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Résumé

Nous proposons une nouvelle méthode d'estimation bien adaptée au cas on l'ensemble
des paramétres est fini et les observations non indépendantes. Elle est appliquée @ l'estimation
des coefficients d'un processus auto-régressif non asymptotiquement stationnaire.
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Classification AMS : 62 F 10, 62 M 10
Classification STMA : 04 030, 12 070

Abstract

Supposing the set of parameters finite and the observations dependent, we propose a
new method of estimation which can be applied to non-asymprotically stationary auto-regressive
processes.

Keywords : auto-regressive processes, non stationarity.

1. INTRODUCTION

In the first part, we introduce a new method of estimation (counting estimator) well
suited to the case, in which the distribution of a process is defined by conditional distributions
and the set of parameters finite. The construction of the counting estimator (CE) is quite natural
and we can show, under certain conditions, its consistency at the exponential rate of
convergence.
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In the second part, we study AR processes (i.e. verifying X = o] Xp-1 + 02 Xp-2
+ ...+ ap Xp-p + Up, with (Up) white gaussian noise). A great number of works have been
devoted to the problem of estimation of the parameter 0 = (a1....ap). In [5] P. Newbold
presents a compilation of the main results accompanied by a vast bibliography. The maximum
likelihood and the least squares constitute the two groups of proposed techniques. The
contribution made by CE as regards these techniques is to be found at the hypotheses level :
indeed, the study of the asymptotic behaviour of known estimators requires the asymptotic
stationarity of X with which our hypothesis, which implies the convergence of CE, is
incompatible. The proof of the result is based upon a technical lemma by J. Geffroy ([3]). In
considering a second order autoregressive process, we show in particular that if the roots of the
associated polynomial are real, distinct, and of a modulus superior to one, then the CE
converges (the usual hypothesis consists of supposing them to be of a modulus inferior to one).

More generally, the use of the CE is interesting when the distribution of the process is
defined by stationary (i.e. independent from n) conditional distributions, which facilitates the
proof of its convergence, but the process is not asymptotically stationary, which makes
applying the law for large numbers difficult.

2. COUNTING ESTIMATOR

Let us consider a sequence of real, not necessarily independent random variables
X = (X1, X2,...,Xn,...) and suppose that the distribution of X is defined by the conditional
distributions Pp, (x(n-1), @), @ being a parameter belonging to a finite set ®@ = {01,02,...6x}.
Let us suppose that for any n € N, n > 2 we can, after having observed x(-1) = (x1,..,xn-1),

define a partition [Bil{ < ; < (which depends on x(1)) of R such that :

Vi<i<k Ppx(0-1),6j) (Bj) =2 sup Py (x(-1), 6j) (By) 1
j=#i

We can than consider a "partial" estimation of 0 defined by :
[od
[8n (x(-1), x7) =6i ] & [xn € Bj) 2)
~ ~F ne
this procedure defines, for any x(M) = (x1, x2,..., Xp), n values 01(x1),02(x(2)), wBn(x (M),
It is then natural to choose as an estimated parameter the element 6 € © the most frequently

affected by the sequence '61, ’6'2,...,’5;,. To be more precise, by denoting

Nn,o=Card (1<j< n/8;=0) 3)
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let us put :

Definition
N
We call the counting estimator any estimator (0p) verifying :

A
[0n =6i] & [Nn,j = sup Np,6j] )
1<j<k

Thus we obtain the estimated value by counting, for each 6 € ©, the partial estimations which
designate the latter, which justifies its being called the estimator.

3. ESTIMATION IN AR PROCESS

Let (Up) be a real, centred, gaussian, stationary white noise, and (Xp) a process
verifying :
Xn =01 Xp-1 + 02 Xp.2 +..+ ap Xn.p + Un

for n 2 1. We suppose X0 = X-1 =....= X1-p =0 and wish to estimate the unknown parameter

0= (@1,...,0p). For any n € N, n 2 p+1 let us put Xn,p = (Xn-p-1, Xn-ps...Xn-1) and let us
denote <.,.> the scalar product in RP.Xn,p being a centred gaussian vector, <Xn,p, X > is, for
any x € RP, a centred gaussian random variable. By designating Varg the variance let us

consider the following property (H) :

(H)  Forany@e ©@andxe RP, x#0 Varg<Xpp, x> —+ee
n—+oo
(H) is obvioulsy incompatible with the asymptotic stationarity. Let © be finite, k = Card (®).
A

By denoting (8p) the counting estimator, we can state the following result :

THEOREM
1 - There is at least one counting estimator.

