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CANONICAL CORRELATION ANALYSIS 
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EXTENSIONS OF CORRESPONDENCE ANALYSIS 

RenateMEYER 
Department of Médical Statistics and Documentation 

oftheRWTHAachen 

Pauwelsstr. 30,5100 Aachen, Fédéral Republic of Germany 

Résumé. 
L'analyse des correspondances d'un tableau de contingence à deux dimensions 

peut être considérée comme un cas particulier de l'analyse canonique de deux ensembles 
de variables indicatrices. Ainsi, la manière la plus naturelle de généraliser l'analyse des 
correspondances à une table à trois ou plusieurs dimensions consiste à appliquer l'analyse 
canonique convenablement généralisée au cas de plusieurs variables indicatrices. 

Dans cet article nous présentons quatre généralisations différentes de l'analyse 
canonique à Q > 3 ensembles de variables aléatoires et nous appliquons ces méthodes 
aux variables indicatrices. Ainsi nous obtenons quatre extensions différentes de l'analyse 
des correspondances. La détermination des variables canoniques nous mène à des 
problèmes aux valeurs propres généralisés. Nous présentons un nouvel algorithme itératif 
pour résoudre ces problèmes et nous prouvons sa convergence globale. En fait, alors que 
la première extension, équivalente à "l'analyse des correspondances multiple", est 
souvent appliquée grâce à ses calculs directs, nous montrons que les trois autres 
extensions fournissent des interprétations beaucoup plus significatives des 
représentations graphiques. Les problèmes calculatoires sont surmontés par notre 
algorithme. 

Mot clés, tableau de contingence, analyse des correspondances, analyse canonique, 

problème aux valeurs propres. 

Classification AMS : 62H17, 62H20, 65U05 
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Abstract. 
Correspondent anatysis (CA) oftwo-way contingency tables can be regarded as 

a spécial case ofcanonical corrélation anatysis with two sets ofindicator variables. Thus, 
it is obvious to extend CA to three-way and higher-dimensional contingency tables by 
appropriately generalized canonical corrélation analysis techniques applied to the set of 
indicator variables at hand. 

In this pape r four diffèrent generalizations ofcanonical corrélation analysis to 
Q > 3 sets ofrandom variables areproposed, their applications to indicator variables are 
studied, and the resulting extensions ofCA to Q-dimensional contingency tables are 
presented. The détermination of canonical variâtes leads to generalized eigenvalue 
problems. We will présent a new itérative procédure for their solution andprove the 
global convergence ofthis algorithm. Actually, whereas thefirst extension, which is 
équivalent to "multiple correspondent analysis", is widely used in practice because of 
its straightforward computations, we think that the other three extensions yield more 
meaningful interprétations of the resulting graphical représentations. The arising 
computational difficulties hâve been surmounted by our algorithm. 

Keywords : contingency tables, correspondence analysis, canonical corrélation 

analysis, eigenvalue problem. 

1. INTRODUCTION. 

Many attempts hâve been made to trace back accurately the historical development 

of the multivariate statistical analysis method called correspondence analysis. For a 

sketch of the historical development as well as a correspondence analysis of co-citations 

see van Rijckevorsel (1987). As described in détail by Greenacre (1984), there are a 

number of possible équivalent approaches to correspondence analysis ail of them leading 

to the same mathematical method, which is essentially a singular value décomposition of 

an appropriately normalized data matrix : 

• reciprocal averaging, see Hirschfeld (1935), Richardson and Kuder (1933), 

Horst (1935), Benzécri (1964) and Hill (1974). 

• dual or optimal scaling, see Guttman (1941), Hayashi (1950), Bock 

(1960) and Nishisato (1980). 
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• simultaneous linear régressions, see Lingoes (1964). 

• discriminant analysis, see Fisher (1940), Lebart et al. (1984). 

• weighted least squares approximation of a matrix by a matrix of reduced 

rank, see Eckart & Young (1936), Greenacre (1984). 

• generalized principal components analysis, see Benzécri (1977), Lebart 

étal. (1984). 

• canonical corrélation analysis, see Hotelling (1933), McKeon (1966). 

The géométrie form of the above methods originated in France in a linguistic 

context - already indicated by the French term "analyse des correspondances " - and 

was developped by J.P. Benzécri in the early 1960s. The interprétation of the graphical 

représentation of a contingency table is primarily based on the transition formulae and 

"le principe barycentrique ". 

Given a higher-way contingency table, we face an abundance of possible analysis 

techniques. A first attempt may consist of reducing this problem to the two-dimensional 

case. For example, given a three-way contingency table of order I * J x K, one can 

analyze K separatate I * J tables for each category of the third variable. Gifî (1990) 

concatenated thèse "sliced" contingency tables to three two-way tables having order I * 

(J x K), J x (I x K) and K x (I x j) respectively, called "tableaux multiples " in the 

French literature (Benzécri (1980)). Clearly, thèse techniques don't take into account the 

possibly complex three-dimensional interaction structure. 

