambda_{a,c}\|_p^*$. Alors, d'après l'hypothèse, $u(\lambda_{a,c})$ est d'ordre p, donc u(a) est l^p; donc u est p-sommante (exposé 9, § 6, prop. 11).

Montrons l'implication $1\Rightarrow 4$, seulement pour l'inégalité (XI,1;2). Soit λ de Radon sur E, portée par un ensemble fini, $\lambda = \sum\limits_{0\leq n\leq N} c_n \delta(\frac{b}{n})$.

Si nous appelons a la suite finie $a_n = e_n^{1/p} b_n$, on a $\lambda = \lambda_{a,c}$ suivant les

notations antérieures. Alors (XI,1;2) résulte de la définition des applications p-sommantes, avec $M \le \pi_p(u)$.

Quant à l'implication $4\Rightarrow 3$, et à l'inégalité (XI,1;2) étendue à λ cylindrique de type p très approximable, elle résulte du corollaire de la prop.(V,3;1).

Remarque : si $G = \sigma(H', H)$, H Banach, on a $\sigma(G'', G') = \sigma(H', H) = G$, et le théorème subsiste sans modification.

Soit maintenant $E=\sigma(F',F)$, et soit u faiblement continue de E dans G; elle est a fortiori continue de F' dans G. Il est équivalent de dire que u est p-sommante de F' dans G ou de $\sigma(F',F)$ dans G, à cause de la densité de la boule unité de F dans celle de F'' pour $\sigma(F'',F')$ (si $a=\left(a_n\right)_{n\in\mathbb{N}}$ est une suite de points de E, on a

$$\sup_{\xi'' \in F'', \|\xi''\| \le 1} \|\langle a, \xi \rangle\|_{1^{p}} = \sup_{\xi \in F, \|\xi\| \le 1} \|\langle a, \xi \rangle\|_{1^{p}})$$

cela posé le théorème subsiste sans rien modifier à sa démonstration. Mais une probabilité cylindrique λ sur $\sigma(F',F)$ ne provient pas nécessairement d'une probabilité cylindrique sur F', et, même si c'est vrai, le type n'est pas forcément conservé ; on obtient donc le résultat assez fort suivant : si u est linéaire faiblement continue de $\sigma(F',F)$ dans G, et si elle est p-sommante de F' dans G, ou approximativement p-radonifiante de F' dans $\sigma(G'',G')$, elle est aussi approximativement p-radonifiante de $\sigma(F',F)$ dans $\sigma(G'',G')$.

§ 2. REMPLACEMENT DE $\sigma(G'',G')$ par G

Proposition (XI,2;1): Soient E, G, des Banach, u une application linéaire continue de E dans G, p-sommante, 0 .

Alors u est approximativement p-radonifiante de E dans G, dans l'un quel-

conques des 3 cas suivants :

- 1) G est réflexif;
- 2) G = H', dual fort séparable d'un Banach H, et $p < +\infty$;
- 3) 1 .

§ 3. DEMONSTRATION DU CAS 1 : G EST REFLEXIF

Nous savons que $\mu=u(\lambda)$ est une probabilité cylindrique sur G, de Radon d'ordre p sur $\sigma(G,G')$. Tout résultera alors d'un théorème de Phillips :

Proposition $(X^{r},2;3)$: Toute probabilité de Radon sur $\sigma(G,G^{r})$, G Banach ou plus généralement Fréchet, est de Radon sur G lui-même.

Démonstration : l'énoncé pourrait prêter à ambiguîté. On sait d'abord que, G et $\sigma(G,G')$ ayant le même dual, ont les mêmes probabilités cylindriques. On sait ensuite que $\mathcal{P}(G) \xrightarrow{j} \mathcal{P}(\sigma(G,G'))$ est injective (prop.(I,2;1)), donc on peut identifier $\mathcal{P}(G)$ à un sous-ensemble de $\mathcal{P}(\sigma(G,G'))$; c'est dans ce sens qu'on a le droit de dire que $\mu \in \mathcal{P}(\sigma(G,G'))$ est une probabilité sur G (ou encore que j est une bijection).

