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A Frictionless Contact Problem with Adhesion

and Damage in Elasto-Viscoplasticity.

LyYNDA SELMANI (*) - NADJET BENSEBAA (*)

ABSTRACT - We consider a model for the quasistatic, adhesive and frictionless con-
tact problem for an elasto-viscoplastic material with damage. The adhesion
process on the contact surface is modelled by a surface internal variable, the
bonding field, and the tangential shear due to the bonding field is included. The
problem is formulated as a system of a variational equality for the displace-
ments, an inclusion of parabolic type for the damage field and an integro-dif-
ferential equation for the bonding field. The existence of the weak solution for
the problem is established by monotone operator and fixed-point arguments.

1. Introduction.

We investigate a mathematical model for the process of frictionless,
adhesive and bilateral contact between an elasto-viscoplastic body and a
rigid foundation. We assume that slowly varying time-dependent volume
forces and surfaces tractions act on the body, thereby causing its me-
chanical state to evolve quasistatically. We model the mechanical proper-
ties of the material by an elasto-viscoplastic constitutive law

6 = &) + Glocu), p),

in which ¢ = (g;;) denotes the stress tensor, u = (u;) the displacement field
and &(u) = (g;(u)) the linearized strain tensor, moreover, we use the dot
above to indicate the derivative with respect to the time variable. £ and G
are the material constitutive functions. £ is assumed to be linear and G
nonlinear, £ is an internal variable which may represent the damage of the
material caused by plastic deformations, its evolution is governed by the
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inclusion

B—k A B+ dpx(B) 3 ¢loe), ),

where k is a positive coefficient, Opx denotes the subdifferential of the
indicator function gg, where K denotes the set of admissible damage
functions which satisfy 0 < ff < 1. When =1 the material is un-
damaged, when f =0 the material is completely damaged, and for
0 < f <1 there is partial damage. ¢ is a given constitutive function
which describes the sources of damage in the system. General models of
mechanical damage, which were derived from thermodynamical con-
siderations and the principle of virtual work, can be found in [7] and [§]
and references therein. The models describe the evolution of the ma-
terial damage which results from the excess tension or compression in
the body as a result of applied forces and tractions. Mathematical
analysis of quasistatic one-dimensional damage models can be found in
[9]. The importance of this paper is to make the coupling of an elasto-
viscoplastic problem with damage and a frictionless contact problem
with adhesion.

Here, our purpose is to describe the delamination process when the
frictional tangential traction is negligible in comparison with the traction
due to adhesion. As in [5,6] and [13,16], we use the bonding field as an
additional dependent variable, defined and evolving on the contact surface.
We provide a variational formulation of the model and, using arguments of
evolutionary equations in Banach spaces, we prove that the model has a
unique weak solution.

The paper is structured as follows. The model is described in section 3
where the variational formulation is given. In section 4, we present our
main result stated in Theorem 4.1 and its proof which is based on the
construction of mappings between appropriate Banach spaces and a fixed-
point arguments.

2. Notation and preliminaries.

In this short section, we present the notation we shall use and some
preliminary material. For more details, we refer the reader to [1,4] and
[10,12]. We denote by Sy the space of second order symmetric tensors on
R? (d = 2,3), while (.) and | . | represent the inner product and the Eu-
clidean norm on Sy and R, respectively. Let 2  R? be a bounded domain
with a regular boundary I” and let v denote the unit outer normal on I". We
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shall use the notation
H=LQ"={u= )/ weclXQ},
H={0=(0y) / 0 =05 € L*(Q) },
H={u=w)eH/cu)eH},
Hi={6€H /DwecH},

where ¢ : H; — H and Div : H; — H are the deformation and divergence
operators, respectively, defined by

1
e) = (g;(w)), &;w) = g(um +uji), Dive = (045 )).

Here and below, the indices ¢ and j run between 1 to d, the summation
convention over repeated indices is used and the index that follows a comma
indicates a partial derivative with respect to the corresponding component
of the independent variable. The spaces H, H, H; and H; are real Hilbert
spaces endowed with the canonical inner products given by

(w,v)y = /uivi dx Yu,v € H,
Q
(6,0)y = /aijrij dx Vo,7€H,
Q
W, v)y, = W,v)y + (), &)y, ~ Yu,v € Hy,
(6,01, = (6,4 +Dw e,Div 1)y V¥V o,7€ H;.
The associated norms on the spaces H, H, H; and H; are denoted by | . |,
| |3,] - g, and | . |3, respectively. Let Hr = Hx(I')* and lety : H; — H be
the trace map. For every element v € Hy, we also use the notation v to

denote the trace yv of v on I" and we denote by v, and v, the normal and the
tangential components of v on the boundary I given by

2.1 Vy = 0.0, Uy =0 — V.

Similarly, for a regular (say C') tensor field ¢ : Q — S; we define its normal
and tangential components by

2.2) o, = (60).0, 6. = 60 — O,
and we recall that the following Green’s formula holds:

2.3) (6,6))y + (Dv 6,0)g = /o'o.v da Vv € H;.
T
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Finally, for any real Hilbert space X, we use the classical notation for the
spaces LP(0,T;X) and W*P(0,T;X), where 1 <p < +oco and k > 1. We
denote by C(0,T;X) and C'(0,7T;X) the space of continuous and con-
tinuously differentiable functions from [0, 7] to X, respectively, with the
norms

| |co.rx= max [ f@) |x,
te(0,7]
| lovo.rx mmax | f®) |x + mex | f@) |x,

respectively. Moreover, for a real number », we use r, to represent its
positive part, that is 7, = max{0, r}. For the convenience of the reader, we
recall the following version of the classical theorem of Cauchy-Lipschitz
(see, e.g., [17] p. 60).