Another simple generalization of correspondence analysis is the so called multiple 

correspondence analysis, see Benzécri (1977), Greenacre (1984), or homogeneity 

analysis, see Gifî (1990), which has been proposed to deal with the situation of Q > 2 

categorical variables cross-classified in a multidimensional contingency table by directly 

applying the correspondence analysis algorithm to the corresponding N * 01+¾ ».+JQ) 

indicator matrix, where N is the number of observations and Jq the number of 

catégories of variable q (q = 1,2,...,0). Although there hâve been other proposais, for 

example by Masson (1974), Leclerc (1980), Van de Geer (1986), this method of multiple 

correspondence analysis has been used in ail practical applications without any exception 

worth mentioning, certainly because of the straightforward und uncomplicated 
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calculations. Nevertheless, as mentioned for example by Greenacre (1988), this 
technique is not a natural generalization of the géométrie approach and, besides several 
other shorteomings, does not yield meaningful interprétations of the resulting graphical 
représentation of generalized canonical corrélation vectors. Thinking of multiple 
correspondence analysis as the weighted least squares approximation of the Burt matrix, 
Greenacre (1988) particularly critieizes the fitting of subtables on the diagonal of the Burt 
matrix, the resulting inflation of total variation and underassessment of the variation 
explained by a principal axis thereby. Therefore he suggests an alternative generalization 
of correspondence analysis which fits only the off-diagonal subtables of the Burt matrix 
by an alterning least squares algorithm. However, he admits the lack of a spécifie 
géométrie interprétation of the graphical display. 

As mentioned previously, correspondence analysis can be viewed as a spécial 
case of canonical corrélation analysis, custom-made to two sets of indicator variables that 
define a two-dimensional contingency table. Thus in order to generalize correspondence 
analysis to Q-dimensional contingency tables, Q > 2, the obvious thing to do is to fîrst 
extend canonical corrélation analysis to Q sets of variables and then to apply this 
extension to Q sets of indicator variables. By this way, we will arrive at several and, in 
particular, some new generalizations of correspondence analysis, since there are several 
possible and quite différent way s of extending canonical corrélation analysis. 

The ensuing questions will be : Do thèse différent extensions of canonical 
corrélation analysis yield différent extensions of correspondence analysis or do they 
coïncide when applied to indicator variables ? In case they do not coïncide : 

• Which of thèse extensions is équivalent to the usual multiple correspondence 

analysis ? 

• How can the joint display ofthe "generalized" canonical corrélation vectors be 

interpreted ? 

or equivalendy, since some type of transition formulae will define the basis for 
any joint représentation 

• What différent kinds of transition formulae do we obtain ? 

In mathematical literature we fînd several approaches of extending canonical 
corrélation analysis to more than two sets of variables, one as early as 1961 by Horst and 
five possible extensions proposed by Kettenring (1971), his SUMCOR method being 
équivalent to Horst's technique, his MAXVAR method being équivalent to a generalization 
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of Carroll (1968). The solution of the MAXVAR problem can be calculated directly, 

whereas the SUMCOR method as well as ail other methods require itérative procédures 

whose convergence properties hâve not yet rigorously been proved. 

In this paper we will follow the approaches of Kettenring (or Carroll and Horst, 

respectively) in generalizing canonical corrélation analysis to Q > 2 sets of variables and 

show the convergence of a new itérative procédure for solving the generalized eigenvalue 

problems that characterize the generalized canonical corrélation vectors. (This will include 

a convergence proof of Horst's itérative procédure.) Last not least we are going to study 

the application of thèse generalizations of canonical corrélation analysis to indicator 

variables and try to answer the questions raised above with a strong emphasis upon the 

geometrical aspect of thèse techniques. 

2. CANONICAL CORRELATION ANALYSIS OF TWO SETS OF 
VARIABLES. 

Given two sets of random variables { X 1 1 , X 1 2 t - - - » X 1 j } and 

{X21,X22, .,X2j }, the objective of canonical corrélation analysis is to find a pair of 

linear combinations U = ajXj and V = a^X2 with 

x l = (xll»xl2*—»X1J1)'»
 a l = ^ 1 1 ^ 2 1 ^ - ^ 1 1 ^ 1 » 

X 2 = (X21»X22'—'X2J2'' a2 = ^ 1 ^ 2 ^ ^ ¾ ¾ ^ ' 

suchthat U and V hâve largest possible corrélation 

( 2 1 ) P"{Cov(a;x1)Cov(^X2)}1 / 2 , 

Since the corrélation coefficient is scale - and translation - invariant, we consider 

only solutions with zéro expectation and unit variance. Having determined the firstpair 

ofcanonical corrélation varioles U and V further linear combinations of the two given 

variable sets may be sought which again hâve maximal corrélation but are constrained to 

be uncorrelated to the preceding solutions. For ease of notation, we will consider only 

the first canonical corrélation variables hère. 
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In practical applications where two centered data matrices Zj = (x^/ — ? / ) e 