Le résultat est simple si G est séparable ; car alors il est polonais, et on sait que toute probabilité de Borel ou de Radon sur G pour une topologie séparée plus faible l'est aussi sur G lui-même.

Soit G Fréchet quelconque. Il suffit évidemment de montrer que μ , mesure ≥ 0 finie sur $\sigma(G,G')$, est portée par une partie séparable de G, car on est ramené au cas précédent. Comme elle est portée par une réunion dénombrable de compacts faibles, on peut supposer que μ est portée par un compact faible K; comme l'enveloppe convexe fermée d'un faiblement compact est faiblement compacte (Krein-Smulian), on peut supposer K convexe équilibré, et μ de masse 1. Considérons l'application linéaire $f \stackrel{\mathfrak{U}}{\mapsto} \int_K f(x) \stackrel{\overrightarrow{x}}{\times} d\mu(x)$ (barycentre si $f \geq 0$ et $\|f\|_{L^1} = 1$ continue de

 $L^{1}(K,\mu)$ dans G. L'image de la boule unité de L^{1} est dans K, donc faible-

relativement ment compacte; donc (Dunford-Pettis) l'image de tout faiblement compact de L est compacte dans G. Or la boule unité de L est faiblement compacte dans L ; son image est donc une partie compacte C de G métrisable, donc séparable. Mais soit V un voisinage faible d'un point a du support de μ , qu'on peut supposer faiblement fermé et convexe ; si f_V est la fonction égale à $\frac{1}{\mu(V)}$ sur V et à 0 ailleurs, son barycentre $\mu(f_V)$ est dans l'enveloppe convexe faiblement fermée de V, donc dans V ; donc $\mu(f_V)$ converge faiblement vers a, suivant l'ordonné filtrant des voisinages faibles de a, et $\mu(f_V)$ est dans $\mu(f_V)$ C, donc dans l'espace vectoriel séparable F engendré par C. Donc tout point a du support de μ est da s F, μ est portée par $\mu(f_V)$ est séparable. $\mu(f_V)$

§ 4. DEMONSTRATION DU CAS 2 : G = H', H BANACH, H' SEPARABLE, $p < +\infty$ (exemple : $H = c^0$, $G = 1^1$).

Nous savons (remarque suivant le théorème fondamental) que l'image de $u(\lambda)$ par $j:H'\to\sigma(H',H)$, est de Radon d'ordre p. Mais une probabilité de Radon sur $\sigma(H',H)$ est l'image par j d'une probabilité de Radon ν sur H', puisque H' est polonais. Donc ν et $u(\lambda)$ sont deux probabilités cylindriques sur H', dont les images par j cofincident ; si nous pouvons en déduire qu'elles cofincident, $\nu=u(\lambda)$, $u(\lambda)$ sera de Radon sur H', d'ordre p, et le résultat sera démontré.

Soient U, V, deux espaces vectoriels localement convexes séparés, j linéaire faiblement continue <u>injective</u> de U dans V. Soient μ et ν deux probabilités cylindriques sur U, telles que $j(\mu) = j(\nu)$; peut-on déduire que $\mu = \nu$? Certainement pas, si l'on ne fait aucune hypothèse. Autrement dit, $j: \stackrel{\sim}{P}(U) \rightarrow \stackrel{\sim}{P}(V)$ n'est pas nécessairement injective. Et précisément on peut donner un contre exemple avec U = H', $V = \sigma(H', H)$, j = identité, si H n'est pas réflexif. Soit en effet a''' un point de H''', de norme 1, définissant une forme linéaire continue sur H'', nulle sur H. Alors $\binom{\sim}{a''}$ est une probabilité de Radon sur H''', donc cylindrique, donc cylindrique sur $H' \subset H'''$, puisque H' et H''' ont le même complété faible. Son image pour

j est $\delta_{j(a''')} = \delta_{(0)}$ puisque a''' est nulle sur H. Alors les 2 probabilités cylindriques $\delta_{(a''')}$ et $\delta_{(0)}$ sur H' ont même image dans $\sigma(H',H)$.