THEOREM 2.1. Assume that (X, |.|x) is a real Banach space and
T >0.Let F(t,.) : X — X be an operator defined a.e. on (0,T) satisfying
the following conditions:

1) 3 Lp >0 such that | F¢t,x)—F@y) |x<Lr|x—y|xVe,y € X,
a.e. te (0,T).
2) 3p >1suchthatt— F(t,x) € LP(0,T;X) VaeX.

Then for any xy € X, there exists a unique function x € Wb 20, T; X)
such that

o) = Ft,x®)  ae. te(0,T),

2(0) = x.

Theorem 2.1 will be used in section 4 to prove the unique solvability of
the intermediate problem involving the bonding field.

Moreover, if X; and X, are real Hilbert spaces then X; x X, denotes the
product Hilbert space endowed with the canonical inner product (., )x, xx,-

3. Mechanical and variational formulations.

We describe the model for the process, we present its variational for-
mulation. The physical setting is the following. An elasto-viscoplastic body
occupies a bounded domain Q C RY (d = 2, 3) with outer Lipschitz surface
I’ that is divided into three disjoint measurable parts I'1, "2 and I's such
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that meas (I'1) > 0. Let T > 0 and let [0, 7] be the time interval of interest.
The body is clamped on Iy x (0,T), so the displacement field vanishes
there. A surface tractions of density f2 act on I'y x (0,7') and a body force
of density f acts in Q x (0, 7). The body is in adhesive contact with a rigid
obstacle, or foundation, over the contact surface I's. Moreover the process
is quasistatic, i.e. the inertial terms are neglected in the equation of motion.

To simplify the notation, we do not indicate explicitely the dependence
of various functions on the variables x € QU I" and t € [0,7]. Now, we
describe the conditions on the contact surface I's. We assume that the
contact is bilateral, i.e., there is no separation between the body and the
foundation during the process. Therefore, the normal displacement van-
ishes on I's x (0, 7). We introduce the surface state variable «, which is a
measure of the fractional intensity of adhesion between the surface and the
foundation. This variable is restricted to have values 0 < o < 1, wheno =0
all the bonds are severed and there are no active bonds, when o = 1 all the
bonds are active. When 0 < o < 1 it measures the fraction of active bonds,
and partial adhesion takes place.

We assume that the resistance to tangential motion is generated by the
glue, in comparison to which the fractional traction can be neglected. A
different assumption, taking friction into account, can be found in
[13,14,15]. Thus, the tangential traction depends only on the intensity of
adhesion, and the tangential displacement,

-6, =p(,u;)on I's x (0,7).

In particular, we may consider the case

q: () r if |r|< Ly,
1 =
G P {qxa) L0 it > L.

7|
where L > 0 is the limit bound length and ¢, is a nonnegative tangential
stiffness function. A more general condition may be used, especially if the
surface has intrinsic directions, such as grooves, on it. Then, one needs to
replace ¢, with a two-dimensional tensor. As in [3], the evolution of the
adhesion field is assumed to depend generally on « and u .. The whole
process is assumed to be governed by the differential equation,

3.2) o= Hyg(o, R(|u,|)) on I's x (0,7).
Here, H,q is a general function discussed below, which vanishes when its

first argument vanishes. The function R : R, — R, is a truncation and is
defined as
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s if 0<s<L,
R(s) = .
L if s> L,

where L > 0is a characteristic length of the bonds (see, e.g. [13]). We use it
since usually, when the glue is streched beyond the limit L it does not
contribute more to the bond strength. An example of such a function, used
in 2], is

Hy (o, r) = — yvot+1”2,

where y, is the bonding energy constant, and y,L is the maximal tensile
normal traction that the adhesive can provide. We note that in this case only
debonding is allowed. Then, the mechanical formulation of the frictionless,
bilateral and adhesive problem may be stated as follows.

Problem P. Find a displacement fieldu : Q x [0, T] — R a stress field
6:2x[0,T] =84, a damage field f:Q2x[0,T] - R and a bonding
field o : I's x [0, T] — R such that

(3.3) & = Ee(it) + Glo,ew), f) in Q x (0,T),
3.4) B—k LB+ 0pgB) > aem), ),
(3.5) Dive+fy =0 in Q x (0,T),
(3.6) u =0 onlyx(0,7),

(3.7 ov=f, on I'yx(0,T),
3.8 w, =0 on 'y x (0,7),

3.9) —6. =p (o, u;) on I's x (0,7),
(3.10) 6 = Hyg(e, R(|u, |)) on I's x (0,T),
(3.11) % =0on I x(0,7),

(3.12) u(0) = ug, o(0) = a9, f0) = f, in Q,
3.13) a(0) = o9 on [3.

