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Testing for Cotorsionness over Domains.

LAszLO FucHS (*) - RUDIGER GOBEL (F*)

ABSTRACT - We are looking for reduced modules over an integral domain to test the
cotorsionness of modules. OQur focus is on the cotorsion theories due to Matlis,
Enochs and Warfield, respectively. If « is a cardinal such that ™ = 2, then for
domains R for which @ /R (@ is the quotient field of R) is not self-small there is a
reduced strongly flat R-module U, of rank 2* that can be used to test whether or
not an R-module of cardinality < 2" is Matlis cotorsion; however, no such module
exists if the cardinality restriction is removed. We also establish the existence of
reduced modules which test Matlis cotorsion modules for Enochs or Warfield
cotorsionness.

For a given torsion-free or flat R-module A of cardinality x, we construct
an Enochs, resp. Matlis cotorsion R-module M of cardinality < 2* with
Ext,l,E (A, M) = 0 that is not Warfield, resp. not Enochs cotorsion.

1. Introduction.

We consider modules over integral domains R. The field of quotients of
R will be denoted by @, and we write K = Q/R. Throughout it is assumed
that @ # R.

The classical cotorsion theory of abelian groups (due to Harrison [13])
has been extended to modules over arbitrary integral domains in three
inequivalent ways (see e.g. Bazzoni-Salce [1] or Gobel-Trlifaj [12]). An R-
module C'is called Matlis cotorsion if Ext}% (@, C) = 0, Enochs cotorsion if
Extp (F,C) =0 for all flat R-modules F, and Warfield cotorsion if
Ex‘c}2 (G, C) = 0 for all torsion-free R-modules G. Evidently,

Warfield cotorsion = Enochs cotorsion = Matlis cotorsion,
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and examples show that in general the reverse implications fail. (However,
all these cotorsion theories are equivalent for Dedekind domains.) Note
that for reduced torsion-free modules, Matlis cotorsion means R-com-
pleteness, pure-injective modules are Enochs cotorsion, while Warfield
cotorsion is equivalent to RD-injectivity (for RD-injectivity see e.g. Fuchs-
Salee [7]).

An R-module A satisfying Ext}‘3 (A,C) =0 for all Matlis cotorsion
modules C is said to be strongly flat (see Bazzoni-Salce [2]), while the
modules A that satisfy Ext},3 (4,C) = 0 for all Enochs, resp. Warfield co-
torsion modules C are precisely the flat, resp. the torsion-free R-modules.
In particular, the class of strongly flat R-modules and the class of Matlis
cotorsion modules form a cotorsion theory in the sense of Salce [18], and so
do the other two pairs of corresponding classes.

In this note we wish to discuss two problems. It is well known (see
Enochs-Jenda [6]) that for all the three cotorsion theories mentioned above
there exist test modules for cotorsionness, but none of them is reduced:
they all contain a copy of . We are wondering if there exist reduced
modules to test cotorsionness; more precisely, we would like to find

a) a reduced strongly flat module U such that Ext, (U, C) = 0 implies
that C is Matlis cotorsion,

b) a reduced flat (but not strongly flat) module U such that the van-
ishing of the same Ext for a Matlis cotorsion C implies that C is Enochs
cotorsion, and

¢) a reduced torsion-free non-flat U for which Ext}% (U,C) =0 for an
Enochs cotorsion C implies C is Warfield cotorsion.

While questions b) and c¢) have easy affirmative answers for all domains
(see Theorems 4.1 and 4.2), the answer is in the negative for a) (cf. Cor-
ollary 3.4), though in cases in which K is not self-small cardinality re-
strictions yield more satisfactory results (Theorem 2.4).

Another problem we address is concerned with vanishing Ext. If A is
a flat, but not strongly flat (torsion-free, but not flat) R-module, then in
view of the cotorsion theories mentioned above we know that there must
exist Matlis (Enochs) cotorsion modules M that are not Enochs (War-
field) cotorsion satisfying Ext},a (A,M) = 0. We intend to show how to
find in both cases such an M whose cardinality does not exceed 2/
(Theorems 5.1 and 5.2). The construction of vanishing Ext was pio-
neered by Eklof-Trlifaj [5]; here a different method will be adapted that
will be used repeatedly.