E N x J l and Z2 = ( x ^ - x?*) e E N x j 2 corresponding to N realizations of X! and 

X2 are given, the optimization problem is to maximize the empirical corrélation 

coefficient, i.e. to détermine 

(2.2) N â i ^ ¾ ¾ = . - 1 1 1 ¾ . . N ^ ¾ ¾ ¾ • 

The solutions, called canonical corrélation vectors, aie given by 

(2.3) âj = d^Z^+Zlb + [Ijj - (ZjZ^+ZlZjlw, , 

(2.4) a2 = d^Z^+Z^b + [Ij2 - (Z2Z2)+Z2Z2]w2 

2 
with b the eigenvector corresponding to the largest eigenvalue Â  of the matrix 

2 (ZjftZjZ^+Zj + Z2(7^Z2)
+7^)J standardized according t o ^ b'b = 1, with arbitrary 

vectors wx e RJl, w 2 e EJ2, and with constants dq := {^ b'Zq(2^Zq)+^b} " ^ for 

q= l ,2 . (Ik dénotes the k-dimensional identity matrix, Z+ the Moore-Penrose inverse 

of the matrix Z.) This results from our theorem 3.1. for Q = 2. 

Let us briefly review how canonical corrélation analysis is used for exploring the 
interrelationship between two categorical variables A and B with Jj resp. J2 

catégories. In this case, our data are given by the partitioned N * (J1+J2) indicator 
matrix W = [X1,X2] with components x ^ = l (respectively x ^ = 1) if category i of 

variable A (respectively category j of variable B) is observed in the nth observation, 
and 0 otherwise. Applying canonical corrélation analysis to this binary matrix yields, on 
the one hand, the values of the canonical corrélation coefficients p (characterizing the 
strength of interrelationship between A and B), and the components â l is â2j of the 
vectors ^ resp. ^ which can be interpreted as an optimal scaling of the (qualitative) 
Jj resp. J2 alternatives of A resp. B. On the other hand, as shown for example by 
Greenacre (1984), this procédure is équivalent to a correspondence analysis of the 
Jl x ^-contingency table P = (py) that contains the observed relative frequencies py 
of the Jj resp. J2 catégories of A and B leading to a meaningful geometrical 
représentation. In fact, the basic objective of correspondence analysis, conceived as a 
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generalized principal components analysis, is to find a lowdimensional subspace that 
minimizes the weighted sum of squared distances from the row profiles 

Pi := (-^,. . . , -^, 1 = 1,2,...,1^ to their projection points pj on this subspace, i.e. 

* - 2 
2- Pi llp-- p^.1 -» min 
i=l c 

2 1 
where Dc

 := diag(p j,p 2».»,PjJ and llxllD_i :- x* D c x is a generalized euclidean 

distance. Considering, e.g., a one-dimensional approximation for ease of illustration, 
we find that the optimum représentation of the row profiles (neglecting the trivial 
eigenvalue X2 = l) is given by the Jj components âj^â^.»., &2j e E 1 of âp and 

similarly by the J2 components &2V*22*~'&2he ^ 1 °f ^ for the column profiles. 
So, the Jj components of the first canonical corrélation vector âj are the coordinates of 
the Jj projection points of the row profiles with respect to an orthogonal basis of the 
optimal one-dimensional subspace. By analogy the canonical corrélation vectors â2 are 
solutions of the dual problem concerning the column profiles. The représentation of both 
row and column profiles in one joint display may be justified and distances between row 
column profiles may be interpreted by the transition formulae : 

(25) *«-xf s * • 
J 

1 ^ P 
<2-« â2j = i £ ^ â n X i=i P.j 

i.e. the coordinates of the jth column profile are centioids (weighted by the jth column 
profile) of the coordinates of the row profiles and stretched along the first principal axis 

by a factor — and vice versa. 
X 

3. CANONICAL CORRELATION ANALYSIS OF Q SETS OF 

VARIABLES. 

Following the canonical corrélation analysis approach, CA can be extended to 
the case of Q-dimensional contingency tables (with Q £ 2) by applying a suitably 
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generalized canonical corrélation analysis to the Q sets of indicator variables at hand. 
We will investigate four différent extensions of canonical analysis to the case of Q > 2 
sets of variables which ail reduce to the classical canonical corrélation analysis when 
Q = 2. Consider Q > 2 random vectors X e E J q , q = 1,2,...,Q, whose 

interrelationship and dependence structure has to be analysed. Given N realizations of 
thèse Q random vectors as entries in Q (centered) data matrices Z , q = l,2,..,Qe 