Dire que $j(\mu)=j(\nu)$, c'est-à-dire que μ et ν ont même image $\xi(\mu)=\xi(\nu)$, par toute forme linéaire continue ξ sur U de la forme η o j, $\eta\in V'$, c-à-d. les $\xi={}^tj(\eta)$ ou les $\xi\in {}^tj(V')$. Nous voulons savoir si $\xi(\mu)=\xi(\nu)$ pour tout $\xi\in U'$. Alors :

<u>Proposition (XI,4;1)</u>: Soit $j:U \rightarrow V$ linéaire faiblement continue injective. Alors, si μ et ν sont 2 probabilités cylindriques sur U, et si $j(\mu) = j(\nu)$, on a $\mu = \nu$ au moins dans les 2 cas suivants :

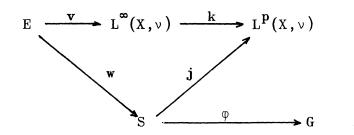
- A) jest un morphisme strict des topologies affaiblies;
- B) μ et ν sont scalairement concentrées sur la famille $\mathfrak T$ des parties faiblement compactes convexes de U.

Démonstration

- A) si j est un morphsisme strict de topologies faibles, il permet, pour ces topologies, d'identifier U à un sous-espace de V. Alors, d'après Hahn-Banach, $t_j(V') = U'$, d'où le résultat.
- B) Supposons μ et ν scalairement concentrées sur la famille $\mathfrak E$ des faiblement compacts convexes. Alors la fonction caractéristiques $M=\mathfrak F\mu$ est continue sur $U'_{\mathfrak E}=\tau(U',U)$ (théorème de l'exposé II, § 3). Si $\mathfrak E$ tend vers $\mathfrak E_0$, $\mathfrak T\mathfrak E$ tend vers $\mathfrak T\mathfrak E_0$ uniformément pour $\mathfrak T\in \mathbb R$ borné, donc $M(\mathfrak T\mathfrak E)$ tend vers $M(\mathfrak T\mathfrak E_0)$ uniformément pour $\mathfrak T\in \mathbb R$; donc (théorème de Paul Lévy) la probabilité $\mathfrak E(\mu)$ d'image de Fourier $\mathfrak T\mapsto M(\mathfrak T\mathfrak E)$, tend étroitement vers $\mathfrak E_0(\mu)$, d'image de Fourier $\mathfrak T\mapsto M(\mathfrak T\mathfrak E_0)$. Autrement dit, $\mathfrak E\mapsto \mathfrak E(\mu)$ est continue de $U'_{\mathfrak E}=\mathfrak T(U',U)$ dans $\mathfrak P(\mathbb R)$, et de même $\mathfrak E\mapsto \mathfrak E(\nu)$. Or $\mathfrak E(\mu)=\mathfrak E(\nu)$ sur $\mathfrak T(V')$; puisque j est injective, $\mathfrak T(V')$ est dense dans $\mathfrak O(U',U)$, donc aussi dans $\mathfrak T(U',U)$, donc $\mathfrak E(\mu)=\mathfrak E(\nu)$ pour tout $\mathfrak E\in U'$, et $\mu=\nu$, \underline{cqfd} .

§ 5. DEMONSTRATION DU CAS 3 : 1

Supposons u p-sommante. On a la factorisation (prop.VII,3;4) $u = \phi o w$:



où S est un sous-espace vectoriel fermé de L^p, d'injection canonique j. Mais L[∞] - k L^p est p-sommante, et, comme L^p est réflexif pour $1 , elle est approximativement p-radonifiante de L[∞] dans L^p lui-même, d'après le § 3. Donc E k L^p l'est aussi ; par suite, si <math>\lambda$ est une probabilité cylindrique de type p approximable sur E, son image par kov dans L^p est de Radon d'ordre p. Mais $kv(\lambda)$ est "cylindriquement" portée par l'image kv(E) = jS; autrement dit, si β est une application linéaire continue de L^p dans un espace de dimension finie, $(\rho \ kv(\lambda))(\rho kv(E)) = 1$, ou $\rho kv(\lambda)$ est portée par $\rho kv(E) = \rho j(S)$. Mais $kv(\lambda)$ est de Radon, et, jS étant faiblement fermé, il est l'intersection filtrante des $\rho^{-1}(\overline{\rho j(S)})$, et on peut écrire :