In the final section our focus is on modules over Matlis domains. We
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prove that there exist arbitrarily large cardinals x such that there are
torsion-free modules of cardinality 22° over such domains that are not
Matlis cotorsion, but all of their torsion-free epic images of cardinalities
< 2¢ are Matlis cotorsion (Theorem 6.1). We would like to thank the re-
feree for very useful suggestions incorporated in this article.

2. Reduced test modules for Matlis cotorsion.

We will use the notation |R| = p for the cardinality of the domain. M will
stand for the Matlis cotorsion hull of the R-module M. If M is h-reduced
(lLe. has no h-divisible submodule # 0), then M is a submodule of
M = Ext}e (Q/R,M), and if M is in addition torsion-free, then this is just
the completion of M in its R-topology.

LeEmMA 2.1, If M denotes an h-reduced B-module of cardinality r, then
the cardinality of M /M = Ext}2 (Q, M) is at most x”.

Proor. Let0— H — F — () — 0 be an exact sequence with F' a free
R-module of rank p. The induced exact sequence

Homg, (F, M) — Hompg (H, M) — Ext}, (Q, M) — Exth (F,M) =0

shows that | Ext}e (@,M)| < |Hompg (H, M)|. The latter cardinal is certainly
not larger than |[M|7 < x”. O

It turns out that among the reduced R-modules there exists no uni-
versal test module for Matlis cotorsionness, but there might exist some
that test modules up to certain cardinalities. In our search for such reduced
test modules, it is reasonable to concentrate on strongly flat modules.

Extensions of free R-modules by torsion-free divisible modules are
immediately seen to be strongly flat, and of course so are their summands.
The converse is also true (Bazzoni-Salce [1]): all strongly flat modules are
summands of modules U that fit into an exact sequence of the form

QD 0—-F—-U—D—0,

where F'is a free R-module and D is a torsion-free divisible B-module (thus
a direct sum of copies of @). If U is reduced, then F is a dense submodule of
U in the R-topology, and on the other hand, U is a pure submodule in the
R-completion F of F.

Let us introduce some ad hoc terminology to simplify our state-
ments. An infinite cardinal x will be called ‘good’ if it satisfies x™ = 2,
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E.g. ¥ is a ‘good’ cardinal in this sense, but 2% is not. Note that arbi-
trarily large cardinals x with this property exist, e.g. choose x as a
strong limit cardinal of cofinality w; cf. Jech [15, p. 49]. Furthermore, a
reduced strongly flat B-module U, will be said to be ‘good’ if x is a ‘good’
cardinal > |R| and there is an exact sequence (1) where U, is the middle
term and

(i) F'is a free R-module of rank x,
(ii) D is a torsion-free divisible R-module of rank o = 2,

Observe that if U in (1) is a ‘good’ module, then so i§ 17', because by
Lemma 2.1 we have KN < g <M = (29)° = 2% thus |F| = 2¢. On the
other hand, if F" is ‘good’, then there is a large supply of ‘good’ modules
between F' and F'.

Let us point out that for certain domains R ‘good’ reduced strongly flat
modules U, may not exist at all.

ExampLE 1. If R is an R-complete valuation domain with uncountably
generated @, then all free R-modules are R-complete (see e.g. Fuchs-Salce
[7, p. 281]). Thus F' = U, in this situation, and so no ‘good’ U, may exist for
any «.

ExampLE 2. Let R = 7Z[X] be the polynomial ring where X stands for
uncountably many indeterminates. It is shown in Gébel-May [10, Example
3.8] that R is complete in the S-topology, where S is the set of monomials in
the indeterminates. The R-topology on R is finer than the S-topology, thus
R is R-complete as well. It is readily seen that the same holds for all free R-
modules, so in this case no ‘good’ U, may exist.

An example for a domain where ‘good’ modules U, exist in a large
supply is provided by any Matlis domain, see Section 6 infra.

