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Periodic Solutions Arising in Ecology of Mangroves.

MAURIZI10 BADII

ABSTRACT - Maximal monotone operators techniques and a fixed point argument are
employed to prove the existence of periodic solutions for a coupled evolution
system of partial differential equations modelling the movement of water and
salt in a porous medium where the extraction of water takes place by the roots of
mangroves.

1. Introduction.

The aim of this paper is to study the existence of periodic solutions for
the evolution coupled system formed by a convection-diffusion equation
and an ordinary differential equation

(1.1) Uy — Uy + (uq), = 0in Q := (0,d) x P,
1.2) w(0,t) = ¢(t) in P,

1.3) u,(d,t) = 01in P,

1.4) u(@,t + o) = ulx,t) in Q, w > 0,
(1.5) ¢o +f(,u) =01in Q,

(1.6) q(d,t) = 01n P,

1.7 qx,t + o) = qr,t) in Q, w > 0,

describing the one-dimensional movement of water and salt under the
surface of a porous medium with constant porosity, when a continuous
extraction of water is determinated by the roots of mangroves. Mangroves

(*) Indirizzo dell’A.: Dipartimento di Matematica “G. Castelnuovo”, Universita
di Roma, “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy.
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are woody plants characterized by grow on saturated soils subject to
regular inundations by tidal water with salt concentration c,, at the surface,
close to that of sea water (see [3], [7]). In the flow water which carries salt
from soil surface downward, the roots of mangroves take up fresh water
from the saline soil leaving behind the salt. The mathematical formulation
of model, is given in [8] or [9].

The unknown of model are the salt concentration » and the water flow
q in the porous medium (0, d). The function f, represents the volume of
water taken up by the roots for unit volume of porous material per unit
time. Conditions (1.3) and (1.6) mean that on the bottom of the porous
media is assumed no flux boundary conditions for salt and water. To
justify the periodicity of solutions, we assume in condition (1.2) that the
salt concentration on the top of the porous medium varies periodically in
the time for the mangroves model. Our approach to periodicity, shall be
done looking for periodic solutions in suitable ¢-periodic functions space,
rather than to take into consideration the fixed point of the Poincaré
periodic map. Methodologically, the starting point relies on an abstract
formulation of the problem to which to apply some techniques of the
maximal monotone operators and to get solutions as fixed points of an
operator equation. Both the stationary and the evolution model was
considered in [8] where the existence and uniqueness of the solution, the
stability of the steady state solution and the occurrence of dead core was
proved. In [9], the authors studied a system with a dynamical boundary
condition.

The plan of paper is the following: Section 2 is devoted to introduce the
funectional framework and give the definition of solution for our system.
In Section 3, are applied some results of the maximal monotone mappings
theory to study the evolution problem formulated as an abstract problem.
Section 4, deals with an approximating problem and by means of a priori
estimates, is obtained the convergence of the approximate solutions.
Finally, in Section 5 a fixed point argument allows us to prove the ex-
istence of periodic solutions.

2. Preliminaries.

Throughout the paper we represent with P := R/wZ the period in-
terval [0, ], so for the functions defined in @ we are automatically im-
posing the time w-periodicity. Our system shall be studied within the
functional framework represented by some useful spaces of t-periodic
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functions. Let

V= LXP;V)
be the Hilbert space endowed with the norm
1/2
@2.1) oy == < / oG, ) Pdadt + / v (e, t)|2dacdt>
Q Q
where

V= {u € L*0,d) : u(0) = 0}
and let
L>(P; Wh(0,d))

be the Banach space with the usual norm.
The space V* := L?(P; V") is the topological dual space of V and ||.||, is
its norm. The pairing of duality between V and V* shall be denoted by (., .).
We shall make the following assumptions on the data involved

Hy) ¢ : P — (0,1) such that p € WI2(P);
Hy) { f:00,d) x[0,1] = R, f € L0, d); C(0,1]), |[f|<1 }
2 f(a,.) is nonincreasing in [0, 1] and f(x,1) =0, for a.e. x<(0,d).