E x Q , the empirical covariance matrix of Q linear combinations %Xq, q = 1,2,...,Q, 

can be partitioned in the following way : 

ajZjZjaj ... ajZjZqag 

S(a) = Côv(aj X ^ ^ a ^ X g ) = ^ 

La^Z^Zjaj ... a^ jZ^aq 

The first extension (Carroll (1968)) to be examined hère, consists in finding Q linear 
combinations £ÛX , standardized each according to Var(alXq) = 1, and an additional 

unit variance variable Y that maximize the sum of squared corrélation coefficients 
between the Q linear combinations and the auxiliary variable. The empirical version of 
this optimization problem can be formulated in the following way (b € E N , contaihing 

the N values of the variable Y, a € E J, J := 2 Jq) : 

(3.1) F^a.b) := - ^ 2 (b 'Za)2 ->max 
QNZ q=i q 4 a,b 

subject to ^ b'b = 1 and |^ ^ Z q a q = 1, q = 1 Q. 

Theorem 3.1. Define Ax := Q E ^ Zq(^Zq)+^ and let b dénote the 
2 

eigenvector corresponding to the largest eigenvalue X^ of Aj, standardized according to 

^ b 'b = 1. Then the solution of (3.1) are given by b and 

(3.2) aq = dq(Z^Zq)+2^b + [IJq - (2^Zq)+2^Zq]wq , q = 1,2,...,Q 

1 i /7 

with arbitrary J -dimensional vectors wq and a constant dq:= {^b'Zq(Z^Zq)
+2^b}' . 
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Proof. In order to maximize Fj(a,b) w.r.t. a1,a2,...,aQ for a fixed b we use the 

Cauchy-Schwarz inequality : 

Fl(a,b) := ÔS* | , { b 'z^ ) 2 

Cauchy-Schwarz - Q 

Equality holds if andonly if forall q=l,2,...,Q a constant c exists such that : 

Vq = Cqb-

The (correctly standardized) least-squares solutions of this System of linear équations are 

given by (cf. Rao, Mitra (1971), theorem 2.3.1) : 

. Ŵ + [IJc ~ ( ^ Z q ) + ^ V 
aq " 2 

{^b'Zq(Z^Zq)^b}l/2 

with arbitrary vectors wq e E q. Substituting â = [a},82,...,¾]1 in the objective 

fonction Fj yields : 

max Fj(a,b) = F ^ b ) 
arl/Na^Zq^lVq 

-èb'A^. 

By a well known resuit, the functions b 'A^, with b satisfying ^ b'b = 1, is 

maximized by the appropriately standardized eigenvector b corresponding to the largest 

eigenvalue Xx of the matrix Aj which complètes the proof. • 
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Note that the application of this technique to Q indicator matrices corresponding 

to a Q-dimensional contingency table is the same as the usual multiple correspondence 

analysis with respective standardization of the score vector (Greenacre (1984)), whereas 

the following three generalization induce différent extensions of correspondence analysis. 

Using the approach of Kettenring (1971), thèse three Q-dimensional generalization of 

canonical corrélation analysis can be formulated in the following way : We search for 

linear combinations alX , q = 1,2,...,Q, each having unit variance, which either 

— maximize the sum of corrélations between each pair, i.e. 

SUMCOR 

(3.3) f 2 (a ) :=^ Ë Ë a^Zq*aq* = a'A2(a)a -» max 
^ 1 q+=1 l/Na^Zqaq=lVq 

— or maximize the sum of squared corrélations, i.e. 

SSOCOR 

(3.4) F3(a) : = i £ £ {a^Zq*aq* } 2 = a'A3(a)a -> max 
<H Q*=l l/Na^Zqaq=lVq 

— or minimize the generalized variance of S(a), i.e. 

CgNVAR 

(3.5) F4(a) := det{S(a)} = a'A4(a)a-> max 
l/Na^Zqa^lVq 

where a = [aj,a^,. . . ,ay e RJ , J = E^ = 1 J q , and the matrices Ai(a) aredefinedby: 

ZJZJ . . . ZJZQ 

A2(a) : = A2 := ^ 

_ ZQZJ . . . Z^JZQ 
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A3(a) := ^blockdiag[ 2 ZjZ^ftZj 2 Z Q Z ^ Z ^ Z Q ] , 
^ (f=l <f=l 

A4(a) := j^blockdiagtZjT^jS^T^Zp..., Z Q T ^ S ' ^ T ^ Z Q } , 

where S/^ is the ( Q - 1) x ( Q - l)-matrix obtained from S(a) by omitting the qth 

row and qth column and T/^ defined by 

T(q) : = N [Zlal'*"'Zq-laq-l' Zq+laq+l» *"' ZQ^ ' 

Using this notation, the common structure of ail three optimization problems 

becomes évident, but we should realize that the matrices A3(a) and A4(a) are really 

dépendent on the vector a, whilst this is not the case for A2(a) = A2 . Ail three 

optimization problems lead to some kind of a (generalized) eigenvalue problem : 

Theorem 3.2. Any solution â of the ith optimization problem, i e {2,3,4} is an 

eigenvector of the "generalized eigenvalue problem " : 

(3.5) Ai(â)â= D^Bâ 

(3.6) ^ Z ^ â q = l q = l,2 Q 

with the blockdiagonal matrices 

D^ = blockdiag[A.1Ij1,...,X,QIjQ] , 

B = ̂ blockdiag [ZÎZ1,...,Z^ZQ] 

Proof. The proofs are straightforward and can be formulated by applying the Cauchy-

Schwarz inequality in the same way as in the proof of theorem 3.1. 