2 - (H) implies the existence of two constants a > 0, ¢ > 0, such that :
~
Pg [0 # 6] < ae-tn

forany0e © andn21.
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Proof.

1 - Given the nature of the process,‘én depends only on the last p components of
x(n-1) = (x1,....xn-1). Let us denote Xn,p = (Xn-p-1,----,Xn-1) and, for any 6 € ©, Pg p
the probability distribution of Xpn,p . Pg p admits a density with respect to Lebesgue's

measure - there results that for all 01,02 the set Bg{.0; = (xe RP/<x,91—62>=O} is Pg P
negligible. It is the same for B = U B91’92' Let us denote °B the complementary of B.
91,62

The conditional distribution of Xp, given Xn,p = Xn,p is the distribution of Up
translated from the parameter B9 = < 8,xp,p > - thus, for any Xn,p € ©B, each translation
parameter is different from all the others. After suitably numbering the 6 we can write :
Bo; < Boy < ... < Bog (xn,p is fixed). Up being a gaussian variable, the Bj defined by :
B1=1]-e0, [0, ], Bi= 1B@;.1, B6j] for 2 < i< k-1, Bk =] PBgy, + = [ evidently verify (1)
with strict inequality. 'é'n is therefore well defined and we can determine a counting estimator.

2-Letusput,foranyfe ©,e>0:
Dge={xe RP/<0-01,x>2¢ foreach ] € ©, 0; # 6} (5)

By defining the sets Bg (which also depend on xp,p) as above, and by denoting F the
distribution function of Up, we can write for any 0 01 :

Po,x p(BO) 2 F ©2) - F (-&/2)
Xn,p € DO,!—: =1 (6)
Py, xn,p(B6) < F (&/2) ~ F(-€)

where Pg x p is the conditional distribution of Xp given Xn,p = xn,p.
Furthermore, we have the following property :

Forany 6,0’ Pg'.n,p (Do) = 1 M
n—+oo

In fact, we can write : Dg,e =N Dg,9),e with Dgge={xe R/<6-081x>2 €}.
6,26
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Denoting by Qp the distribution of the gaussian r.v. < Xn,p, 0-61> we have
Pg,n,p (D,01,6) =1 — Qn [-€,€]. Now, the dispertion of Qp tends, by virtue of hypothesis

(H), towards + e, so Qn [-€,€] tends to 0, from which we get (7). By supposing
o] = F(e/2) - F(- &/2), o) = F(-e/2) - F(~€), (6) can be written as :

Pe,xn,p (Bg) 2 w1
For any xn,p € Dg,e ®)
Pe',xn,p(Be) €w) forany0'=0

Let us consider, for any 8 € © and n > p the application {g n : R? — {0, 1} defined by :
go.n (x(M) = 1 Bg(xp) ©)

where x(1) = (x1, ..., Xn-1, Xn) and Bg is the borelian set verifying (1) for x(n-1) and 0.

Bg depends only on the last p components of X(n-1), s0 {@,n (x(n) depends only on the last
p+1 components of x(1) - this results in the conditional expectation Eg[o,n/ L0,1...60,n-1]
being equal to Eg [{9,n / {8,n-p-1,--..£0,n-1]. For any A = [Ce,n-p-1= ql,...,C_,e’n_1=qp}
1,....qp in {0,1}) we have :

EofCon /A= B (A) IP (x®".0) dp, |

enp(Ar\D )

- Pe, np (A) @,

(7) implies that the above minorant tends, for any 6 and A, towards 1.
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The © and A being in finite number we can affirm, by supposing ®'1 = ©1-(®]—wQ)/3, that
for any n superior to a certain ng :

