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CLASSICAL AND BAYESIAN APPROACHES TO THE CHANGE-POINT PROBLEM:

FIXED SAMPLE AND SEQUENTIAL PROCEDURES ™

S. ZACKS

Department of Mathematical Sciences
SUNY, Binghamton, NY

RESUME

Le probléme du point de changement peut €tre d&cxrit en,.ces termes. Considérons

une suite de variables aléatoires indépendantes XI,XZ,...,et une,suite de para-
métres 3 valeurs entiBres positives 2 < T STy STy oeen Les points Tj

(j =1,2,...) sont les instants de changements dans les lois de probabilité

-1 ont une distribution iden-

ont une distribution FZ, etc. Les distributions FI’FZ""

des variables aléatoires, c'est-3d-dire xl,...,x

13 XTl ,...,XT -1

peuvent &tre connues ou partiellement connues, mais les points de changement Tj

tique F

sont inconnus. Le probléme est d'estimer les paramétres incomnnus T; ou de tester
des hypothéses les concernant. Cette classe de problémes est trés vaste. Elle
contient essentiellement tous les probldmes de tests de la stationnarité d'une
suite de variables aléatoires contre la possiblité de changements brusques en
localisation, &chelle ou forme de la loi de probabilit&. Ainsi tous les’problémes
de contrdle statistique sont dans ce domaine. Il y a dans la litt@rature, diverses
formulations du probléme et différentes approches. Il existe des formulations
statiques ou dynamiques du probléme, avec la possibilité de un ou plusieurs
points de changement. Les procédures d'échantillonnage sont fixes ou séquentiel-
les. Les structures inférentielles sont soit classiques soit bayesiennes. Ce
texte passe en revue les différentes formulations et approches et produit une

bibliographie importante.
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ABSTRACT

The change-point problem can be described in the following terms. Consider a
sequence of independent random variables xl,xz,... and a sequence of positive-

integer valued parameters 2 < t, < T, < T, <... The points T (G =1,2,...)

1 2 3
are epochs of change in the distribution laws of the random variables ; i.e.,

{3 X ,...,XT -1 have an identical
distribution F2 etc., The distributions FI’FZ s++. may be known or partially

known, but the points of change, Tj’ are unknown. The problem is to estimate

Xl,...,XTl_] have an identical distribution F

the unknown parameters Tj or to test hypotheses concerning these points of change.
This class of problems is a very broad one. It embraces essentially all pro-
blems which test the stationarity of a sequence of random variables versus the
possibility of abrupt changes in the location, gcale or shape of the distri-
butions. Thus, all problems of statistical control fall in this domain. In the
literature there are various formulations of the problem and different approa-
ches. There are static or dynamic formulations of the problem ; with a possi-
bility of only one point-of-change or many points of change. The sampling
procedures are either fixed sample or sequential sampling. The inference
framework is either classical or Bayesian. The present paper reviews the various

formulations and approaches and provides an extensive bibliography.

I - INTRODUCTION

The change-point problem can be considered one of the central problems of statis-
tical inference, linking together statistical control theory, theory of estima-
tion and testing hypotheses, classical and Bayesian approaches, fixed sample and
sequential procedures. It is very often the case that observations are taken
sequentially over time, or can be intrinsically ordered in some other fashionm.
The basic question is therefore, whether the observations represent indepen-
dent and identically disbributed random variables, or whether at least ome
change in the distribution law has taken place.

This is the fundamental problem of statistical control theory, testing the
stationarity of stochastic processes, estimation of the current position of

a time-series, etc... Accordingly, a survey of all the major developments in
statistical theory and methodology connected with the very general outlook of
the change-point problem, would require review of the field of statistical
quality control, the switching regression problems, inventory and queueing

contrdl, etc. This is, however, too broad to cover in a single revue paper.
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The present review paper is therefore focused on methods developed during

the last two decades for the estimation of the current position of the mean
function of a sequence of random variables (or -of'a stochastic process) ;
testing the null hypothesis of no change among given n observations, against
the alternative of at most one change ; the estimation of the location of the
change-point (s) and some sequential detection procedures. The present paper
is composed accordingly of five major sectioms. Section 2 is devoted to the
problem of estimating the current position of a sequence of random variables,
specifically discussing the problem with respect to possible changes of the
means of independent normally distributed random variables. We review the
studies on this problem of Barnard [6], Chernoff and Zacks [14], Mustafi [45]
and others. Section 3 is devoted to the testing problem in a fixed sample.
More specifically, we consider a sample of n independent random variables.
The null hypothesis is H) ¢ Fl(k) = .:l : F;(x),‘against the alternative,

H : F, (x) =...= F (x) ; FT+'(x) = ...=F (xs, wh$re F_#F T+ and

T =1 2,...,n—l des1gnates a possxble unknown change poxnt The studies of
Chernoff and Zacks [14], Kander and Zacks [36], Gardner [21], Bhattacharya
and Johnson [9], Sen and Srivastava [57] and others are discussed. These
studies develop test statistics in parametr1c and non-parametr1c, classical
and Bayesian frameworks. Section &4 presents Bayesxan and maximum likelihood
estimation of the location of the shift poxnts The Bayesian approach is
based on modeling the prior distribution of the unknown parameters, adopting
a loss function and deriving the estimator which minimizes the posterior risk.
This approach is demonstrated with an exampfe of‘a shift in the mean of a
normal sequence. The estimators obtained are generally non-linear complicated
functions of the random variables. From the Bayesian point of view these
estimators are optimal. If we ask, however, classical questions concerning
the asymptotic behavior of such estimators, or their sampling distributions
under repetitive sampling, the analytical problems become very difficult and
untractable. The classical efficiency of such estimators is often estimated
in some special cases by extensive simulations. The maximum likelihood esti-
mation of the location parameter of the change point is an attractive alter-
native to the Bayes estimators. Hinkley [26-307] investigated the asymptotic
behavior of these estimators. The derivation of the asymptotic distributioms
of these estimators is very complicated. We present in Section 4 Hinkley's
approach for the determination of the sampling distributions of the maximum
likelihood estimators. Section 5 is devoted to sequential detection procedures.
We present the basic Bayesian and classical results in this area. The studies

of Shiryaev [60,61] , Bather [7,8], Lorden [43] and Zacks and Barzily [69]
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are discussed with some details. The study of Lorden {[43] is especially
significant in proving that Page's CUSUM procedures [47-49] are asympto-
tically minimax.