A necessary and sufficient condition for a domain R to admit arbitrarily
large ‘good’ modules U, is given in the next theorem.

THEOREM 2.2. A domain R admaits arbitrarily large ‘good’ reduced
strongly flat modules U, if and only if the R-module K = Q/R s not self-
small.

Proor. We are making use of the Matlis category equivalence (see
Matlis [17] or Fuchs-Salce [7, p. 280]) when we use the isomorphism
F ~ Homp (K, K ®R~F) = Homg (K, ®,.K) to obtain the Matlis cotorsion
hull (R-completion) F' of the free R-module F of rank .
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First suppose that K is self-small. Then F = Homp (K, ®,.K) =
Homg, (K, K) = @,R. Therefore, if r > \R| then \F | = x, so we cannot flnd
a ‘good’ module U, whenever x > |R |-

Next assume K is not self-small. This means that there exists a
homomorphism 7 : K — @y, K such that all the projections of Im# on the
summands are different from 0. Now let « be any ‘good’ cardinal > |E|. For
every countable subset I of x, we can map K via  into ®; K, and these maps
are different for different subsets I of x. Since there are KN ways to select
I, we conclude that |F| > «. Consequently, |F//F| > 1, and so such an F
serves as a ‘good’ U,. |

Note that K can not be self-small if it decomposes into a direct sum of
infinitely many non-zero summands. This is the case e.g. if R is an A-local
domain with infinitely many maximal primes. A useful sufficient criterion
for K to be not self-small is contained in the following simple lemma.

LEmma 2.3. If the module K admits a countably generated direct
summand # 0, then it is not self-small.

Proor. It is enough to show that a countably generated direct sum-
mand T of K is not self-small. 7 is divisible, so it is of the form
T = Upcotry, 'R /R with suitable r,, € R with T, IR c Tt R for all n. We get
an embeddlng of T in a countable direct sum of copies of T by embedding T’
in the nth copy of T' after applying multiplication by 7,. Thus T is not self-
small, so in this case by Theorem 2.2 there exist arbitrarily large ‘good’
modules. O

Next we prove that a ‘good’ strongly flat module U, can serve as a test
module for modules of cardinality not exceeding 2. (We adapt cardinality
arguments similar to those used by Hunter [14].)

THEOREM 2.4. Let U = U, be a ‘good’ strongly flat module for a ‘good’
cardinal k, and suppose |R| < k. If C is any R-module of cardinality < 2,
then Ex‘c}a (U, C) = 0 implies that C s Matlis cotorsion.

Proor. The exact sequence (1) induces the exact sequence
2 Homg (F,C) — Ext} (D,C) — Ext}, (U,C) — Ext}, (F,C) =0

Working toward contradiction, assume C is not Matlis cotorsion, i.e.
Ext}e (Q,C) # 0. Evidently, |Homg (F,0)| = |C|* < (2¥)" = 2%, while we
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have

| Exty, (D, O)| = | Exty, (@2 Q,0)| = [ [ | Ext @, 0)] > 2%
21;

The inequality 2° < 2% implies that in the exact sequence (2) it is impossible
to have Ext, (U,C) = 0. O

In case R = Z, we have p = Xj. Choosing x = Ny, it is clear that a large
variety of abelian groups can be chosen as test modules for (Matlis) co-
torsionness of abelian groups up to the power of the continuum. Goébel-
Prelle [11] point out that the collection of, and hence the direct sum of, the
slender subgroups of the Baer-Specker group 7™ is an adequate test
group. Our result asserts that even a single adequate slender subgroup Uy,
will suffice.

The preceding theorem is a sharp result in the sense that for modules of
cardinalities > 2% a ‘good’ U, cannot be a test module for Matlis co-
torsionness. In fact, this follows from the next result (choose A = U; with
A= 2"),

ProOPOSITION 2.5. For every reduced strongly flat R-module A of
cardinality . > |R| there exists an R-module M of cardinality < 2* such
that

(i) Extp(A,M) =0, and
(i) M is not Matlis cotorsion.