REMARK. Condition Hy) implies that f >0 in (0,d) x [0, 1].
Next, we give the definition of weak-strong periodic solution to
1.1)-1.7)

DEFINITION 2.1. A solution of (1.1)-(1.7) is a pair of functions (u, q) such
that
u — o(t) € LAP; V), ws € L*(P; V")
with
©2) / wiedadt + / U et — / ugédadt = 0, ¢ € V
Q Q

and
q € L™(P; Wh>(0,d))
satisfying (1.5)-(1.7) almost everywhere.
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3. The evolution problem.

We begin solving the evolution problem (1.1)-(1.4). Defined
h(x,t) := u(x,t) — p(t) and fixed w € L2(P; V), we consider the new problem

3.1 ht = haw + (0 + 9)9); + ¢'() = 0 in Q,
3.2 m0,t) =0 in P,

3.3) h(d,t) = 0 in P,

3.4) W, t + o) = h(x,t) in Q, » > 0,
(3.5) qu +f(x,w) =01in Q,

3.6) q(d,t) = 0in P,

3.7 q@,t + ) = qa,t) in Q, w > 0.

Problem (3.5)-(3.7) has a unique solution g € L>*(P; W1>°(0,d)), (see [5]).

DEFINITION 3.1. A weak periodic solution to (3.1)-(3.4), associated to w,
is a function

h € L3(P;V), hy € LA(P; V")
such that

3.8) / hiédadt + [ hyEdxdt — / (w + p)qé, dadt — / @' () édxdt =0, VE€ V.
Q Q Q Q

The existence of weak periodic solutions to (3.1)-(3.4) shall be established
using the maximal monotone mappings theory, according to the following
result.

THEOREM 3.1 ([1], [2], [6]). Let L be a linear closed densely defined
operator from the reflexive Banach space L2(P; V) to L(P; V*), L maximal
monotone and let A be a bounded hemicontinuous monotone mapping
L2(P;V) into L*(P;V*). Then, L + A is maximal monotone in L?(P; V) x
x L2(P;V*). Moreover, if L +A is coercive, then the Range(L + A) =
= L2(P;V").



Periodic Solutions Arising in Ecology of Mangroves 261

In order to utilize the results of the above theorem, we must formulate
(3.8) as an abstract problem. Let us define the operators

L:D— LXP; V)

as follows
(Lh, &) = / huédadt
Q
on the set
D={heV: eV}
and
A L*(P;V) — L*(P; V)
by setting

(Ah, &) = [ hy&,dudt.
/

The linear operator L is closed, skew-adjoint (i._e. L = —L*), maximal
monotone (see [6]) and densely defined because C(Q) C D is dense in V.
Now, we investigate the properties of A.

ProrosiTION 3.2. Under assumptions H;)-H,), the operator A is:

i) hemicontinuous;
ii) monotone;
iii) coercive.

Proor. By the Holder inequality one has

1/2

1/2
(AR, &)< ( / |hx|2dxdt> ( / é|2dxdt> <[kl liEly
Q Q

and consequently
AR < [I7lly-

The hemicontinuity descends from [4, Theorems 2.1 and 2.3].
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i)
(Ahy — Ahg, by — hy) = / (g — ho), [Pdaedt >0.
Q

iii) The Poincaré inequality gives us

(3.9 (Ah, by = / o Bdiedt > |1
Q

From (3.9) one has

(Ah, I)

= =cl|hlly — +oo as ||y — +oo.
17lly

This completes the proof. O

In conclusion, defined the linear functional G € V* as

(G, & = - / (w -+ () dardt / o (Dedudt
Q Q

we can rewrite problem (3.8) in the following abstract form
(8.10) Lh+Ah =G
to which to apply Theorem 3.1.

Finally, closing the section we state its main result

THEOREM 3.3. If Hy)-Hy) are fulfilled, then problem (3.10) has a unique
weak periodic solution.