The important area of switching regressions have not been reviewed here in
any details. The relevance of the switching regression studies to the change-
point problem is obvious. Regression relationship may change at unknown epochs
(change points), resulting in different regression regimes that should be
detected and identified. The reader is referred to the important studies of
Quandt [51,52], Inselman and Arsenal [35], Ferreira [19], Maronna and Yohai
[44] and others.

An annotated bibliography on the change-point problem was published recently
by Shaban [59]. The reader can find there additional references to the seventy-

one references given in the last section of the present paper.

2 - ESTIMATING THE CURRENT POSITION OF A PROCESS

G.Barnard, in his celebrated 1959 paper [6] on control charts and stochastic
processes, suggested to consider the problem of estimating the current position
of a process as a tool of statistical control. The problem of estimating the
current mean of a process requires modeling of the possible change mechanism

of the mean function. In the context of statistical control problems the mean,
as function of time, is generally assumed to commence at an initial point, Hoo
known or unknown, and then change abruptly at unknown epochs, R EAPTRED
Let xl'XZ""’xn be a sequence of random variables. We denote by vy (i=1,...,n
a location parameter of the distribution of xi. If the random variables are
normally distributed then uy is the expected value (mean) of Xi'

Generally, neither the change points Tys Tys--. MOT the size of changes are
known, and the problem of estimating L after observing XI,XZ,...,Xn, might
have no better solution than the trivial estimator uo= Xn, unless the pheno-
menon studied allows proper modeling. In the present paper we discuss the

models adopted by Barnard [6] and by Chernoff and Zacks [14], and the estima-
tors of the current position which they derived from these models. The related
study of Mustafi [45] is also presented. As will be shown, time-series proce-
dures of exponential smoothing are strongly related to linear unbiased esti-

mator studied in [6] and [14].



2.1. - Barnard's Estimator of vy

Consider the given sequence of observations in a reversed time manner, i.e.,
Xn,Xn_],Xn_Z,... Barnard adopted the basic assumption that the corresponding
random variables are independent and normally distributed, with the same known
variance (ci = 1). Suppose that the observations are taken at regular time
intervals of | unit. Barnard's model assumes that the epochs of change T sTosees
follow a Poisson process with intensity A (per time unit). At each of the
random change epochs TysTy seee the size of the shift in the mean is a random
variable, §, following a normal distribution, N(0,02). Moreover, 61’62""

are mutually independent, and the sequence {8} is independent of {t}. Thus,
n-1’ Xa-1
and Xn-Z’ then JI,JZ,... is a sequence of i.i.d. (independent and identically

if JI’JZ"'° designate the number of change epochs between, Xn and X

distributed) random variables having a Poisson distribution, P(A). The models

is X =y + E
n n n

i
2.1 K ;=4 * L S, +E . i=1,...,n-1
k=1
Ji
vhere S, = I Gj and E|,...,E_are i.i.d. N(O,1). Assuming that A and o2

are known, 3=t Barnard provided the general form of the minimum mean square
error (MSE) linear estimator of o and that of its (formal) Bayes estimator
(which is actually called by Barnard '"the mean-likelihood estimator™). It is
shown that the minimum MSE linear estimator, is the exponential smooting esti-

mator

(2.2) u_ =3B Xn + A oo

n 1

The (formal) Bayes estimator of vy is of the form
1

- 1 v; X

(2.3) wo= £ ow(j |x) —————r0
n i ~n'.n v l1

n ~t ~N1 ~N

where }n is an n~dimensional vector of l's ; jn = (jl,...,jn_l)' is a particular
n-1 ? gn = (xn’xn-l

probability, and Vn the covariance matrix of gn corresponding to a given reali-

realization of Jyseeesd ,...,Xl)' : ﬂ(jn Xn) its posterior

zation j_.
n
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2.2. - Chernoff and Zacks' Model and BLUE of o

Chernoff and Zacks assumed a model different from that of Barmard, although

there are general similarities. According to their model, if Wy = E{xi} then
(2.4) PRI PR 25 PR PN i=1,...,n"1

where Ji is a random variable assuming the value | if there is a shift in

the mean between the ith and (i+!)st observations, and the value O otherwise.
Furthermore, 61,...,6n_‘ are i.i.d. N(0,0?), Jl""’Jﬂ—l are i.i.4.,

P[J;=1] = p (i=1,...,n). Let J = (Fyseeend ) and § = (8,,...,8__), ] 1Ls .
Chernoff and Zacks showed that the minimum variance linear unbiased estimator
(BLUE) of u is

n-1
-~ X + 1 g.X,
(2.5) poo= % 4=y M1
n —————————————————————
n-1
1+ .Z ii
i=1
where
(vi—Tl)/vi-l"'vn—Z(vn-l-l) , i=2,...,n-1
(2.6) Ei =
I/Vlvz...vn_z(vn_l-l), i=1
and
2+02p if k = 1
(2.7) v = :
2. : = -
2+cp V-1 if k 2,...,n"1

In the following table we illustrate some of these weights :

Table 2.1. Weights for the BLUE

N\ l 2 3 4 5
2 { .909 1.000

31 .763 .840 1.000

4 | .606 .666 .793 1.000

5 | .464 .510 .735 .745 1.000
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NMotice that when p02 = 0 then Ei = | for all i=l,...,n~1. In this case
¥y = En is the common sample mean. On the other hand, when pc2 -+ = then the
weights Ei diminish to zero in a geometric rate, i.e. El =0 ((pcz)_(n-l)).

Accordingly, as n increases, the weight given to observations at the beginning
of the sequence is close to zero. In particular, if po? is large, it is
sufficient to base the estimator only on the last m observations. Mustafi

[45] investigated the characteristics of such estimators based on the last
block of m observations.

2

Moreover, Mustafi showedthat, if the value of ¢ = po“ is unknown, it can be

estimated consistently by

- 6s§ - 282

(2.8) cm 2
§5 - 257
where
2 Lo 2
Stear B iR
(2.9) e ]
I LR e S

-

Let un’m denote the UMVU estimator of ug, based on the last m observations

in which ¢ is replaced by its estimate c. According to Mustafi's procedure,
the first n-m observations are used to estimate ¢ by (2.9), and the estimator
¢ of ¢ is substituted in (2.6)-(2.7) to obtain the corresponding weights

Ei o Notice that the estimator obtained in this manner is not BLUE anymore.
Furthermore, ¢ might be negative (with positive probability). In such a case,
-~ . . .. + = . .

Ei o 1S replaced by its positive part Ei,m max (0, Ei,m)' Mustafi established

that
(i) E{un’m} =¥, , for each n,m
i1 2 -
(i) V{un’m} <1 + g% p(m-1) ,
and
(iii) 1im V{u_ _} = v{u 1}
- n,m m ’

-~

where U is the BLUE estimator based on the last m observations, with known c.