Proor. Starting with the list of all R-homomorphisms ¢,:A —
— Q (i €l), define the module B=@&, ;A along with the map
Y = Pier¢; 1 B — Q; thus every ¢; lifts to a map o;: A — B such that
¢; = wo;. Next extend y to y : B — @ from the Matlis cotorsion hull BofB
to Q. Then M = Kery is as deswed. In fact, B/M >~ Qand M = B, so M is
not Matlis cotorsion. It is straightforward to verify that |M| < 2*. Finally,
the vanishing of Ext in (i) follows from the fact that in the exact sequence
Homp (4, B) — Homg (4, Q) — Ext}, (A, M) — Ext}, (A, B)=0 the map
between the Homs is by construction surjective. O

3. A construction.

That no reduced R-module of cardinality < x can exist which could test
modules of cardinalities > 2* for Matlis cotorsionness will follow from the
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corollary of the next theorem. The theorem that follows is essentially
Theorem 2 in Eklof-Trlifaj’s paper [5] for which we give a different proof,
using injective resolutions rather than free presentations. (This method
will be used in the proofs of Theorems 3.2, 5.1 and 5.2.)

THEOREM 3.1. Suppose that k and 1 are infinite cardinals such that
|R| < k and A* = A For every pair L, A of R-modules of cardinality < i,
there exists an R-module M such that

@ M| <4
(ii) Extp, (4, M) =0;
(iii) M is the union of a well-ordered ascending chain of submodules
M, (6 < A) with My = L and M;1/M, a direct sum of copies of A.

Proor. Wemay assume that L is not injective. Our starting point is the
exact sequence 0 — L. — E(L) — Dy — 0,where E(L) denotes the injective
hull of L. Thus Dy #0 is a divisible torsion module. Observe that
|E(L)| <k < 1. We follow two steps to obtain another short exact se-
quence.

First, we replace E(L) by its direct sum with a direct sum of copies
of A and extend the map ¢ : E(L) — D, accordingly so as to obtain an
exact sequence in the second row of the following commutative dia-
gram such that every homomorphism A — D lifts to a homomorphism
A— C()Z

¢

0 —— My=L — B(L) Dy 0
0 —— M —— Co=aA®E(L) —2— Dy 0

| | l

0—— M, —— C,=E(C) %, Dy 0.

The next step is to replace the middle term Cj by its injective hull
C1 = E(Cy) and modify the quotient Dy accordingly (keeping the
kernel unchanged); D; is likewise torsion divisible. The arising dia-
gram is commutative, with all the vertical arrows representing in-
clusions.

We repeat the step of obtaining the third row from the first one
transfinitely, continuing from the last row of the preceding diagram, and
taking direct limits of exact sequences at limit ordinals. The Ath step yields
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an exact sequence

@  0-M={JM,—c=JEC) S D=JD, 0.

o<l o<l o<l

Hence we obtain the induced exact sequence
(5) Homg(A,C) — Homg (4, D) — Exty (A, M) — Ext} (4, 0C).

The map between the Homs is surjective, since |A| < x < cf /1 implies that
the image of any homomorphism A — D is contained already in some D,
witho < 4,soitliftstoamapA — E(C,.1) < C.Furthermore, the last term
vanishes (though C need not be injective), because the factor set of any
extension of C by A already belongs to £(C,) for some ¢ < 4, and therefore
it has to be a transformation set, indicating splitting. This establishes the
equality Extj, (4, M) = 0.

If |Ds| < 4, then because of |A| < x the cardinality of the set of homo-
morphisms A — D,; is at most A* = 1. Therefore, we have |C,.1| < 4 and
|Ds11] < 2, whence the inequality |C| < /, and so also |M| < A follows.

The step of passing from M, to M, is desecribed by the commutative
diagram

O —— M, —— C, —— D, —— 0

l ! H

0 — M,y; — AC, —— D, —— 0

which shows that M1 /M, = ®A. Thus M has been constructed in the way
as described in the theorem. O

In the following proof we will use the notation Ay,(A4) for a module M in
Theorem 3.1 constructed by using the given modules L and A.