The relation (3.3) represents the elasto-viscoplastic constitutive law with
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damage; the evolution of the damage field is governed by the inclusion of
parabolic type given by the relation (3.4), where ¢ is the mechanical source
of the damage growth, assumed to be rather general function of the strains
and damage itself, Opg is the subdifferential of the indicator function of the
admissible damage functions set K. The relation (3.11) represents a

0]
homogeneous Newmann boundary condition where a—ﬁ represents the

normal derivative of §. In (3.12)-(3.13) uy, o9, f§, and o represent the initial
displacement, the initial stress, the initial damage field and the initial ad-
hesion field, respectively. To obtain the variational formulation of the
problem (3.3)-(3.13), we consider the following notations. We introduce the
set of admissible damage functions defined by

K={¢eH@ /0<¢<lae. inQ},
for the bonding field we need the set
Z={0:10,T) - L*I'3) / 0<0(t) <1Vt e [0,T] ae. on I's},
and for the displacement field we need the closed subspace of H; defined by
V={veH, /v=0onT4, v,=00n I3}

Since meas (I'1) > 0, Korn’s inequality holds and there exists a constant
Cy > 0, that depends only on 2 and 71, such that

| e@) |n>C | v |y, YU €V.

A proof of Korn’s inequality may be found in ([11] p. 79). On the space V we
consider the inner product and the associated norm given by

(3.14) W, v)y = (W), e))y, |vlv=|e@)|n Yu,veV.
It follows that | . |z, and | . |y are equivalent norms on V and therefore

(V,| . |v )isareal Hilbert space. Moreover, by the Sobolev trace theorem and
(3.15), there exists a constant Cy > 0, depending only on Q, I'1 and I"3 such that

(3.15) | v |L2(r3)d < Cy | v ‘V VvoeV.

In the study of the mechanical problem (3.3)-(3.13), we assume that the
viscosity operator £ : Q x S; — S satisfies

(@) E=Eijr1) : 2 x Sq — Sa.
(b) Eijri € L™(Q), 1< 4,5,k 1<d.
(3.16) (¢c)€6.1=0.E1 V6,184, ae. in Q.

(d) There exists a constant my > 0 such that
Err>my |72 Vre Sy, ae inQ.
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The constitutive function G: Q x S; x Sg x R — Sy satisfies
(a) There exists a constant Lg > 0 such that
| g(x7 0-27817ﬁ1) - g(x7 0-27827ﬁ2) |§ Lg( ‘ 01 — 02 | + | &1 — &2 |
3.17) + | ﬁl 7ﬂ2 | ) Vo1,69,861,8 € Sy, V/))hﬂz eR, ae xeQ.
(b) For any 6,6 €S and € R, x — G(x, a6, ¢, f) is measurable on Q.
(¢) The mapping x — G(x,0,0,0) € H.
The source damage function ¢: 2 x Sy x Sg x R — R satisfies
(a) There exists a constant Lg > 0 such that
| ¢(x7 0-17817:81) - ¢(x7 627827/))2) |S qu’( | 01 — 02 | + | &1 — & |
(3.18) + | ﬁl 7ﬁ2 | ) Vo1,69,81,8 € Sq, Vﬂl,ﬂz eR, ae xeQ.

(0) For any 6,6 € S5 and ff € R, x — ¢(x, 7, ¢, ) is measurable on Q.
(¢) The mapping x — ¢(x,0,0,0) € H.

The tangential contact function p, : I's x R x R? — R? satisfies

(a) There exists a constant L, > 0 such that
| p(x,dy,r1) —p.(x,dz,r2) [< L([dy —da [+ |r1—12])
Ydi,de € R, ri,1s € Rd, ae. xec ;.

(8.19) (b) The map x — p.(x,d,r) is Lebesgue measurable on I3
vd € R,r e R”.

(¢) The map x — p.(x,0,0) € L2(I'3)".

d) p,(x,d,r).ox) =0 Vr € R? such that rox)=0, ae. x e}

Clearly, if ¢. : R — R is a bounded Lipschitz continuous function, then
the tangential contact function (3.1) satisfies condition (3.19). We conclude
that our results below are valid for the corresponding contact problems.
Next, the adhesion rate H,q : I's x R x R, — R satisfies

(a) There exists a constant L,; > 0 such that
| Haa(x,b1,71) —Hag(x,b2,72) | < Lg( | by — b2 |+ |11 =72 |)
Vb1,be € R, V1,12 € [0,L], ae.x € Ts.

(b) The map x — Hyy(x,b,7) is Lebesgue measurable on I3

(3.20) Vb e R, rel0,L]

(c) The map (b,r) — Hyqlx,b,7) is continuous on R x [0, L],
ae x elsy.

(d) Hyg(x,0,7) =0Vr e [0,L], ae. x € I's.