.55.

2.3, - Chernoff-Zacks Bayes Estimators of vy

Assuming that Mo has a prior normal distribution N(0,t2), we obtain that
the posterior distribution of L given Xn and Jn = (Jl,...,Jn_l) is normal,

with mean

-1
- 1" P () X
(2.10) w(3) ==t =t =2
b 1
L oL
and variance
(2.11) w{J }= !
: ~n -2 v el ’
ot }n t (gn) }n
where
by ) =1+ g2 3 J' and
— |
I3y e I ! 7]
J2 ot Jn—l I
(2.12) I= 0 I o
|-
Jn-l L
|
_ o' 1o _

Let pn(j) be a prior probability function of Jn' The posterior probability

function of Jn’ given Xn, is then

p (Incx [0 £ (N
(2.13) pn(j\Xn) = S —
-t £ pn(j)n(xnlo,t Gn
1 N
where t*(j) = §(5) + T21n1;’ and n(xnIO,Z) is the multivariate normal p.d.f.
at Xn, with mean vector O and covariance matrix t. Finally, the Bayes esti-

mator of vy is

(2.14) uiB) = {g} pn(§l§n) ﬁn(i)'

This estimator is obviously non-linear, due to the non-linear structure of the
posterior probabilites. The structure of the Bayes estimator (2.14) is the
same as that of Barnard's mean-likelihood estimator (2.3). The problem with

these estimators is in their degree of complexitv. The sample space of Jn



. n—1 P . L. P eps
consists of 2 different points and it is a very difficult matter to choose
. . . . . s . 5 = -1
a proper prior distribut.on. Even if we ascribe, a priori, each cf these 2t

points equal probabilities, we have to make a significantly large number of
(B)
n

sonable to assume that the mean is likely to shift between any two obser-

calculations to determine u . In manv problems of interest it is unrea-
vations. If it is reasonable to assume that the number of possible shifts
among a relatively small number of observations is at most one, the computa-
tions will be significantly simplified. The Bayes estimator based on the

assumption of at most one change (AMOC) is presented in the next sectiom.

2.4, - The AMOC=-Bayes Estimator of My

According to the AMOC model we assume that among the given n observations
there is at most one change. Let t be an integer valued parameter assuming
the values 0,!,...,n~1. If t= 1, the first t random variables have the same
mean un+6 and the last n~t random variables have the mean M- Ift=0
there was no shift in the mean among the n observations. Let m(t) be the

prior probability of {r= t}. The conditional Bayes estimator, for a given
vaiue of t, is

nX_ + czt(n-t)i*
n n~

(2.15) u (€)= LI t =0,...,0-1,
where n +02 t(n-t)
- 1 a =% 1 n
Ko~ & ¥ and X =— T xj.
i=1 j=t+l

Furthermore, the posterior probability of {t=t}, given X, is

22 (napr)2 (X -X° )2
g%t<(n-t) (Xt X - )

(2.16) n(t) efo%' 2492 t(n-t) !
= n”+g” tin-t)n
n(elx) = 2 172 ,
(n + c2t(n~-t)) %y
where
(2.17) e O ey
n-1 . a¢jc(a=3)% (X,-X__.)
Dn _ : ‘H‘(J) 73 exp {*‘i' . ] n-j }

520 (n+o?3(n=j)) " n2+ 02j(n-j)n

The Bayes estimator of Mo in the AMOC model 1is accordingly

- n-1 R
(2.18) W= jio “(J‘§n)un(J)'
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Z.u.1. — Adsprailve amuc-sayes sstimacion

The AMOC procedure can be applied on the last m observations sequentially,
starting with m=2 and increasing it until a strong indication emerges that
a shift has taken place. The procedure is then stopped and L is estimated
according to (2.18) on the basis of the last m observations. This process

is summarized in algorithm :

Step O. Set m = 2.

Step 1. Set Yl = xn—m+l seaes Ym = Xn'

Step 2. Compute w(:lgm), t =0,...,m~1I,
If n(olgn) = max w(J|¥m)

0<jsm-1

go to Step 3 ; else go to Step 4.

Step 3. Set m « m+! and go to Step !.
Step 4. Let k" = least j =1, m-l such that
T(i{Y) = max w(e|T).
®  ostsm-1 o
Step 5. Apply estimator (2.18) on the last m-k” observations.

The following numerical example illustrates the adaptative estimation process
according to the above algorithm. Consider the following n=9 observations on

independent, normally distributed r.v.'s : X1 = 2.613, X2 = 1.661, X3 = 1.814,

X4 = 1.274, X5 = 2.616, X6 = -.326, X7 = -2.422, X8 = -.119, X9 = -.034.
Assume that 0%= 3 and the prior distribution is

n (0) = (1-p)™""

7 (€) = p(1-p)™ 71, t=1,...,m-1 ,

with p =. . The posterior probabilities of the change points, given the last

m observations, are given in the following table.



.58.

Table 2.2. Posterior Probabilities of the Shift Locations

ANE 0 ! 2 3 4
2 .9298 .0702
3 .6804 .0722 L2474
4 . 7844 .0660 .0954 .0542
5 .1765 .0107 .0088 .0890 7149

According to these posterior probabilites there is a strong indication that

a shift took place between the fifth and the sixth observation. The AMOC Bayes
= -, 1.

9,4 630

Experience with the application of this method on various data sets shows that

estimator based on the last four observations is u

it could be too sensitive as an estimator of the location of the shift points.
Farley and Hinich [18] showed in a series of simulations that the above
procedure ieads to a high proportion of indication of change when there are
none (false alamms). This problem can, however, be overcome by proper choice
of the parameters p and o? .

o2should be at least 3 or &4 times the variance of the random variables

El"" En. As an estimator of the current position the above procedure performs
very well. This was also reported by Farley and Hinich in [18]. We provide
here some numerical comparisons of the characteristics of the UMVU, AMOC-Bayes
and the adaptive AMOC-Bayes estimators of Hyo based on some simulation experi-
ments. These results are taken from Chernoff and Zacks [14]. In these experiments
100 replicas of samples of size n=9 were simulated from normal distributionms,
with means H; and variance 1. In all cases u9=0. We compare the means and
MSE, over the 100 replicas, of the following estimators :

-~

u UMVU with o2= 3, p =.2

1

uy AMOC-Bayes, o2= 3, p=.2
My : Adaptive AMOC-Bayes, 02 = 3, p = .2.