THEOREM 3.2. Let the domain R and the cardinals k, A be as in the
preceding theorem. If there is a torsion-free R-module L of cardinality < J
that is not Matlis cotorsion, then to every reduced torsion-free R-module A
of cardinality < r there exists an R-module M of cardinality < A that
contains L, is not Matlis cotorsion, and satisfies Ext}g A,M)=0.

Proor. Let L be atorsion-free, not Matlis cotorsion R-module. We are
going to use the same kind of construction as above starting from the exact
sequence 0 — L — L — Dy — 0; here Dy # 01is a direct sum of copies of Q.
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This time we change the middle term L by adding a summand A4(A) for
sufficiently many copies of A and extend the map ¢ : L — D, to a map w
such that every map A — D, should lift to A — Cj:

T ¢

0— L —— L Dy 0
0 —— My —— Cy=Apga(A)e L —2— Dy 0
0 —— My —— C1 = Co %, Dy 0.

The second step consists of the formation of the Matlis cotorsion hull of the
middle term. Here again, D; = &Q. Taking direct limits we get an exact
sequence like (4), and hence (5). As in the proof of Theorem 3.1 we can
conclude that Ext}e (4, C) = 0 which implies Ex‘c}.3 (A,M) = 0. It is obvious
that C can not contain any copy of @, so the sequence (4) does not split. We
conclude that M has a non-split extension by a direct sum of copies of @, i.e.
M is not Matlis cotorsion. O

The idea of the proof above applies to verify the following theorem.

THEOREM 3.3. Suppose that i is an infinite cardinal such that |R| < r.
There exists an R-module M of cardinality 2* that is not Matlis cotorsion,
but satisfies

Extj, (A, M) = 0

for all reduced torsion-free R-modules A of cardinality < k.

Proor. We argue as above in the proof of Theorem 3.2, just in the 2*
steps we have to use every R-module A of cardinality < x exactly 2* times
(rather than a fixed A all the times) with the proviso that each A is used
cofinally (i.e. we never stop using any A: for any ¢ < 2, every A has to be
used after the ath step). O

From Theorem 3.2 we derive the conclusions pointed out at the be-
ginning of this section.

COROLLARY 3.4. There is no reduced R-module of cardinality < k to
test modules of cardinalities > 2 for Matlis cotorsionness. |
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4. Reduced test modules for Enochs and Warfield cotorsion.

Since there is no universal reduced test module for Matlis cotorsion,
there can not exist any for Enochs or for Warfield cotorsion either. But if
we wish to test a module M for Enochs or for Warfield cotorsionness that
is already known to be Matlis cotorsion, then we can manage with reduced
test modules, since @ is needed only to ensure the Matlis cotorsion
property.

Thus we are now in search for reduced flat, resp. reduced torsion-free
R-modules U such that the equation Ext}% (U,M) = 0 will force a Matlis
cotorsion module M to be Enochs, resp. Warfield cotorsion. Such modules
U are provided by the following two theorems (the proofs use an idea from
Bican-El Bashir-Enochs [3]).

THEOREM 4.1. Assuming |R| < x, let U be the direct sum of all pair-
wise non-isomorphic reduced flat R-modules of cardinality < k. If M is a
Matlis cotorsion module that satisfies Ex‘c}3 (U,M) =0, then M is Enochs
cotorsion.

Proor. It is well known that if |R| < «, then every R-module A # 0
contains a pure submodule B # 0 of cardinality < x. Now if A is flat, then
both B and A /B are flat, and by induction it follows that, for some ordinal z,
A contains a continuous well-ordered ascending chain 0=A4( <
<A;<...<A, < (a< 1) of pure submodules such that A = U,..A, and
the factor modules A,,;/A, are flat modules of cardinality <. If
Ext}, (U, M) = 0, then evidently also Ext}, (4,1/A,, M) = 0foralla < z.In
view of Lemma 1 in [5], we then have also Extll% (A, M) = 0. This equation
holds for every flat R-module A, and so M must be Enochs cotorsion. O

The same proof applies in a simpler form to verify the analogous result
(arguing with relative divisibility rather than purity):

THEOREM 4.2. Assume again that |R| < x, and let U be the direct sum
of all pairwise non-isomorphic ideals of the domain R. If M is a Matlis (or
Emnochs) cotorsion module satisfying Ext}g (U,M) =0, then M is Warfield
cotorsion.