Remarks. 

1. Kettenring (1971) proposed a method of successive cyclic itérations to find the 
maximum of the functions F2, F3 and F4. Each cycle of his algorithm consists of Q 

separate steps. In cycle i and step q*, 1 < q* < Q, the current canonical corrélation 
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vectors a^ , q = l,...q*-l, and a(
q" \ q = q* +1,...,Q, that hâve been determined so 

far, are considered as fixed and a** is selected to maximize the sum of corrélations 

(resp. the sum of squared corrélations or the squared multiple corrélation) of a^ Xq* 

with the other current variables. For the SUMCOR method e.g., â 1* in cycle i and step 

q* istdefinedas 

Q(i) .= fZq*Zq*\l 
a i 
q* m 'S* ZQ*Zq* a(i) + £ Zq*Zq* a(i-Q 

q=l N 1 q=q*+l N « 

7*7 
and standardized according to a^ —a—9— â 1; = 1. 

2. Yanai (1986) applied the SUMCOR and SSQCOR extensions to Q = 15 categorical 

variables in order to compare their results with the usual multiple correspondence 

analysis. The well-known Newton-Raphson algorithm was used to maximize the 

functions F2 and F3. 

3. Lafosse (1989) aims at maximizing the sum of squared corrélations between each of 

the Q variables and the sum of the remaining variable, i.e. 

£ p 2 (a**X *, E ^ X ) - > max. 
q* 4 q q*i* M q 

Without giving a convergence proof he proposes an algorithm which might be considered 

as an intermediate forai of Carroirs and Horst's algorithms. Cycle i and step q* of this 

itération consists of the following calculations : 

s(0 •= 1 S? z a(i) + 1 £ Z a0"1* V N tZ*\ +N * V q <H M q=q*+i 

s2 
(0 •=_£_ <5 

<>., ' 

\ 
(o rtfZfy z. so) 
lq* [ N J W 
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4. AN ALGORITHM FOR GENERALIZED EIGENVALUE PROBLEMS. 

In this chapter we will présent a new itérative procédure for the solution of the 
generalized eigenvalue problem (3.5), (3.6). We consider the following L-norm 

optimization problem (1 < p < 2), which has been investigated by Haussier (1984) in the 
context of robust L-discrimination for the spécial case of a linear fonction <|) and Q = 1 : 
Let ty : E J -> RL, <|>(a) = R(a)'a, be a function of the partitioned vector 

a = 

a l 

, aq e RJ<*, q = l , 2 Q, 

LagJ 

yvith a (J x L)-matrix R(a) := [rj(a),...,rL(a)]. We want to maximize the Ip-norm of <|>(a): 

L 

(4.1) F(a) := ll<Ka)lÇ = Z Ir,(ayalp -> max 

with respect to a e E J subject to the restriction that the lp-norm of vq(aq) = Sqaq is 

equal to 1 for q = 1,2,...,Q, where Sq := [sql,...,sqKq] is a given (Jq x Kq)-matrix 

with full rank K By defining the J xJ-matrices 

L 

A(a):= Z l r^aya lP^r^ r^a ) ' , 

Kq 

Bq(a) := blockdiag[0 Z I s ^ a ^ s ^ S q , , 0], q = 1,2 Q 

(4.1) can be reformulated as 

(4.2) F(a) := a'A(a)a -> max 
a'Bq(a)a=l q = U Q 

A straightforward dérivation shows : 

Theorem 4.1. If the function F is strictly convex and continuously 
differentiable with gradaF(a) = cA(a)a, where c> 0, a necessary condition for â to 
solve (4.1), resp. (4.2), is the existence of constants Xv A^,...,XQ e E such that 
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(4.3) A(â)â = Z^ q B q (â )a , 

(4.4) â'Bfl(â)â = 1 q = 1,2 Q 

Obviously, (4.3) and (4.4) reduce to our original problems SUMCOR, SSQCOR and 
GENVAR by setting p = 2 and substituting A(a) by A2(a), A3(a) or A4(a), 

respectively, as well as B (a) by B := blockdiag[0,...j^ ZJlZ ,...,0] for q = 1,2,...,Q. 