The models of shifts in the means are :

Model I : A random change between every two observations, i.e. u; v N(0,2)
(i=1,...,8).

8
Model II : wu, =02 1§ J n
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JI’J2"" are 1.i.d. Bermouilli, with p = .1, o = 2.

UL TR are i.i.d. N(O, 1).
Model III : No change.

The simulation estimates are :

Table 2.3 -~ Simulation Characteristics of Three Estimators

Estimates
Mode - -
nx Us U
I -.2718 -.1866 -.0827 Mean
2.1406 3.3140 1.0235 MSE
11 .0847 .0539 .0525 Mean
.4460 .4337 L4135 MSE
I1Y .0255 .0027 -.0122 Mean
.3078 L6112 .2679 MSE

The above results indicate that the adaptive AMOC-Bayes estimator is perfor-
ming as well or better than the UMVU or the AMOC-Bayes, especially when the
actual process of shifts in the means is different from the one assumed in

the model.
3 - TESTING HYPOTHESES CONCERNING CHANGE POINTS

The problem of testing hypotheses concerning the existence of shift points
was posed by Chernoff and Zacks [14] in the following form.

Let X‘,...,Xn be a sequence of independent random variables having normal
distributions N(ei,l), i =1,...,n. The hypothesis of no shift in the means,

versus the alternative of one shift in a positive direction is

Vs

where v = 1,...,n~1 is an unknown index of the shift point, & >0 is unknown

and the initial mean 60 may or may not be known.
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Chernoff and Zacks showed in [14] that a Bayes test of Ho versus H,, for

l’
§ values close to zero, is given by the test statistic

n-1
L (1+1)X. . if 6 is known
i=1 t °
(3.1) Tn = a-1 )
i§| (1+l)(Xi-Xn), if eo is unknown,

where in is the overage of all the n observations. It is interesting to see
that this test statistic weighs the current observations (those with index
close to n) more than the initial ones. However, the weight is linear rather
than geometric (as in the estimation of the current position). Since the
above test statistic is a linear function of normal random variables Tn

is normally distributed and it is easy to obtain the critical value for a
size o test and the power function. These functions are given in the paper
of Chernoff and Zacks [14] with some numerical illustrationms.

The above results of Chernoff and Zacks were later generalized by Kander

and Zacks [36] to the case of the one~parameter exponential family, in which
the density functions are expressed, in the natural parameter form as

£(x;8) = h(x) exp {8Ux)+y(8)} (see Zacks [70, pp. 95]1). Again, Kander and
Zacks established that the Bayes test of Ho, for small values of § when 60

is known, is of the form (3.1), where X; are replaced by U(Xi) (i =1,...,n).
The exact determination of the critical levels might require a numerical
approach, since the exact distribution of Tn is not normal, if U(Xi) are not
normal. Kander and Zacks showed how the critical levels and the power func-
tions can be determined exactly, in the binomial and the negative-exponen-—
tial cases. If the samples are large, the null distribution of Tn converges
to a normal one, according to the Lapunov version of the Central Limit
Theorem (see Fisz [20, pp. 202]). Kander and Zacks [36] provided numerical
comparisons of the exact asymptotic power functions of Tn’ in the binomial
and the negative-exponential cases.

It is often the case that the sample size is not sufficiently large for the
normal approximation to yield results close to the true ones. For this reasom,
Kander and Zacks tried to approximate the exact distribution of Tn by the
Edgeworth expansion

YZ,

41

(3.2) Fn(Z) =¢(2) - =7 ¢ (z) +

+ (10y§ r/\6!)¢(6)(z),
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where Fn(z) is the exact distribution of the standardized test statistic

Zn = (Tn-E{Tn})/(Var {Tn})l/2 ; $(2) is the standard normal c.d.f. ; ¢(v)(Z)
. ~ N - 3/2 = 2 .
is the v-th derivative of $(Z) and T " u3,n/(u2’n) * Yo, ulb’“/lxxz’n 3
where uj n is the j-th central moment of Tn.

It was shown that when the samples are not large (n=10) the Edgeworth expansion of
the c.d.f. of Zn’ under the alternative hypothesis HI’ provides power function
approximation better than those of the normal approximation. Hsu [34] utilized

the above test for testing whether a shift occurred in the variance of a2 normal
distribution.

Gardner [21] considered the testing problem of Ho versus H] for the normally

distributed random variables, but with § # O unknown. He showed that the Bayes

test statistics, with prior probabilities Ht, t=1,2,...,n-1, is
n-1 n-1 - ,
(3.3) Q0 = ¢ 0 [ (X. . -%X)1
n e=1 °© j=t j+l n
n-1

=%
LM, (n-ef (X _

= i )21
t=1 n

t

where i;_ is the mean of the last n-t observations and in is the mean of all

t
n observations. Gardner investigated the exact and the asymptotic distributionms
of Qn’ under the null hypothesis Ho and under the alternmative H], for the
case of equal prior probabilities. Scaling Qn, so that its expected value

will be 1 for each n, by the transformation Y = (6n/(n2-l))Qn, n=2,3,...,
n-1

. . - . - 2
we obtain that, under Ho, Yn is distributed like k£1 kkUk’ where U]""’Un-l
are i.1.d. standard normal r.v.'s and
2 -
(3.4) A = =2 12 cos /200178, k=1,
2 (n2-1)K

Thus, as n - =, the asymptotic distribution of Yn, under Ho’ is like that of

(3.5) y=2. ¢ Ly

a2 k=l k2 K
The distribution of Y is that of the asymptotic distribution of Smirmov's
statistic mﬁ, normalized to have mean 1. Smirnov's statistic compares the
empirical c.d.f. of a sample of continuous random variables to a particular
distribution, Fo(x). More specifically, if X(]) < ...g X(n) is the order
statistic, corresponding to n i.i.d. random variables, and if Fn(x) is the

corresponding empirical c.d.f., i.e.,
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n .
= < l
Fn(x) jil I{X(j) s X< X(j+])}ﬂ ’
Smirnov's statistic 1is
(3.6) Wl = o+ B[ g F (X,.\)-F (x)+ 92
n  2n ja1 © (j)" "n 2n

Gardner refers the reader to Table VIII of VonMises [6A] for the critical
values of Yn’ for large n. Critical values cn(a), for a= .10,.05 and .0l and
various values of n, can be obtained from Figure | of Gardner's paper.