Proor. It is shown in [7, Corollary 8.4, p. 458] that an R-module M is
Warfield cotorsion if and only if it satisfies Ex‘c}E (A, M) = 0 for all ideals A
of R as well as for A = Q. O
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5. More vanishing Exts.

In this section we wish to prove that for every reduced torsion-free
module A of cardinality < x that is not flat (for every flat module A that is
not strongly flat) there exists a Matlis cotorsion (Enochs cotorsion) module
M of cardinality < 2* that is not Enochs cotorsion (not Warfield cotorsion)
and still it satisfies Ext}% (A, M) = 0. The method employed in the proof of
Theorem 3.1 will be used mutatis mutandis.

THEOREM b5.1. Suppose that i is an infinite cardinal satisfying
|R| < k. If A is a reduced flat R-module of cardinality i that is not strongly
flat, then there exists a Matlis cotorsion R-module M of cardinality < 2
that is not Enochs cotorsion such that Ext}E A, M) =0.

Proor. To begin, we refer to Lemma 4.1 in Fuchs-Salce-Trlifaj [8] and
toits proof. This shows that if A is a flat, but not strongly flat R-module, then
there is a non-splitting exact sequence 0 - . — N — A — 0 where N is
strongly flat and L is (torsion-free and) Matlis cotorsion. Since the sequence
does not split, L cannot be Enochs cotorsion. An easy argument convinees us
that |L| < 2 holds for the module L in the proof of the mentioned lemma.

We start by replacing N by its Enochs cotorsion hull EC(N) and modify
the cokernel accordingly: 0 — L — EC(N) — Ay — 0 where all the mod-
ules are torsion-free and A, is flat containing A. We now proceed in the
same way as above in the proof of Theorem 3.1, but we use Enochs co-
torsion hulls rather than injective hulls all the way:

0 —— L —_— EC(N) © . Ag 0
| | H

0 —— M, —— Cy=®A®EC(N) P A 0
| | |

0O —— My —— Cy=EC(®Aa EC(N)) Al 0
| | |

0 —— L =M, —— o LA 0,

where in the second sequence we have added a direct sum of copies of A to
insure that every homomorphism A — Ay lifts to Cy. In addition, in the
fourth sequence M, is replaced by its Matlis cotorsion hull M; (M, is re-
latively divisible in C}, so its R-completion is contained in C;) and A] by its
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reduced part A;; this is a summand of A} so that the composite map
Ay — A} — Ay is monic. Evidently, the module 4] is flat, and so is A;. This
triple step is repeated 2 times (taking unions and Enochs cotorsion hulls at
limit ordinals) to obtain an exact sequence

© 0—-M=|JM,=|JL,—~Cc=|JC LB=[JA, —0.

a<2r a<2r a<2¥ a<2r

This yields the exact sequence
Homg (4,C) — Homg (A, B) — Ext}, (A4, M) — Ext}, (4, C).

The arguments in the proof of Theorem 3.1 can be repeated to conclude that
Ext}% (A,M) =0 and |M| < 2*. The module M is Matlis cotorsion, since in
every extension of M by @ the factor sets are contained in L, for some o.

It remains to verify that M is not Enochs cotorsion. Note that B is a flat
module as the direct limit of the flat modules A,, and EC(N) is a summand
of C, say with = : C — EC(N) as projection map. If the exact sequence (6)
were splitting, and y : B — C were a splitting map for f (i.e. fy = 1), then
7y would be a splitting map for « — an obvious contradiction. Consequently,
M has a non-splitting extension C by the flat module B, so it cannot be
Enochs cotorsion. O

The analogous result for Enochs cotorsion modules reads as follows.