We propose (and hâve used) the following itérative procédure for solving generalized 
eigenvalue problems of the type (4.3) : 

Theorem 4.2. The following algorithm : 

Choose a(°)e E J subjectto a ^ ' B ^ 0 ) ^ 0 ) = 1, V q = l , 2 Q. 

For i > 1 solve the following System of linear équations for x(i+l) : 

(4.5) Z Bû(a(i))x(i+1) = A(a(i))a(i) 

and define 

(4.6) D(i+D := blockdiag[. . . ,{x£+ 1 )^ 

(4.7) a(i+1> := D(i+1> x(i+1) 

is globally convergent, i.e. it converges to a solution of (4.3) and (4.4) for any starting 
vector a(°) e E J . 

The following proof of theorem 4.2. follows the same lines as the proof given in 

Watson (1985) who considered the simpler case of a linear function <|>. We will need 

some preliminary lemmas. 

Lemma 4.3. For any real numbers a, p, P * 0, and 1 < p < 2, the following 

inequality holds : 

IcclP - ipiP - y pipiP"2 (a^-p2) < 0. 
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a 
Proof. Setting x := — the inequality in lemma 4.3 is équivalent to 

f(x):-lxP - Jx2 + J<l . 

It is easily shown by differentiation that this function f(x) obtains its global maximum at 

x = l with f(l) = l. 

Lemma 4.4. Let the séquence {a®} be defined as in theorem 4.2. Then the 
following two statements are équivalent for i e N 0 : 

i)a(0 = a(i+1) 
ii) a® is a solution of the generalized eigenvalue problem (4.3), (4.4), i.e. 

,(i))a(0 = Z (4.8) A(a(i))a« = I L Bfl(a©)a®, 

(4.9) a<i)'Bq(a«)a(0 = 1, q = 1,2 Q 

for some real numbers A.19...,A,Q . 

Proof. We will first show the implication i) -» ii). If a(i+1> = a® for some i e N 0 , we 

get 
xG+l) = DO+D-1 a(»+l) = D(i+1)-laO) 

and therefore : 

A(a®)a(i) ( t 5 ) 2 Ba(a(i))D0+D-la(0 

f l 4 

{xO+D'BJaOjxO+D} ̂ ja(aO))a(0 

* • * 

= SXqBq(aO))a© 

withXq:=Xj>. 

On the other hand, if a® is a solution of (4.3) and (4.4), then 

£ Ba(aO))x(i+D(4=5)A(aO))aW (4=3) £ *q B_(a©)a©, 
q=l q q=l 4 q 

and since Bq(a(')) > 0 for ail q, we conclude from the définition of B that x^1+1) = \qa® 

for ail q. This yields \ 
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a 0 + D <4-«j4'7> {x(i+iy Bq(a(i))x(i+l)}-1/2xf » 

= {^^W'B^aOVOÎ-^^a® 

(4.4) (i) 

" aq 

for ail q which proves the implication ii) —» i). • 

Proof of theorem 4.2. 
In order to prove the convergence of the itérative procédure defîned in theorem 4.2. we 
will first show that for i e THQ F(a(i+1>) > F(a®) with equality if and only if a(i+1) = 

a®. To accomplish this, we will need the following two inequalities : 

(4.10) a(i+1>'Bq(a®)a(i+1> > 1 V q = 1,2,...,Q, i e N 0 

(4.11) a(i+1)'Bq(a®)a® < 1 V q = 1,2,...,Q, i e N 0 

In the case p = 2, the matrix B (a®) is independent of a® (by définition), so 
with the restriction (4.7) imposed on each élément of the séquence {a®}ie N we hâve 

a(i+1)'Bq(a®)a(i+D = a(i+l),Bq(a(i+D)a(i+l) = 1. 

If 1 < p < 2, setting a :- si: a£+ ' and P :- si: a® in lemma 4.3. and summing 

over j gives the required resuit (4.10). 
Since ail a'B (a)a are convex functions, we hâve 

f aîi+D'B^aO+l))^*1) > a®'Bq(a®)a® + p[a(i+i)'Bq(a®)a®-a®'Bq(a(0W0] / A 

[ #î*-h -4p% ^ 
which implies a<i+l)'Bq(a®)a® < 1. 

Using the définition of the séquence {a®} i e N as well as both inequalities 

(4.10) and (4.11), weget 

(4.12) a(i+D' A(a®)aO) > a®' A(a®)a®. 

Since F is a convex function with gradient cA(a)a, we hâve 

F(a(i+1>) > F(a®) + c[a(i+1)'A(a®)a®-a®'A(a®)a®]. 
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By (4.12) we conclude that F(a(i+1>) > F(a®) with equality iff a® = a<i+l) due to strict 
convexity. Combining this resuit with lemma 4.4. and using the continuity of A(a) and 
Bq(a), it appears that any limit of the séquence {a® }iG N is necessarily a solution of 

the generalized eigenvalue problem (4.3), (4.4). 
Since the compact set L := {x = [xj,x£,...,xj]' e IR J Ix'B (x)x = 1 

V q = 1,2,...,Q} contains the séquence { a ® } i G K , we know by the theorem of 

Bolzano-WeierstraP that there exists a subsequence {a }neNn C { a ® } i e N 

convergingin L. Define 
a*= lim a ^ . 