Gardner showed also that, under Ho, the p.d.f. of Yn is

n-l n-1
(3.7) £ (y) =+ rm 1 (e 14 costey- 4 1 tan”! ea hyde,
n T o k=1 k 2 k=1 k

where o = néq cos? (kn/2n), k = 1,...,n~1. The integration of fn(y) for the

determination of its (l-a)th fractile, cn(a), requires special numerical
techniques. The power function of the test was determined by Gardner in some
special cases by simulation.
Sen and Srivastava [56] discussed the statistic

1 n-! n-1

(3.8) g =— ¢ (I X,
n? i=1 j=i i+l

)2
1 n-1 - )
= — _Z (n-1) (xn—i) ,

n? i=l

for testing Ho versus Hl with 6#0, when the initial mean, o is known.

They showed that the asymptotic distribution of Un’ under Ho’ has the c.d.f.

(3.9 F(Z) =

L

(=i BOLED (1o ol f22).
. .

A
% V22

In addition, they derived the c.d.f. of Un for finite values of n, and provided
a table in which these distributions are presented for n=10, 20, 50 and =
(asymptotic).

In addition, Sen and Srivastava proposed test statistics which are based on

the likelihood ratio test. More specifically, for testing Ho versus Hl’ with

§ > 0, when Mo is unknown, the likelihood function, when the shift is at a point

t, is

t n
- - =% 2
exp {~1/2[ £ (X,X )%+ I (X,-X"_ )21}
i=1 1! i=t+1 - P°E

I
(3.10) LX) = —m—
t'n (zn)nlz
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It can be easily shown that the likelihood ratio test statistic is then

- X -2 & s Lyl/2
(3.11) Ay= sup (XX Mo T

Ist<n-1  ©
Power comparisons of the Chernoff and Zacks Bayesian statistic Tﬁ and the
likelihood ratio statistic An are given for some values of n and point of shift t.
These power comparisons are based on simulations, which indicate that the
Chernoff-Zacks Bayesian statistic is generally more powerful than. the Sen =
Srivastava likelihood ratio statistic when T 72 n/2. On the other hand, when

t is close to | or to n, the likelihood ratio test statistic is more powerful.

Bhattacharyya and Johnson [9] approached the testing problem in a non—para:
metric fashion. It is assumed that the random variables Xi,Xz,.:.,Xn are inde-
pendent and have continuous distributions Fi (i=1,...,n). Two types of pro-
blems are discussed. One inwhich the initial distribution, F_, is known and

is symmetric around the origin. The other one is that in which the initial
distribution is unknown and not necessarily symmetric. The hypotheses corres-

pording to the shift problem when Fo is known is Ho : Fo =...= Fn, for some

specified Fo in Fo {F:F continuous and symmetric about O}.
versus
H =F =F =,..=F_ >F =F, some F_e¢ F_.
n o o

T is an unknown shift parameter. 1:‘_r > F indicates that the random variables

+1
after the point of shift are stochastically greater than the ones before it.
For the case of known initial distribution Fo(x), the test is constructed with

respect to a translation alternative of the form F x) = Fo(x-A), where

& > 0 is an unknown parameter. The problem is inva;I;nt with respect to the
group of all transformations xi = g(xi), i=1,...,n, where g(x) is continuous,
odd and strictly increasing. The maximal invariant statistic is (R],...Rn)

and (J;,...,J ), where R, = rank of |xi| (i=1,...,n), and J, = 0 if

sgn (Xi) = -1, J‘i =1 if sgn (Xi) =1,
The average power of a test is thus

p(a) = ¢ qivy(A.’i—l),

i=1
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where w(Alt) is the power at A, when the shift occurs after t observationms,
qps-+-»q, are given probability weights (qi > 0, Zqi = 1). Bhattacharyya and
Johnson proved that, under some general smoothness conditions on the p.d.f.
fo(x), the form of the invariant test statistic, maximizing the derivative of

the average power ¥(A) atA= 0, is

(3.12) Tn =

Tt o3

Q; Sgn(Xi) E{-f; (V(Ri))/fo (V(Ri))},

i=1

(1) (n)

where V £,..2V is an ordered statistic of n i.i.d. random variables
having a distribution Fo(x), and Qi = ‘E q.. More specific formulae for the
cases of double-exponential, logisticsjsland normal distributions are given.
The null hypothesis Ho is reject:d for large values of Tn. It is further proven
that, any test of the form T = oz 0i sgn(xi) U(Ri)’ where U is a strictly

. . . . . =1 . .
increasing function, is unbiased’ Moreover, if the system of weights

Q. i=l,...,n satisfies the condition.
’
n
(3.13) lim+ £ Q@ .=b2 , 0<b2ca,
e @ jop mai

1
then, the distribution of Tn/(nbz( I V2 (u) dn))l/z, as n +~ ©, converges to

the standard distribution, where °

- -1
(3.14) b = £ 5 (L @enyze, @O,
o 2 o o

Similar analysis is done for the case of unknown initial distribution Fo.
In this case the test statistic is a function of the maximal invariant
(s,,...,sn), which are the ranks of (x],...,xn). The test statistic in this
case is of the general form

*

(3.15) Tn =

q, Et-£' (v /vy

[ =]

i=1
In the normal case, for example, with equal weights for t=2,...,n and weight
1
0 for t=1, the test statistic is T; = I (i-l)si'
i=1
Notice the similarity in structure between the statistic T: and that of
Chernoff and Zacks, Tn. The difference i1s that the actual values of Xi are

replaced by their ranks, Si.
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Hawkins [23] also considered the normal case, with two sided hypothesis,
both 90 and § unknown. Like Sen and Srivastava, he considered the test statis-

tic U_ = max lTkl’ where
1<k<n-1

n
= of —B =X = -
(3.16) Ty -A« e izk (X)), k=1,....0-1.

The statistics T ""’Tn—l are normally distributed, having a correlation

1
function

'm(n-k)
(3.17) I(Tm,Tk) =‘ k—(m , m

Hawkins provides recursive formulae for the exact determination of the distri-

A
=

bution of U. Comservative testing can be made by applying the Banferroni inequa-

lity

P{ max [T, | >c}s ()P |T|>c}
1<k<n-1

= 2(n-1) ¢(~c)

Hence, a conservative o level test of Ho can be on the critical level

zl—u/(Zn—Z)’ where ZY is the y-fractile of the standard normal distribution.

A numerical example is given to compare the exact and the Banferroni approximation
to the critical values of the test statistic u,- In an attempt to understand

the asymptotic properties of Un, Hawkins considered the behavior of the maximum
of 4 Gaussian process having the same covariance structure as that of

T],Tz,... The asymptotic results are still not satisfactory.