Eg [£0,n/ £6,n-1-p--(0,n-1] 2 ©'1 (10)
By supposing 0’0 = w0 + (0] — ©0)/3 we could show in a similar way that for n large enough
Ve=0 Eplle,n/ Ce',n-p-l,---»ce',p-l] <o (1)

We can then apply to the sequence ({g,n) J. Geffroy's lemma ([3] page 430) : by supposing
Yy = @'1 - @0, 0n = & = ('] - W'0)/2 and ¢ = ('] - @'0)2/4, we can write for a certain b > 0

Pg (£o,1+...+ £o,n > nat) > 1 - beCn (12)
Vo0 Pp (£o',1+...4+£0",n S nat) > 1- beCn (13)
Let us denote that Np @ = £g,1+....+ {0,n. Given that k = Card (@), (12) and (13) imply :

Py [(Np,6 > nat) N (M (Np,o' € na))] =1 - kbe-cn (14)
0'# 06

Finally, given the definition of the counting estimator we can write

{Nng>na} n (" (Npo'<na}}c {6,, =0} (15)
0'=0

(14) and (15) imply :
P(dn = 0) 2 1 - kbecn
which ends the proof (with a = kb).

In order to illustrate the use of (H), let us consider a second order autoregressive
process Xp =] Xp-1 + a2 Xp-2 + Up. Let us suppose, without losing any degree of
generality, that Var Up = 1. Let us denote A the set of couples (a1, &2) for which the roots of
the polynomial p(z) = z2 - o] z - o are real, distinct and of a modulus superior to one. We can

state :
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PROPOSITION

If ©® € A the hypothesis (H) hold.
Proof of the proposition.

Let z] # 22 be the roots of the polynomial p(z) = z2 - &] z - &2. This gives :

Xn=Un+c1Up-1+c2Up2+...+cpn-1 Ui (16)
with
[ k+1_ _k+1 _
o= (21" =21 / (2, - 2y) an

(see [7]). This results in :

an = Var (Xp) = 1 + ¢, + ... +¢ (18)
bn = Cov (Xn, Xn-1) =€1 +€1 €2 + ...Cp3 Cq-1 (19)

For any (x,y) € R2 the variance of < Xn+1, 2. (x,y) > =< Xn-1, Xn),t (x,y)> (p=2)is:
an-1%x2+2bpxy +an y2 = (1 +c2| + ..+ ¢% ) x2 +2 (c] +C] C2+..+ Cn-2 Cp-1)Xy +

n-2
A+ ++c2 Dy2=x2+2c1xy+(1+c%) y2+ = (ck X +Ck+1 y)2
k=1

Therefore, to show that (H) is verified, all that has to be done is show that the series
dk = (ck X + ck+1 y)2 diverges. Let us suppose that | z1 | > | z2 | and let us put
p =122/ z1. Given (17), we get :

di = (21 - z2)2 22, &+1) (1 pk+1) x4z (1 - pk+2) y)2 (20)

Let us suppose |z1| > |z2| .22;k+1) 5 + 0 and
k—>+e

((1 - pX*+1y x 4211 - pk+2) y)2 5 (x + 21y)2, therefore, if x + 2] y # 0 the series diverges
k> +e

(see (20)). If x + z1 y =0 (20) implies : dk = (z] - 12)'2 (z1 zz)k+1 (x + 22 y). Divergence is

obtained for k — + oo since |z] 22| > 1 and x + z2 y # 0.Let us suppose |21 | = |z;>_| .So

z) =- z2 and p = -1. According to (20) :
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(see (20)). If x + z; y = 0 (20) implies : dk = (z] - 22)-2 (z] z2)k*! (x + 22 y). Divergence is
obtained for k — + o= since |z1 zzl > 1 and x + z3 y # 0.Let us suppose |21 | = |zzl .So
z1 = - zp and p = -1. According to (20) :
4y2 (21 - 22)2 5 2(k+2) = y252(k+1) ik is odd
dk =
4x2 (z] - 22)-2 7y 2+1) =x2 22¢k if k is even

Divergence is obtained for k — + eo since (x,y) # (0,0).
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