(e) Hyg(x,b,7) > 0Vb <0, rel0,L], a.e.x € '3 and
Hyg(x,b,7)<0Vb>1, re[0,L], ae.x € ;.
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We suppose that the body forces and surface tractions satisfy

(3.21) fo € W0, T;H), fye W0, T;L*(I'5)%).
Finally, we assume that the initial data satisfy the conditions
(3.22) uy€V,60 €H,

(3.23) Bo € K,

(3.24) ag € LA(I'3),0 < op <1 ae. in I3,

(3.25) (60, &)y + (a0, g, v) = (F(0),v)yVv € V.

We define the bilinear form a : HX(Q) x H'(Q) — R by

(3.26) alé,9) = k / vé. v o de.
Q

Next, we denote by f : [0, 7] — V the functional defined by

G20 (F®),v)y = / fot)v dw + / fot)v dw Yv eV, te0,T].
Q Iy

Letj: L>*(I'3) x V x V — R be the adhesion functional given by
(3.28) o, u,v) = /pr(oc,ur).v, da Vo € L*(3), Vu,v €V.
I's

Keeping in mind (3.19), we observe that the integral (3.28) is well defined
and we note that conditions (3.21) imply

(3.29) f e Wh(0,T; V).

Using standard arguments we obtain the variational formulation of the
mechanical problem (3.3)-(3.13).

Problem PV. Find a displacement field u : [0,T] — V , a stress field
6:[0,T] = H, a damage field f:[0,T] — H' (Q) and a bonding field
o:[0,7) — L>* (I's) such that

(3.30) o () = Eet)) + Gla(t), em(®)), 1)) a.e. t € (0,7),
B®) € K for all t € [0,T], (B®), & — B2, + af@), & — BI)

(3.31) > ($(e(®),e(®), B1)), & — f)120)VE € K,
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(3.32) (a(t),e))y +7@@,u®),v) = F@®),v)y Vv eV, ae. t € (0,T),
(8.33) 4(t) = Hoq(at), R( | u-(¢) |)),
(3.34) u(0) = ug,6(0) = a9, p0) =y, 2(0) = .

The existence of the unique solution of problem PV is stated and proved in
the next section. First, we note that the functional j is linear with respect to
the last argument and, therefore,

(335) j(O(,u,_U) - _j(OC,u,U).
Next, using (3.15), (3.19) and (3.28) we find

j(al,ul,v) _j(a27u27v)

_ / (P01, 1) — P (32, uz)) .0, da

I's

SLT/(ImfazlJrlul*uzl)lv|da

I's
< Le(lon — 02 2y + [ #1 — 2 [0 ) [0 [y
< LCo(Jox — 02 |2y +Co |ur —uz |y ) |0 |y
< LeColoa — a2 |rry| U |y + LeCh | w1 —uz v v |y

We now choose v = u; — ug in the previous inequality to find

o, uy, uy—ug) — j(og, ug, Uy — uz)
(3.36) < L.Colon — oz |12ry)| w1 — )y + L:C | us —us [} .
We choose again o; = oz = o in (3.36) to obtain

Jlo,uy, uy —ug) —jlo, ug, uy — ug)
(3.37) < L.CYuy—uy 5.

Inequalities (3.36)-(3.37) and equality (3.35) will be used in various places in
the rest of the paper.

4. A well posedness of the problem.

Now, we propose our existence and uniqueness result.

THEOREM 4.1. Assume that (3.16)-(3.25) hold and, assume that
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Mo
—-
G . .
Moreover, the solution satisfies

L. < Then there exists a unique solution {u,e,p, o} to problem PV.

ue Wh(0,T;V),
(S Wl,OC(()? T7 H1)7

B € W0, T; LA(2)) N L*0, T; H'(Q)),
4.1 o€ W0, T; L2(I'3)) N Z.

We conclude that, under the assumptions (3.16)-(3.25), the mechanical
problem (3.3)-(3.13) has a unique weak solution satisfying (4.1). The proof
of Theorem 4.1 is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that assumptions of Theorem 4.1
hold and we consider that C is a generic positive constant which depends on
Q I'y, I's, L and may change from place to place. Let Z denote the closed
subset of C(0, T; L2(I'3)) defined by

4.2) Z = {0 € C(, T;LXI's)NZ ] 000) = %}

Let « € Z and let n = (7, 2) € C0, T; H x L2A(Q)). We define a function
z, € CH0,T;H) by

t

(4.3) z,t) = / n'(s) ds + z,
0

where

(4.4) 2o = a9 — Eeluy),

and in the first step we consider the following variational problem.
Problem PV,,. Find a displacement field u,, : [0,T) — V such that for

allveVandallt €0,T]

4.5)  (EeUyy (@), 6y + (2,(t), 6y + J((E), Uy (?), ) = (F (), V)y.

We have the following result for the problem.

LEMMA 4.2, There extists a unique solution to problem PV,,. The so-
lution satisfies u,, € C(0,T;V) and

(4.6) U, (0) = uy.
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Proor. Lett € [0,7]andlet A; : V — V be the operator given by
(A, v)y = (Ee), e))y + jlod),u,v) Yu,v €V.