Pettitt [50] discussed non-parametric tests different from those of

Bhattacharyya and Johnson. He defined for each

t n
t=1,...,n, Ut n = z z sgn(X.-X.) and studied the properties of the test
- ’ i=1 j=t+l o
statistic
(3.18) K = max [U_ |
% jsegn 50O

The distribution of Kn was studied for Bermouilli random variables.



4 - ESTIMATING THE LOCATION OF THE SHIFT POINT

Two types of estimators of the location of the shift point t, appear in the
literature : Bayesian and maximum likelihood. El-Sayyad [17], Smith [62],
Broemeling [1], Zacks {70; pp. 3!1] and others, give the general Bayesian
framework for inference concerning the location of the shift point , t, in
an AMOC model.

Hinkley [28] studied the maximum likelihood estimator. We stard with an
example concerning the Bayesian estimation and proceed then to present

Hinkley's results.

4.1. - Bayesian Estimation of the Change Point

The Bayesian procedure is to derive the posterior distribution of the change
point T, and determine the estimator which minimizes the posterior risk, for
a specified loss function. _ -

If the loss function for estimating t by T1s L(v,T) = [t-t], then the Bayes
estimator of the change point is the median of the posterior distribution

of 1, given gn' For example, suppose that Xl,...,Xn are independent random

variables having normal distributions N(ei,l), where

with 60 known (eo = 0 say). Furtherfore, assume that the prior distribution of
8 is normal, N(0,¢2), independently of t, and T has prior probabilities

M(t) = P{t=t}, ¢t = 1,...,n. Here {1t = n} indicates the event of no change.

The posterior probabilities of t for this model are

X V2 (p-t)242

& _ )% (n-t)%o

H(t)(}‘(n-t)cz)llz exp
l 2(1+(n-t)g?)
(6.1) mlelx) = il
Y 2 | D)2 (noiy292
L0 (+a-1)02) 2 exp wp? (ai)lo
j=1 (e (amg)02)
—x ] a ) .
where Xn-c i X. is the average of the last (n-t) observatioms.
i=t+l

The median of the posterior distribution is then the Bayes estimator of T,

namely
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(4.2) ?(Xn) = least positive integer t, such that

; mijx) = .s.
=0 -n
In the following table we present the posterior probabilites (4.1) computed
for the values of four simulated samples. Each sample consists of n=20 normal
variates with means ei and variance 1. In all cases 8 = 0. Case I comsists
of a sample with no change in the mean, § = 0. Cases II-IV have a shift in the
mean att= 10, and § =.5, 1.0 and 2.0. Furthermore, the prior probabilities of
t are () = p(1-p)T 7! for t=1,...,n-1 and N(n) = (1-p)™ ', with p = .01 ;

and the prior variance of § is o2= 3.

Table 4.1 Posterior Probabilities of {t=t}

[N 0 .5 1.0 2.0
1 0.002252 0.012063 0.00300S 0.000000
2 0.004284 0.016045 0.002885 0.000000
3 0.004923 0.016150 0.002075 0.000000
4 0.006869 0.022634 0.002193 0.000000
5 0.006079 0.008002 0.002202 0.000001
6 0.004210 0.006261 0.002291 0.000050
7 0.004020 0.006735 0.001954 0.000026
8 0.002867 0.015830 0.001789 0.000015
9 0.003534 0.015914 0.00195% 0.001087
10 0.002972 0.011537 0.002228 0.068996
11 0.003033 0.019014 0.002708 0.908434
12 0.003070 0.010335 0.002661 0.016125
13 0.003395 0.006026 0.002996 0.005237
14 0.003087 0.003201 0.003017 0.000009
15 0.004064 0.003461 0.003096 0.000011
16 0.003355 0.002709 0.002820 0.000009
17 0.004991 0.002899 0.003078 0.000000
18 0.009664 0.003486 0.004004 0.000600
19 0.007255 0.006106 0.012432 0.000000
20 0.916077 0.811593 0.940607 0.000000
We see in Table 4.!. that Bayes estimator for Cases I-III is t= 20 (no change),

while in Case IV it is t=11. That is, if the magnitude of change in the mean
is about twice the standard deviation of the random variables, the posterior
distribution is expected to have its median close to the true change point.
In many studies (for example, Smith [62]) the Bayesian model is based on the
assumption of equal prior probabilities of { t=t}. Such prior probabilities

yield in the above cases the following posterior probabilities.
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Table 4.2. Posterior Probabilities of {t=t} , for Equal Prior Probabilities

Kg\i 0 .5 1.0 2.0
1 0.023329 0.030693 0.019734 0.000001
2 0.020209 0.031206 0.037996 0.000006
3 0.024060 0.028078 0.125330 0.000035
4 0.023996 0.024921 0.081694 0.000149
S 0.023063 0.026290 0.083705 0.002859
6 0.022546 0.030888 0.111434 0.005653
7 0.022951 0.042321 0.079959 0.001071
8 0.029850 0.036347 0.059293 0.005238
9 0.043298 0.030515 0.026376 0.029615
10 0.043976 0.031933 0.069415 0.931462
11 0.052939 0.033107 0.02059%4 0.014332
12 0.059540 0.037187 0.034396 0.008651
13 0.065588 0.048819 0.033543 0.000431
14 0.037356 0.040960 0.052289 0.000457
15 0.060050 0.049399 0.043785 0.000037
16 0.055957 0.055566 0.048865 0.000004
17 0.049753 0.069433 0.022328 0.000000
18 0.050994 0.085113 0.034621 0.000000
19 0.156117 0.092993 0.012691 0.000000
20 0.134429 0.174230 0.001955 0.000000

As seen in Table 4.2, the Bayes estimator T when 6=2 is exactly at the true
point of change t=10. On the other hand, when §=0 the estimate is ;=16.
Smith derived formulae of the Bayes estimators for cases of sequences of
Bernouilli trials [62], and for switching linear regression problems [63].
Bayesian estimators for the location of the shift parameter for switching

regression problems are given also by Ferriera [19], Holbert and Broemeling
[32], Tsurumi [65] and others.

4.2. - Maximum Likelihood Estimators

Let XI,XZ,...,Xn be a sequence of independent random variables. As before,
assume that

XI’XZ""’XT ~ Fo(x)
and

X ..,xanl(x),

T+l
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where Fo(x) and F](x) are specified distributions, t is the unknown point

of shift. The maximum likelihood estimator (MLE) of T is
(4.3) ?n = least positive integer t

t=1,...,n, maximizing Sn e where
*

t n
Z log fo(xi) + ¥ log fl(X.) , ife=1,...,n-1
(4.4.) i=1 i=t+1 1
S =
a,t a
iil log fo(xi) . if t = n.

fo(x) and f](x) are the p.d.f.'s corresponding to Fo(x) and Fl(x). We present
here the method of deriving the asymptotic distribution of ;n’ as n and T ,
following the development of Hinkley [28].