As we hâve shown, the continuous, bounded function F is strictly increasing, which 
implies the convergence of {F(a n )} n e K f t and { F ( a ( I n + 0 } n € K . By continuity of 

F, setting a** := lim a(ln+ \ we dérive F(a*) = F(a**), which implies a* = a** due 

to strict convexity. • 

Remark. Having determined the first generalized canonical corrélation vectors 
aO), successive vectors a(m), m > 2, orthogonal to ail previous ones, may be calculated 
by redefining the matrices Aj (a), i = 2,3,4 in the following way : 

A[m)(a) - \ - Y biockdiag [ 3 ¾ a « . « ; . . . , ZJ& a « . g ) ^ A . ( a ) 

5. APPLICATION AND CONCLUDING REMARKS. 

It is now évident that correspondence analysis for Q > 2 qualitative variables can 
be defined by applying one of the four previously mentioned generalizations ofcanonical 
corrélation analysis to the corresponding binary N x (Jj + ... + JQ) indicator matrix 
W= [X1 9 . . .VXQ]. This will be illustrated by an example of a three-dimensional 
contingency table, which has been previously analyzed by van der Heijden (1985) using 
loglinear models as well as ordinary correspondence analysis. The data hâve been 
collected by the German Office for Statistics in Western Germany during 1974-1977 (see 
also Heuer (1979)). The table cross-classifies 43210 suicides by gender (men, women), 
âge (10-15, 15-20,..., 85-90, 90+) and method of suicide (MATT - poisoning by solid 
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or liquid matter, GASH - by toxification with gas at home, GASO - by toxification with 

other gas, HANG - by hanging, strangling, suffocating, DROWN - by drowning, 

GUNS - by guns and explosives, KN1FE - by knifes etc., JUMP - by jumping, OTHER 

- by other methods). Table 1 shows the first and second canonical corrélation vectors 

derived by each of the four proposed extensions of correspondance analysis. 

DROWN 

SUMCOR: SEX - AGE - SUICIDE 
GASH 

OTHEĴ ao MATT 
80 JBD^ 5 0 'KNIFE 

HANG 
45 40 15 

85 

90 

GASO 

GUNS 

10 

Figure 1 : 2-dimensional display of SUMCOR-scores. 

As the four methods yielded quite similar results for this contingency table, only 

the graphical display of the scores obtained by the SUMCOR method is shown in Figure 

1. It is easily seen that whereas relatively more men commit suicide when they are 

young, relatively more women commit suicide when they are older. In the younger âge 

groups, suicide is committed extraordinarily often by gas at home and other gas, by guns 

and other methods, while drowning, jumping, poisoning, hanging, and stabbing is 

prévalent in the older âge groups. 
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As the transition formulae define the rationale for the interprétation of the joint 

display, we comment on the transition formulae of the four différent general ized 

correspondence analysis techniques. 

Table of first and second 
for SEX-

generalized canonical corré lat ion vectors 
A G E - S U I C I D E - E x a m p l e 