We use (3.16) and the properties (3.36)-(3.37) on the adhesion functional j to
show that the operator A; is strongly monotone if

my

Lr <_a
G

and Lipschitz continuous and, therefore, invertible and its inverse is also
strongly monotone Lipschitz continuous on V. Moreover using Riesz Re-
presentation theorem we may define an element £, : [0, 7] — V by

(fiy(t)v U)V = (f(t)v U)V - (Z”(t), 8(1)))’}-[-

It follows now from classical result (see for example [4]) that there exists a
unique element u,,(t) € V which solves

A, ) =F,0t) ae. tel0,T].
Moreover, we use assumptions (3.22) and (3.25) to prove that the solution
satisfies condition (4.6). We let ¢1,t3 €[0,7] and use the notation
um(ti) =u;, 2,7(251') =2z, oc(ti) = o, f(ti) = fi, for i = 1,2. We use standard
arguments in (4.5) to find
(Ce(uy — uz), ey — u2))y = (21 — 22, 8(ug — u))y + (FL — fo,u; —uz)y
+ (o, uy, w2 — uy) + jlog, w2, uy — us),
and, by using (3.16) and (3.36), we obtain
@7 Jur—uz ly<C(|z1—22 |y + | F1—Fo v + | o1 — o2 |2y )-

This inequality and the regularity of the functions «, f, and z, show that
u,, € C0,T;V). Thus we conclude the existence part in lemma 4.2 and we
note that the uniqueness of the solution follows from the unique solvability
of (4.5) for every t € [0, T]. Next to prove (4.6) we write (4.5) at ¢ = 0 and use
the initial values z,(0) = 69 — Ee(ug), 2(0) = ap to obtain

(Ee(u(0)), &)y + (a9 — Ee(ug), &)y
4.8 +J (00, u,y(0),v) = (F(0), v)yVv € V.

We consider now the difference between (4.8) and (3.25) to deduce

(49) (gg(uoay(o) - u0)7 8(”))7‘[ +j(0(07 ul)](o)a v) —j(O([), u07 U) - 0
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We now choose v = u,,(0) — uo in (4.9) to obtain
(Ee(uey(0) — uo), ey, (0) — wo))y

:j(“Oa uw](O), uocr](o) - uO) —j(OC(], uop, uwy(o) - uO)-

In this equality we use the assumption (3.16) on the elasticity tensor £ and
property (3.37) on the functional 7 and obtain

| u,,(0) —uo |%,§ 0.
This inequality gives us (4.6), which concludes the proof. O
Next, for a given o € Z and for every n = (171, 7)€ C0,T; H x LA(Q))

we denote by u,, the solution of problem PV, obtained in lemma 4.2 and
we define a function ¢,, € C(0,T;H) by

(4.10) Gu(t) = Eetoy (D) + z,() ¥t € [0, T].

We suppose that the assumptions of Theorem 4.1 hold and we consider the
following intermediate problem for the damage field.

Problem PVg. Find a damage field B,,:[0,7] — HY(Q) such that
B € K, forall t € [0,T] and

(Boy®), ¢ = Byrze) + (B (), & = B, (1)
(4.11) > (@), & — By )12\ V¢ € K ae. t € (0,T),

(4.12) By (0) = By.
LEMMA 4.3. Problem PVg has a unique solution f,, such that
(4.13) By € W0, T; LX(Q)) N LA(0, T; H' ().

Proor. We use (3.23), (3.26) and a classical existence and uniqueness
result on parabolic equations (see for instance [16]). d

We also use the properties (3.17) of the constitutive function G and
(3.18) of the function ¢ to define the operator A, : C(0, T; H x L*(Q)) —
— C0,T; H x LA(RQ)) by

(414) Ao:;/] - (g(aotm g(uotﬂ)) ﬂaq), ¢(o'oma g(umy), ﬁq]])))

for all € C(0, T; H x L*(Q)). Then we have.



62 Lynda Selmani - Nadjet Bensebaa

LEmMaA 4.4.  The operator A, has a unique fixed-point
n. € C0,T; H x LA(Q)).

ProoF. Letn; = (7,17) € CO, T; H x LA(Q)), let t € [0, 7] and use the
notation u,,, = u;, 6y, =0, f,, = f; and z,, = z, for © = 1,2. Taking into
account the relations (3.17), (3.18) and (4.14), we deduce that

| A @) — Au12®) ez

4.15) < C(|o1(®) — 02 |1 + | ur@) —u2®) v + | f1@) — B |r2() )-
Using (4.5) we obtain

(Celuy — uz), e(uy — u2))y = jlo, Uz, g — uz) — jlor, uy, Uy — Uz)
(4.16) +(zo—2z1, e — u2))y ae. t € (0,7).
Keeping in mind (3.15), (3.16) and (3.37) we find
(4.17) [u1®) —us®) |v< C | z1(0)—22@) |5 -
We use (4.10) and (4.17) to obtain
(4.18) | 61(8) — 62() |4 < C | 21(8) — 22(D) |0 .
We add the two previous inequalities and we use (4.3) and (4.4) to find

t
419 |ui®) —u2®) v + | 61() — 62(8) [ < C/ | 71(s) — (75(5) |3 ds.
0

From (4.11) we deduce that
(B1,Ba = Bz + a(By, fa = By)
> O, o — B)rxe ae t € (0,7),
and,
(Ba: 1 = Bz + alBo, By = Bo)
> O3, B1 — Porxe ae. t € (0,T).