Let U, = log fo(xi) - log fl(xi)’ i=1,2,...,n.
t n .
Since S = ¢ U, + ¢ 1log £f,(X.), it readily follows that 1_ is the least
L N Y LR n
positive integer maximizing Vt =z Ui (t =1,...,n). Consider the sequence

wt = Vt-VT, where 1 is the true poiﬁ?l of shift. For very large value of 1

(1= ) consider the backward and forward sequences

k
V= {0, -u, -UT—UT""”’-on Upgoneet
i =
an K
Wo=1{0,U_  ,..., S
T+1 j=0 T+j
k k
Let M = sup {-Z UT_.} and M' = sup { Z U +.} ,
O<kst j=0 J 0<k<g= j=0 ™
- "= =
and YJ Ur-j+l’ Yj UT+J, j I,.. . Thus,
w={0,Y,,Y +Y,,...}, W' = {0,Y',¥'+Y!,...} .

1’02

Let t be the point at which Max{M,M'} occurs. Notice that

{t=t}=zM=M =0},
(4.5) {t = t+k} = {M'> O and M' > M} ,
{t = 1-k}={M > 0 and 4 > M'}.



Accordingly, since the sequences W and W' are independent,

P(t = t} = P[M=O]P[M'=0] ,

(4.6) P{t = <t+k} = P{M' > 0, M'" > M, I'=k} ,
and .
P{t = t-k}=PM>0,M2M, 1=k},
where K
I=inf {k ; M= ¢ Y.},
ey 3
]
k
I' =inf {k ; M' = § Y!}.
j=t

Thus let Bk(x)dx =P{I=k , x <M< x + dx} and Bé(x)dx = P{I'=k, x s M' £ x + dx}.
Furthermore, let a(x) and a'(x) be the c.d.f. of M and M', respectively.
Then

P(r =1} = a(0) a'(0) ,

(4.8) P{t = t+k} = r Bl'((x)a(x)dx s
[o]

and P{t= 1-k} = [° Bk(x) a'(x)dx.
o

5 - DYNAMIC CONTROL PROCEDURES

There are numerous papers on dynamic control problems, all of which deal in

one way or another with the problem of shift at unknown time points. In parti-
cular we mention here the papers of Girshick and Rubin [2], Bather [7,8]

Lorden [43], Yadin and Zacks [68], Shiryaev [60,61], and Zacks and Barzily [69].

We present first the Bayesian theory, followed by discussed of the CUSUM proce-
dure.Again, we consider a sequence of independent random variables
XI,XZ,...,Xm_l,Xm,... Let t be the point of shift, T = 0,1,... If t £ 1, all
the observations are from F](x). If t =t (t = 2,3,...) then the first t-l

observations are from Fo(x) and xt, X are from Fl(x). Let fo(x) and

yeen
fl(x) be the p.d.f. corresponding to ;:ix) and Fl(x), respectively.

The random variables xl,xz,... are observed sequentially and we wish to apply
a stopping rule which will stop soon after the shift occurs, without too many
"false alarms". The following objectives are considered in the selection of a

stopping variable N :
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1°) If Tf(t) denotes the prior distribution of 1, then the prior risk
(5.1) RGN = Po(N < 1) + ¢ P (N21) EH{N-TlN >t}
is minimized, with respect to all stopping rules.

2°) To minimize E_{N-T|{N 2 1t} subject to the constraint P_(N < 1) <a,
I e

0 <ac<l.

5.1. - The Bayesian Procedures

The shift index, t, is considered a random variable, having a prior p.d.f.
N(t), concentrated on the non-negative integers. Shiryaev [60] postulated the

following prioir distribution

I , ift=0
(5.2 nee) =
(I-Tl)p(l--p)t"l , if £t =1,2,...

for 0<mMT <1, 0<p< 1. (I+(1-M)p) is the prior probability that the shift
has occurred before the first observation, and p is the prior probability of
a shift occurring between any two observatioms.
After observing Xl,...,Xn, the prior p.d.f. N(t) is converted to a posterior
probability function on {n,n+l,...}, namely,

Hn s, t=n
(5.3) n(t) =

n -1
(I-mp(1-p) " ', t = n+l,...

where Hn is the posterior probability that the shift took place before the

n-th observation. This posterior probability is given by m,o= l-qn, where

n
(5.4) gy = LRUB. g x),
and n i=1 '
n
D, = (M+(1-M)p) igl £,(x) +

n-1 o j n
(5.5) (1-Mp £ (1-p)3 T £ (X,) m £ (X.,) +

. . o i’,., . 171

j=1 i=1 it=j+1

n
(1-m) (1-p) ™ O£ (X)) .
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Let R(Xi) = fl(xi)/fo(xi)’ i=1,2,..., then

n+l
¢ ol T R ):ll) tifing)(l-p)“hs
n+l n n+l
where
B, = R, )D(-D (=) + (1-1) (1-p)™"

But (l—l‘l)(l-p)n = ann' Hence,

q_(1-p)
(5.7) q., = = ,
n+1 RZXn+17?T-qn(l-p))+qn(l'P)
or
5.8 . (m +(1-1 Jp-R(X_,,)

n+l (nn+(l-nn)p)R(xn+])+(l-nn)(l-p) ’

n=0,l,... with Ho =T and 9, = 1-M. Accordingly, the sequence of posterior
probabilities {Hn ; n 2 0} is Markovian, i.e., the conditional distribution of
Hn+] depends on the first n observatioms xl,...,xn, only through Hn. This can
lead immediatly to the comstruction of recursive determination of the distri-
bution of any stopping variable depending only om n (see Zacks [71]). Shiryaev
[60] has shown that when Fo and F] are known, the optimal stopping variable, with
respect to the above objectives, is to stop at the smallest n for which Hn 2 A,
for some 0 < A" < 1.

Bather [7] has shown that for the constraint of bounding the expected number of
false alarms by n, AY = (r\-t»l)-l is the optimal stopping boundary.