H Variable Category 

Gender - men 

women 
Age 10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90+ 

0.757 -0.757 

-1.3211 1.3211 
1.299 

1.017 

1.294 

1.230 

1.093 

0.923 

0.808 

0.533 

-0.572 

-0.813 

-1.005 

-1.096 

-1.067 

-1.338 

-1.501 

-0.793 

-0.412 

-5.901 

0.444 

1.562 

1.530 

1.188 

0.635 

-0.141 

-0.303 

0.137 

0.042 

-0.316 

-0.924 

-1.239 

-0.935 

-0.668 

-1.808 

-2.675 

0.513 

-1.096 

0.251 

0.050 
1.698 

0.765 

0.852 

0.796 

0.711 

0.634 

0.618 

0.416 

-0.553 

-0.748 

-0.883 

-0.901 

-0.862 

-1.117 

-1.278 

-0.553 

0.164 

-6.826 

-0.158 

1.027 

1.071 

0.856 

0.335 

-0.372 

-0.480 

0.489 

0.549 

0.383 

-0.119 

-0.300 

0.107 

0.439 

-1.150 

-2.042 

0.697 -0.301 

-0.742 -0.601 
2.375 

0.574 

0.529 

0.479 

0.463 

0.460 

0.529 

0.336 

-0.717 

-0.883 

-0.952 

-0.869 

-0.723 

-1.048 

-1.222 

-0.339 

0.198 

-5.402 

0.345 

1.300 

1.311 

1.061 

0.608 

0.004 

-0.047 

0.751 

0.742 

0.520 

0.020 

-0.258 

0.092 

0.322 

-0.985 

-1.819 

0.448 

-1.109 

0.527 

0.347 
2.063 

0.600 

0.683 

0.625 

0.664 

0.623 

-5.201 

0.511 

1.336 

1.339 

0.981 

0.543 

0.629 -0.079 

0.324 0.106 

-0.821 

-0.946 

-0.992 

-0.886 

-0.634 

1.074 

0.986 

0.685 

0.092 

-0.423 

-0.956 -0.023 

-1.046 0.068 

-0.193 -1.256 

0.404 -2.263 
Suicide MATT 

GASH 

GASO 

HANG 

DROWN 

GUNS 

KNIFE 

JUMP 

OTHER 

-0.438 

0.918 

2.556 

0.043 

-2.287 

2.289 

-0.150 

-0.980 

0.882 

0.984 

1.086 

1.082 

-1.185 

0.043 

-0.123 

-0.443 

0.464 

1.089 

-0.448 

0.503 

1.841 

0.024 

-1.921 

1.684 

-0.257 

-0.842 

0.569 

0.816 

1.691 

1.354 

-0.778 

0.527 

0.439 

0.439 

0.382 

1.020 

-0.491 

0.585 

1.655 

-0.158 

-1.693 

1.484 

-0.158 

-0.899 

0.451 

0.232 

0.694 

0.435 

-1.275 

-0.087 

-0.320 

-0.308 

-0.232 

0.348 

-0.681 0.109 

0.371 0.698 

1.425 0.920 

0.189 -1.318 

-1.633 -0.735 

1.575 0.194 

0.028 -0.429 

-0.982 -0.661 

0.370 0.563 

Table 1 : Results of MAXVAR-, SUMCOR-, SSQCOR- AND GENVAR-Extensions. 
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Given a Q-dimensional contingency table (Pj.u j 0 ) let D be the J * Jq 

diagonal matrix containing the observed relative frequencies of the Jq catégories of the 

qth variable and Pqq* the 2-dimensional Jq
 x Jq* marginal table cross-classifying the 

variables q and q*. The transition formulae derived by the usual multiple 

correspondence analysis takes the form (Greenacre (1984)) : 

(5.D â a 4 £ D;1 paaaa* , q = 1,2,...,Q, 
q**q 

i.e. the scaling vector âq of the Jq column profiles corresponding to the qth variable is 

the sum of centroids D" P * âq* of the scaling vectors of the remaining column profiles 

(each weighted by the corresponding row profile of the 2-dimensional marginal table-
cross-classifying variable q and q*) and stretched out by a constant factor - (\i a 

multiple of X^ in theorem 3.1). This formula makes sensé in the spécial case Q = 2, 

whereas for Q > 3 it has at least two shortcomings : 

(i) Each variable q is expanded by a constant factor - , independently of the strength of 

relationship between this variable and the remaining Q - 1 variables. The transition 

formulae obtained by the SUMCOR method take this into account, stretching the qth 

variable by a factor — , a multiple of the qth generalized eigenvalue Xq = 
**q 

X * âlP^+âq* , as can easily be seen by applying formula (4.3) to the situation of Q 

sets of indicator variables. 

(ii) For fixed q, the formula (5.1) uses equal weights for différent q* when summing 
up the respective barycenters of the scaling vectors of the remaining profiles 
D" Pqq*âq* , whilst one might expect each barycenter to be differentially weighted by 

a mass wqq* according to the degree of dependence between the respective variables 

q and q*. The SSQCOR method, as well as the GENVAR method lead to transition 

formulae consistent with this idea : 

^ ^ q^w«*DqP <n*V' 
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with weights wqq*
 := âlP^+âq* , and a factor |j.q proportional to the qth generalized 

eigenvalue Xq = Zq* ( â ^ ^ * ) 2 for SSQCOR and wqq* := Z ^ s ^ ^ P ^ ) , and a 

factor \i proportional to the qth generalized eigenvalue 

Xq = Z r Zq* (â^Pq^Xâ^P^â^s^* (where srq* is an élément of the matrix S ^ for 

GENVAR. 

Obviously, the latter three extensions of correspondence analysis yield more 

meaningful theoretical interprétations of the resulting graphical représentations than the 

usual multiple correspondence analysis. The availability of fast parallel computers, with 

matrix oriented languages at one's disposai, facilitate the implementation of the 

algorithms presented above, and therefore the necessity of extra computation for the 

SUMCOR, SSQCOR or GENVAR methods can not be considered as a disadvantage in 

comparison with the straightforward multiple correspondence analysis and therefore 

should not deter the statistical practitioner or data analyst from applying thèse methods. 

In our opinion this computational "handicap" is by far compensated by the gain in 

interpretability as well as by the possibility of detecting structures of interdependence 

between the cross-classifîed categorical variables which would be hidden otherwise. 
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