Adding the previous inequalities we obtain
By = Pos By = Boizo) + alfy = By, fy = Bo)
<O — 15, b1 — Porxg) ae. t € (0,T),
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which implies that
(ﬂl - ﬁzam = Bre) + alBy — Pa, B — Po)
<17t =1 2| Br — Pa 120 ae. t € (0,7T).

Integrating the previous inequality on [0, ¢], after some manipulations we
obtain

t

1

B} | B1(®) — Bo(®) |%2(g)§ C/ \ ’7%(3) - '73(3) 2| Br(8) — Ba(8) 12 ds
0

t
+C / | B1(5) — Bo(s) 2oy ds.
0
Applying Gronwall’s inequality to the previous inequality yields
¢
@20 A0 0O o= C [ 1B B | ds.
0

Substituting (4.19) and (4.20) in (4.15), we obtain

| Aoy @) — Auttp(®) |pxr2)
¢
< C/ | 171(8) = (15(8) [3eur2c) ds-
0

Reiterating this inequality m times yields

m T m

(4.22) | Ay m =512 leo rmxrz@ )< ol | e lco ez )

which implies that for m sufficiently large a power A of A, is a contraction
in the Banach space C(0, T; H x L?(Q)). Then from the Banach fixed-point
theorem A, has a unique fixed-point 7 € C(0, T; H x L*(Q)). O

In the next step, for a given o € Z, we consider the following variational
problem.

Problem PV,. Find a displacement field u, : [0,T] — V, a stress field
6, :[0,T] — H and a damage field B, : [0,T] — H' (Q) such that for all
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tel0,7]

t
4.23)  0,(t) = Eelu,(®)) + / G(a4(9).6u(s)), B,())ds + 69 — Ee(uo),
0

B.@® € K for all t € [0,7],(B,(),& — B,z + B, 1), & — B, (1)

(4.24) > (¢(o,(), e, (D), f,), & — B,(D)120)VE € K,
(4.25) (6,(), ey + j®), u,t),v) = @), v)yVv € V,
(4.26) u,(0) = uy, 6,(0) = o9, f,00) = .

We have the following result concerning this problem.

LEmMA 4.5.  There exists a unique solution to problem PV, and
it satisfies u, € C(0,T;V),6, € CO,T;H) and B, € W20, T; LA(Q)N
N L20,T; H(Q)).

Proor. Existence. We let 5, = (5L, 7%) € C(0,T; H x L*(Q)) be the
fixed-point of 4, and denote u, = u,, , 6, = 6, ,2, =z, and f§, = ﬁ%. We
let = 7, in (4.10)-(4.11) and obtain

4.27) 6,(t) = Eeu, () +2,(t) vVt [0,T],
(B,6),& = B, (1) + aB,®),& = B,)
(4.28) > (@), ¢ — B, VE € Kae. t € (0,7),

and we use (4.3)-(4.4) to find that
¢
(4.29) 0,(t) = Ec(u,(t)) + / n}{(s)ds + a9 — Ee(uy) vt € [0,7],
0

Since
Hy = Aa”/a = (g(o'myx 78(uo:;7x)7ﬁm7x)a ¢(0aq1;8(uanx)»ﬂa%))

= (G(64,6W.), B,), $(04,6Us), B,)),

we see that (4.27) and (4.29) imply (4.23), (4.28) implies (4.24). Next, we let
n = n, in (4.5) and we use (4.27) to obtain (4.25) and, finally, (4.26) follows
from (4.6), (4.12) and (4.29). This concludes the existence part of the lemma
4.5 since the functions u,, 6, and S, satistfy u, € C(0,T;V), 6, € C(0,T;H)
and 8, € WH2(0, T; L2(Q)) N L0, T; H'(Q)).
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Uniqueness. The uniqueness of the solution is a consequence of the
uniqueness of the fixed-point of the operator A, defined in (4.14). Indeed,
let (u,, 64, f5,) be a solution of problem PV, which satisfies u, € C(0,T;V),
6,€CO,T;H) and B, € WH(0,T;LA(Q)NL*0,T; H(Q)) and let
n € C0,T;H x L2(R)) be the function given by

(4.30) n = (G(6y,6s), B,), 64,eM.), B,)).

We denote by z, the function defined by (4.3)-(4.4). We use (4.23) and (4.30)
to find that

(4.31) 6,(t) = Ee(u, (b)) +2z,() Vte[0,T],
We use (4.24) and (4.30) to obtain

(B0, & — B,y + a(B, @), & — B,(8)
(4.32) > (0F®), € — B0 VE € K,

and, substituting the equality (4.31) in (4.25) we deduce that u,, is a solution
of problem PV,,. By the uniqueness part in lemma 4.2 it follows that this
problem has a unique solution, denoted by u,, and, therefore, u, = u,,.
Moreover, (4.31)-(4.32) and (4.10)-(4.11) imply that 6, = 6, and 8, = By
We use now (4.30) and (4.14) to obtain that # = A,#. Then, by the uniqueness
of the fixed-point of the operator A4,, guaranteed by lemma 4.4, it follows
that » = »,. So, u, = Uy, 6, = 65y,and f, = f,, . We conclude that every
solution (u,, a,, $,) of problem PV, coincides with the solution (u,;, 6., 8,,)
obtained in the existence part, which implies uniqueness of the solution of
problem PV,,. |

In the next step we use the displacement field u,, obtained in lemma 4.5
and we consider the following initial-value problem.