$$(kv(\lambda))(jS) = \lim_{\rho} (kv(\lambda))(\rho^{-1}(\overline{\rho j(S)})$$

$$= \lim_{\rho} (\rho kv(\lambda))(\overline{\rho jS}) = 1.$$

Donc $\mathbf{kv}(\lambda)$ est portée par jS et provient donc d'une probabilité de Radon ν sur S : $\mathbf{kv}(\lambda) = \mathbf{j}\nu$ ou $\mathbf{w}(\lambda) = \mathbf{j}(\nu)$. Alors $\mathbf{w}(\lambda)$ et ν ont même image par j, morphisme strict, donc (prop. (XI,4;1)) $\mathbf{w}(\lambda) = \nu$. Ou encore : $\mathbf{u}(\lambda) = \phi \mathbf{w}(\lambda)$ est de Radon d'ordre p sur G, $\underline{\mathbf{cqfd}}$.

Un contre-exemple

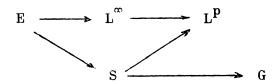
Reprenons ce qui a été dit au § 4, avec $H=c^0$, $H'=1^1$, $\lambda=\delta_{\{a'''\}}$, a''' de norme 1 dans $H'''=(1^1)''$ et nul sur H. Alors λ est cylindrique sur 1^1 , visiblement de type $+\infty$ avec $\|\lambda\|_{+\infty}^*=1$. Elle est limite cylindrique de $\delta_{\{a''_j\}}$, si les a'_j sont des points de la boule unité de 1^1 , convergeant vers a''' dans $\sigma((1^1)'',(1^1)')$, donc elle est de type $+\infty$ très approximable, avec $\|\lambda\|_{+\infty}^{*ta}=+1$. Cependant elle n'est pas de Radon sur 1^1 . Ce qui prouve que, dans les cas 2 et 3 de la prop.(XI,2;1), on ne peut pas prendre $p=+\infty$.

ADDITIF A L'EXPOSE XI

La démonstration du cas 2, § 4, n'est pas terminée ! p-sommante, 0 , de E dans H' = G. Alors elle est approximativement p-radonifiante de E dans $\sigma(H',H)$. Si donc λ est cylindrique de type p approximable sur E, $u(\lambda)$ est une probabilité cylindrique sur H', dont l'image par j: H'→ σ(H', H) est de Radon d'ordre p. Celle-ci a son tour provient par j d'une probabilité de Radon v sur H'; il faut montrer que $u(\lambda) = v$ sachant que $j(u(\lambda)) = j(v)$. Il faut appliquer la prop.(XI,4;1), et pour cela savoir que $u(\lambda)$ et ν sont toutes deux scalairement concentrées sur les faiblement (i.e. $\sigma(H',H'')$)-compactes de H'. C'est vrai pour ν , qui est de Radon, donc portée par une réunion dénombrable de convexes compacts. Quant à λ , l'inégalité $\|\xi(\lambda)\|_p \le \|\lambda\|_p^* \|\xi\|$ montre qu'elle est scalairement concentrée a ϵ pres sur la boule de rayon R, si $\epsilon = \left(\frac{\|\lambda\|_{\mathbf{p}}^*}{R}\right)^{\mathbf{p}}$, donc scalairement concentrée sur la famille des boules ; tout sera démontré si nous savons que $u : E \rightarrow G$ est faiblement compacte, car alors $u(\lambda)$ sera scalairement concentrée sur les images des boules, donc sur les faiblement compacts convexes. Or:

<u>Lemme</u>: une application $u: E \rightarrow G$, p-sommante, $p < +\infty$, est faiblement compacte.

Démonstration du lemme :



Or, si $1 \le p \le +\infty$, $L^{\varpi} \to L^p$ est fablement compacte puisque L^p est réflexif. Donc l'image de la boule unité de E dans S est une partie faiblement relativement compacte de L^p , donc de S; son image dans G est donc faiblement relativement compacte.

Pour $p \leq 1,$ on remarquera que u est a fortior1 q-sommante, $1 < q < + \infty \; .$