Proor. The existence of weak periodie solutions derive from Theorem
3.1, while the uniqueness is a consequence of the strict monotonicity. O

4. Convergences.

Inthe previous section, has been show the existence and uniqueness of the
weak-strong periodic solution (%, q) corresponding to w € L(Q). Let w, be a
sequencein L?(Q) such thatw, — wstronglyin L?(Q), we denotewithk, € V,
qn € L>®(P; WH(0, d)) respectively, the periodic weak-strong solution of

@1 / houdadt + / o ot — / (o + POl it — / o (Ocddt = 0,
Q Q Q Q
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for any & € V, respectively

(4.2) Qna +f(907 wy) =01n Q7
4.3) ¢n(d,t) =01in P,
4.4) @@, t+ ) = q,(x,t) in Q, w > 0.

Integrating (4.2) over @) and taking into account Hy), we get
(4.5) 90l L~ 0.ay <M

where M denotes various positive constants independent of n.
Chosen ¢ = I, as a test function in (4.1), one has

/ o2 et = / (Wn + ) quhnedacdt + / ¢ Ohpdadt
Q Q Q

by which

/ o2t = / O S / 0O @hnedeodt + / o (Ohydadt.
Q Q Q Q

The Hoélder and Poincaré inequalities yield

1/2 1/2
/|h1m|2dxdt<M(/|hmc|2d90dt> ((/ wn|2dxdt>
Q Q Q
1/2 1/2
+( / |<o(t>|2dxdt> 4 ( / Iqo’(t)lzdxdt) )
Q Q

which implies

1/2
/|hmc|2dxdt<M2<(/?/Un|2d90dt>
Q Q
1/2 1/2
+< / |¢(t)|2dxdt) +( / Igo/(t)|2dxdt> )
Q Q

<M’

2

with the positive constant M’ independent of 7.
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The Poincaré inequality, permits to derive the classical energy estimate
4.6) / b (e, )| Pdaedt + / |, )| Pdedt < C.
Q Q

From (4.1) and (4.6), we infer that %,, is bounded with respect to the V*
norm. Hence, we conclude that %, lies in a bounded set of D that is

o <M.

We are ready to take the limit # — + co. Passing to subsequence if
necessary again denoted by #,, one obtains

hy, — hin D.

By aresult of [6, Theorem 5.1 ], the sequence %, is precompact in L?(Q),
therefore

h, — h in L*(Q) and a.e. in Q.

Because of the boundedness of the previously sequences, we can infer
that

hyg — hy in LZ(P; Vo)
T — hy in LA(P;V)
@y — q in L®(P; W>(0, d)) weak-*

f(x7 w?’i/) _)f('%.a w) in LZ(Q)

5. A fixed point argument.

To prove the existence of periodic solutions, we shall utilize a fixed point
argument which makes possible to invoke the Schauder fixed point theo-
rem.

Let

?: L*Q) — L*Q)
be the mapping so defined
D(w)=nh
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where £ is the unique weak periodic solution of (3.8) corresponding to
w € LAQ).
The mapping @ is well-defined and its properties are expressed below.

LEmMa 5.1.  The mapping @ is continuous.

Proor. The above convergences show the continuity of @ because
@(w,) = h,, converges strongly to @(w) = h in L*(Q) whenn — +o00. [

LEmMA 5.2. There exists a constant R > 0 such that

||¢(w)||L2(Q) <R, Yw € LZ(Q)

ProoF. Passing to the limit in (4.6) leads to conclusion. O

Since &(L2(Q)) C D and the embedding D C L3(Q) is compact, the op-
erator @ is compact from L?(Q) into itself.
In conclusion, our main result is the next

THEOREM 5.3. If H;)-Hy) hold, there exists at least a weak-strong
periodic solution to (1.1)-(1.7).

Proor. Lemmas5.1 and 5.2, tell us that the operator @ is both compact
and continuous from L*(Q) into L?(Q). From the Schauder fixed point
theorem, one has the existence of periodic solutions for the mangroves
model. O

REMARK. Using as test functions in (2.2), ¢=min{0, u} and
& =max{0, u — 1} it is easy to see that

O0<ulx,t)<1, a.e. in Q.
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