THEOREM 5.2. Suppose that x is an infinite cardinal satisfying
|R| < k. If A is a reduced torsion-free R-module of cardinality k that is not
flat, then there exists an Enochs cotorsion R-module M of cardinality < 2*
that s not Warfield cotorsion such that Ext}[c A,M)=0.

Proor. Let A be a torsion-free R-module that is not flat. Then there
is an ideal I of R such that Tor’lle (A,R/I) # 0. We are going to refer to
the well-known natural isomorphism Ext}E (A,Homy, (R/1,Q/7)) =
~ Homy, (TorllIa (A,R/I),Q/7) to conclude that the pure-injective (and
hence Enochs cotorsion) R-module L = Homy (R/I,Q/7) satisfies
Ext}_E (A,L) #0.As |R/I| < k, we have certainly |L| < 2*. L is not Warfield
cotorsion, because it has a non-splitting extension by the torsion-free A.

Thus there is a non-splitting exact sequence 0 - L — N — A — 0 with
L Enochs, but not Warfield cotorsion. We are going to use as a starting
point of our argument the exact sequence 0 — L — N — Ay — 0 with Ag
torsion-free (A < A,), where N denotes the RD-injective hull of N. We
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proceed by imitating the proof of Theorem 5.1 almost verbatim, we just
form RD-injective hulls rather than pure-injective hulls in each inductive
step. O

Similar proofs apply to verify the analogues of Theorem 3.3 for Enochs
and Warfield cotorsion modules, strengthening the last two theorems by
replacing A by the collection of all reduced flat, resp. torsion-free R-
modules of cardinality < r.

6. Matlis domains.

We now specialize the domain, and assume that R is a Matlis domain,
ie. it satisfies p.d.zpQ = 1. In this case more definite statements can be
made.

To begin with, note that over a Matlis domain all ‘good’ modules have
projective dimension 1; this is clear from the exact sequence (1).

Furthermore, by Lee [16] (see also Fuchs-Salce [7, p. 141]) for a Matlis
domain R, the module K decomposes into a direct sum of countably gen-
erated submodules. Thus Lemma 2.3 implies that for a Matlis domain R
the module K is not self-small, and so by Theorem 2.2 R admits arbitrarily
large ‘good’ modules U,.

The following result generalizes a theorem on abelian groups due to
Gobel [9].

THEOREM 6.1. Let R be a Matlis domain. For every ‘good’ infinite
cardinal k > |R|, there exist torsion-free R-modules of cardinality 22 that
are not Matlis cotorsion, but all torsion-free epic images of cardinalities
< 2% are Matlis cotorsion.

PROOF. Apply Theorem 3.1to A = U, to obtain a module M of rank 22
that is not Matlis cotorsion and satisfies Extl,lB (Ux,M)=0.Let M/N be a
torsion-free factor module of rank < 2. In the exact sequence

Exty, (U,, M) — Exty, (U, M/N) — Ext}, (U, N)
the last term vanishes, since p.d. U, =1 for Matlis domains. Hence

Ext},3 (Uyx,M/N) =0, so by Theorem 2.4 M /N is Matlis cotorsion. O

We can also ask what can be said if Ext}e (U, M) = 0 holds for a module
M whose rank exceeds the cardinality 2.
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PROPOSITION 6.2. Let again k be a ‘good’ cardinal with |R| < k, where
R is a Matlis domain. A torsion-free R-module M of rank > 2* satisfying
Ext}? (U, M) =0 is a subdirect product of Matlis cotorsion modules of
ranks 2.

Proor. It is clear that we can represent M as a subdirect product
of torsion-free modules of ranks 2%, In the case of Matlis domains, p.d.
U, =1, so epic images N of M also satisfy Ext}e(U,c,N) = 0. By The-
orem 2.4 these modules N are Matlis cotorsion modules. Hence the
assertion is evident. O

We can add that in case all the modules are reduced, a subdirect pro-
duct of Matlis cotorsion modules is Matlis cotorsion if and only if this
subdirect product is a closed submodule in the cartesian product (in the R-

topology).
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