When the distributions Fo and Fl are not completely specified, the above problem
of finding optimal stopping variables becomes much more complicated. Zacks and
Barzily [69] studied Bayes procedures for detecting shifts in the probability

of success, 8, of Bernouilli trials, when the values eo, before the shift, and
the value el after it, are unknown. The Bayesian model assumed that eo and 6

1

have a uniform prior distribution over the simplex {(eo,el) ; O < eo < 6‘ < 1}

and the point of shift, T, has the prior distribution (5.2). In this case, the
l,...,Xn,
and not only on nn-l and Xn. It is shown that this posterior probability is a

posterior probability Hn depends on the whole vector of observations X
. - .
function of §n (Xl,...,Xn) given by
= (i _y0-l -
(5.9) Hn(gn) = [=(1-M)(1-p) B(Tn+l, n Tn+2)/Dn(§n)

where B(p,q) 1is the beta-function ;



.73.

p)
T. = X X. and

Dn(fn) = IIB(Tn+2, n—Tn+1) +

n-1

j-1 (n) ._m(n)
- 1= T 4+l , n=j-T ‘+1).
(1-Mp jil (1-p) B( n=j v )
(5.10)
S .
n-j n-j-1
.L ( ) B(T _+1, n-T +2)
; . n n
i=0 i
+ (I-II)(I-I:o)n-1 B(T +1, n=T_+2).
Here, T(nz =T-T, (j=0,...,n). The sequence {II_ (X ) ; n 2 1} is not Markovian,
n-) L n'-n

but is submartingale. Zacks and Barzily considered the problem of determining the
optimal stopping rule under the following cost conditions :

After each observation we have the option to stop observations and declare that

a shift has occurred. The process is then inspected. If the shift has not yet
occurred a penalty of 1 unit is imposed.If, on the other hand, the shift has already
occurred, a penalty of C units per delayed observation (or time unit) is imposed.

It is shown then that the optimal stopping variable is

(5.11) N° = least n 2 1, such that Hn(¥n) > bn(¥n)'

where the stopping boundary bn(Xn) is given implicitly, as the limit for j - =, of

-0
My %)
C+p

(5.12) béj)(gn) = min(M'- 1,

with 1% = p/(C+p) are the functionms MiJ)(Xn) can be determined recursively,

according to the formula

(5.13) Mij)(¥n) = Efmin (0,C N_, (X ,X_ )}
-p(1-T_ (X ,X )+ w31 (X_,X_. N|x.}
n+l "n’"n+l “n+l “n’ n+l i

It is very difficult, if not impossible, to determine these functions explicitly,
for large values of j. The authors therefore considered a suboptimal procedure
bases on bnz)(xn) only. Numerical simulations illustrate the performance of the

suboptimal procedure.



.74,

5.2 - Asymptotically Minimax Rules and the CUSUM Countrol

Lorden [42,43] considered the sequential detection procedure from a non-Bayesian
point of view and proved that the well known CUSUM procedures of Page [47,48,49]
are asymptotically minimax.

Let XI’XZ"
of X],...,Xm_l EEEE

is unknown , Fo(x) and Fl(x) are known. The family of probability measures is

.. be a sequence of independent random variables. The distributions
is Fo(x) and that of xm,xm is Fl(x). The point of shift m
{Pm ;m=1,2,...}, where Pm(¥n) is the joint p.d.f. of X = (xl,...,xn), in

which Xm is the first random variable with a c.d.f. F](x).

It is desired to devise a sequential procedure with a (possibly) extended

stopping variable, N, (i.e., %iz Pm[N>n] 2d>0,m=0,!,...) which minimizes

the largest possible expectation of delayed action, and does not lead to too

many false alarms. More precisely, if Po(g) denotes the c.d.f. under the assumption
that all observations have Fo(x) as a ¢.d.f. ; and if Em{.} denotes expectation

under Pm(.), the objectife is to minimize

(5.14) E {N} = ;:T ess sup Em{(N—m-l)+|Fm_l}

subject to the constraint
(5.15) E (N} 2 Y, ey ¢ .

Em{'lfi-l} denotes the conditional expectation given the o-field generated by
(XI,...,Xm_l). It is proven by Lorden [43] that an asymptotically minimax proce-
dure, as y - », is provided by Page's procedure, which is described below.

Let R(Xi) = fl(Xi)/fo(Xi), i=1,2,... vhere fi(x) is the p.d.f. corresponding
to Fi(x)’ i=0,1. Let

k
S, = & log R(X,), k=1,2,... and T = S-min S, . Then for vy = log v
k . i k

i=1 k<n
(5.16) N* = least n 2 | such that T 2y

is Page's (extended) stopping variable.

The statistic Tn can be computed recursively by the formula

+
(5.17) T o = (Tn + log R(Xn+l)) R n=0,l,...

T = 0.
o
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i0@ abuve wefec{ion p.ocedure can be consicerea as a sequence of ome-sidea

Wald's SPRT with boundaries (0,y). Whenever the Tn statistic hits the lower boun-
dary, O, the SPRT is recycled, and all the previous observations can be discarded.
On the other hand, for the first time Tn > y the sampling process is stopped.

The repeated cycles are independent and identically distributed. Thus, Wald's
theory of SPRT can be used to obtain the main results of the present theory.

Let o and B be the error probabilities in each such independent cycle of

Wald's SPRT ; i.e., a = Po[Tnzy] and B = Pl[Tn=0]' Let Nl be the length of a
cycle. Accordingly,

* 1
(5.18) EO(N } = = Eo{Nl}
and
*y 1
B (N} =g EjN)

Set Y* = % , then the constraint (5.15) is satisfied, since E](Nl} > 1.
Moreover, Lorden proved that EI{N*} = EI{N*}' Finally, applying well known

results on the expected sample size in Wald's SPRT, we obtain

(5.19) EI{N*} z loi e , as a =0,
1

£,(X)
1 . . . . . .o
where I1 E1 {log £, X)} is the Kull back-Leibler information for discrimi

nating between Fo and F].
The right hand size of (5.19) was shown to be the asymptotically minimum expected
sample size. Thus, Page's procedure is asymptotically minimax.

in [42] Lorden and Eisenberg applied the theory presented here to solve a problem
of life testing for a reliability system. It is assumed that the life length of
the system is distributed exponentially, with intensity (failure-rate) A. At an
unknown time point, 8, the failure rate shifts from A to A(l+n), O < nlsnsnz <o,
Approximations to the formulae of EO{N*} and En(N*} are given, assuming that A

is known. By proper transformations of the statistics the detection procedure can
be applied also to cases of unknown A. It is interesting to present some of the
numerical results of this studv. For the case of A =1 and a =1/y . The expected

number of observations required is

n Y EO(N} En{N}

.4 20 422 48
50 676 36

.9 40 342 20

Page's CUSUM procedure is thus very conservative, relative to the Bayes procedures,

which detect the shifts fast, but have also small Eo {n}.
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