Problem PVy. Find the adhesion field 0, : [0, T] — L>*(I's) such that
(4.33) 0,(8) = Haa(0,(), R(| usc(®) | ) ace. t € (0,7),
(4.34) 0,(0) = ay.
We have the following result.

LEMMA 4.6. There exists a unique solution to problem PVy and it sa-
tisfies 0, € W->(0,T; LA(I's)) N Z.

Proor. For the sake of simplicity we suppress the dependence of
various functions on /'3, and note that the equalities and inequalities below
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are valid a.e. on I's. Consider the mapping F, : [0, T] x L*(I's) — L?(I'3)
defined by

(4.35) Fy(t,0) = Hoa(0®), R( | us:() | ).

Itis easy to check that F', is Lipschitz continuous with respect to the second
variable, uniformly in time, moreover, for all § € L?(I3), the mapping
t — F,(t,0) belongs to L>(0, T; L?(I'3)). Thus using a version of Cauchy-
Lipschitz theorem given in Theorem 2.1 we deduce that there exists a un-
ique function 0, € W>°(0, T'; L?(I'3)) solution to the problem PV,. We
prove that 0, belongs to Z. To this end, we suppose that 0,(ty) < 0 for some
to € [0, T1. Since 0 < op < 1 we have 0 < 6,(0) < 1 and, since the mapping
t— 0,1 :[0,T] — R is continuous, we can find ¢; € [0,%), such that
Ha(tl) =0. NOW, let to = Sllp{t S [tl, lf()]7 Qa(t) = 0}7 then te < o, gl(tz) =0
and 0,(t) < 0, for t € (t2,%p]. The assumption (3.20)(e) and (4.33) imply that
éa(t) >0 for t € (tz, 1], therefore 0,(t)) > 0,(tz) = 0, which is a contra-
diction. A similar argument shows that 0,(t) <1 for all ¢t € [0, T]. We con-
clude that 6,(t) € Z. O

It follows from lemma 4.6 that for all « € Z the solution 0, of problem
PV, belongs to Z. Therefore, we may consider the operator 4: Z — Z
given by

(4.36) Aw = 0,.

We have the following result.
LeEmMA 4.7.  There exists a unique element o* € Z such that Ao* = o*.

Proor. We show that, for a positive integer m, the mapping 4™ is a
contraction on Z. To this end, we suppose that o; and oy are two functions in
Z and denote u,, = u;, 6,, = a;, f,, = ff; and 0,, = 0; the functions obtained
in lemmas 4.5 and 4.6, respectively, for o = o;, 7 = 1,2. We also define by z;,
for ¢ = 1,2, the function

t
430 zt) = / G(oi(s),e(ui(s)), Bi(s)ds + o — Eelug) V¢ € [0,T],
0

Lett € [0,T]. We use (4.23) and (4.37) to obtain
(4.38) o) = Eeu; D) +z:1)  1=1,2,

We insert the inequality (4.38) in (4.25) and use arguments similar to those
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used in the proof of (4.7) to deduce that
4.39)  |ui®) —u2®) v < C(| 21(8) — z2(®) |3 + | o1 @) — 02@) |20y )-

We use (4.37) to find
| z1()) — z2() |n
(4.40)

t
< C/( | 61(s) — 62() |30 + | u1(s) —ua(s) [v + | f1(s) — Bo(5) |12 )ds.
0

We substitute (4.40) in (4.39) to obtain
| ur®) —u2@®) [v< C | oax(t) — o2(®) |12,
(4.41)

t
+C/( | 61(8) — 62() |3 + | u1(s) — ua(s) |y + | f1(8) — B2(8) |12 )ds.
0

We use (4.38), (4.40) and (4.41) to find

| 61@) — 02(t) |1 < C| 01(t) — 02®) |12y

(4.42)
t

LC / (| 01(5) = 02(8) e + | w1(s) — ws() v + | B1(S) — Bols) |pzcen .
0

We use now similar arguments to those used in the proof of (4.20) and the
properties of the function ¢ to find

| B1@) — o) |12(0)
(4.43)

t
< C/( | 61(s) — 62(8) |3 + | wr(s) —ua(s) [y + | f1(s) — Bo(s) |12 )ds.
0

We add the three previous inequalities to obtain
| 1)) — 02(0) | + | ur(®) — u2@® v + | f1(®) — B |20
< C | o1 () — oa(t) |L2(1"3)
(4.44)

t
+C/( | 61(5) — 62(3) | + | u1(s) —uz(s) [v + | B1(8) — Bo(S) |12 )ds.
0
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Next applying the Gronwall inequality given in [16] to (4.44) yields

| Gl(t) — Gz(t) |H + | ul(t) — ug(t) |V + | ﬁl(t) - ﬁg(t) ‘LZ(Q)
t

< €| oa(®) — oa(®) |pory + / | 1(8) — oa(8) |12y ),
0

which implies that

t

t
(4.45) / | ui(s) — ua(s) v ds < C/ | o1 (s) — 02(8) |12(ry) ds.
0 0

On the other hand, from the Cauchy problem (4.33)-(4.34) we can write

t
(4.46) 0;(t) = o9 + /Had(ﬁi(S),R( |wi(s) [)) ds, i=1,2.
0

The assumption (3.20) implies
| 01(8) — 020 |12y

t t
447 < C/ | 01(s) — 02(8) |12(ry) ds + C/ | u1(s) — ua(s) |L2(F3)d ds.
0 0
Next, we apply Gronwall’s inequality to deduce
¢
(448) | Hl(t) — Hg(t) ‘LZ(I‘g)S C/ | ul(s) — ug(S) |L2(1—-3)d ds.
0
The relation (4.36), the estimate (4.48) and the relation (3.15) lead to
¢
(4.49) | Aoy () — Avs®) |2y < C / | ui(s) —uz(s) |y ds.
0
We now combine (4.45) and (4.49) and see that

t
| Aoa(®) — Aon(®) [p2y< C / | 1(s) — oa(5) |1 .
0
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and reiterating this inequality m times we obtain

(4 50) o o - cmm
: | Aoy — A" loo razasn S — T oa = a2 loo razayy -

Recall that Z is a nonempty closed set in the Banach space C(0, T; L*(I'3))
and note that (4.50) shows that for m sufficiently large the operator
A™ : Z — Z1is a contraction. Then by the Banach fixed-point theorem (see
[16] ) it follows that A has a fixed-point «* € Z. |

Now, we have all the ingredients to prove Theorem 4.1.
Proor. Existence. Let o* € Zbe the fixed-point of 4 and let (u*, 6*, f*)

be the solution of problem PV, for « =o*, ie. u* =u,, 6 =6, and
f* = B,.. Consider the function z* given by

t
4.51) () = /Q(a*(s),e(u*(s)),/f*(s))ds + o9 — Eeluy) Yt e€0,7T],
0

and note that arguments similar to those used in the proof of (4.7) lead to

[u*t) —u* () [y < C(|z°(t1) —2"(t2) |n

(4.52) + [ F(t) — F(t2) |v + | o (t) — " (t2) |20y ),
for all t1,%, € [0, T]. We use now (4.23) and (4.51) to find that
(4.53) o*(t) = Ee(w™ @) +2z°@t) Vtel0,T],

and by (4.51), (4.53) and the properties (3.17) of the functional G we obtain
454) |6"(t) —6 ) n< C(|u"(t) —u ) [v + | 2°(t1) — 2" (t2) |1 ),

for all t;,t, €[0,7T]. Since o* =0, it follows from lemma 4.6 that
at € Whe(0,T; L2(I's)), recall also that £ € W'>(0,T;V) and the reg-
ularity z €CY(0,T;H). We use now (4.52) and (4.54) to deduce that
u € W=(0,T;V) , 6 € Wh*(0,T; H). Next, we let o = «* in equality
(4.23) and then differentiate it with respect to time we obtain (3.30). We
employ « = o* in problem PV, , PV and use the equality «* = 0,- and, as a
result, we obtain that (u*, ¢*, §*, «*) satisfies (3.31), (3.32), (3.33) and (3.34).
Choosing now v =+ w in (3.32) where w € C‘go(Q)d, yields

Div 6(t) +fo) =0 Vte[0,T),

and, by assumption (3.21), we obtain that Div ¢ cW'>(0,T;H) and,
therefore, 6 cW1>°(0, T; H;). We conclude that (u*, 6", *, o*) is a solution
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of problem PV and it satisfies (4.1), which concludes the proof of the ex-
istence part of Theorem 4.1.

Uniqueness. The uniqueness of the solution is a consequence of the
uniqueness of the fixed-point of the operator A defined by (4.36) combined
with the unique solvability of problem PV,. Indeed, let (u, s, 5, o) be a so-
lution of problem PV which satisfies (4.1). Using (4.2) we deduce that
o € Z, and it also follows from (3.30), (3.31) and (3.32) that (u,s,p) is a
solution to problem PV,, moreover, since by lemma 4.5 this problem has a
unique solution denoted (u,, a5, 8,), we obtain

(4.55) u=u, 6=o0, =0,

We replace u = u, in (3.33) and use the initial condition «(0) = ¢ in (3.34)
to deduce that o is a solution of problem PV). It follows now that from
lemma 4.6 that the last problem PV has a unique solution, denoted by 6,
and, therefore,

(4.56) o =0,.

We use now (4.36) and (4.56) to see that Ao = «, i.e. « is a fixed-point of the
operator A. It follows now from lemma 4.7 that

(4.57) o=0a".

The uniqueness part of the theorem is now a consequence of equalities

(4.55) and (4.57). O
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