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(S5, Sg)-Amalgams VI.

WOLFGANG LEMPKEN(*) - CHRISTOPHER PARKER(**) - PETER ROWLEY(***)

Introduction.

In this, the penultimate part of [LPR1], we analyse Case 3 (as de-
scribed in [Section 12; [LPR1]). Our main result, Theorem 14.1, asserts
that Case 3 does not occur. Since coreg, V; is so small, the core argument
is, at times, especially deadly. Consequently we often end up in situa-
tions, where the subgroups we are interested in have trivial action on all
the non-central Gs-chief factors in Qs for many vertices ¢ € O(Ss3). This
is especially unfortunate since, as Lemma 15.1 shows, U; (for ¢ € O(S3))
possesses at least four non-central Gs-chief factors. In fact the proof of
Theorem 14.1 hinges upon overcoming just this type of situation. A
significant step in dealing with this problem is made in Lemmas 16.3
and 16.4. It follows from these lemmas that there exists a critical pair
(a,0') and p € A(e) \ {o/ — 1} for which F, N Q. £ Q,. The group F, and
its accomplice Hs (where y € O(S3) and ¢ € O(Sg)) are defined in Sec-
tion 14. These groups are “small” enough so as they fix many vertices
yet are “large” from the point of view of the non-central chief factors
they contain. Before the groups F', and H; can be successfully deployed
we need to restrict the structure of the critical pairs in I'. This we do in
Section 15. Section 14, apart from defining F, and Hp, is concerned with
eliminating the possibility b = 3.

Finally, as before we continue the section numbering in [LPR1] and
note that this paper only refers to results and notation contained in sec-
tions 1, 2 and 12.
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14. b = 3 and the groups Ts,.
Throughout this paper the following hypothesis is assumed to hold.

HypoTHESIS 14.0. (1) For each (o,0/) € C we have o€ O(S3) and
(Z.,Z4]1=1; and

(ii) coreg, V/; = V/; NV,.1 =12,

Our objective is to show that

THEOREM 14.1.  Hypothesis 14.0 cannot hold.

Before tackling the case b = 3 we give some notation and define the
groups T's,.
For 6 € O(Sg) we set

Ls :=0? (Gs),

Y(s = CV& (Lo) and

Cs :=Cq,(Vs).
We recall from Theorem 12.1 that for 6 € O(S¢), n(Gs, Vs) = 1 and Vs/Zs is
a quotient of <411> @ 1. Let y € 40). If V5/Z;5 =~ 4, then we define

Trsy = I:V(Sa Q}’7 Q/] )
otherwise we define T, to be a normal fours subgroup of Gs, with

Zs < T(s;, <Ys.

Next we describe two groups which play a crucial role later in this section
and in Section 16.

F, ::<T5VGT>
H; :=(F,%)

The groups F', and H; are similar to the F, and Hy defined in Section 12.
(Indeed if |Y;s| = 22, then they are the same.) We will need a result analo-
gous to Lemma 12.5.
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LEMMA 14.2. Let (o, ') € C. Then

(i) n(Gy,Fy) =2 with Z, = [F,,Q,] and |F,/Z,| € {22,2%}; and
(i) V= VpFy2Hp and n(Gg, Hy/Vp) 2 1.

Proor. First we observe that if Vi/Zy = 4, then Z, < Tp,. While, if
Vip/Zp % 4, then Z, N Ty, = Zy by Lemma 1.1(ii). Hence 14,2, = E©@3) in
either case. Since 2,(Z(Q.)) =Z, by Lemma 12.2(0) and V; <@,
1#[T4.,Q.] < Z, and hence [F,,Q,] = Z,. Because Z, = coreg,V; we
clearly have F, z Tp,Z, and now (i) follows.

Since [V, Qp] = Zj, (i) implies that Vj 5 VpF, < Hp. Also, from (i) and
Lemma 12.2(ii), 2% < |[F,, Q]| < 23. Now suppose that 7n(Gg, Hs/Vy) = 0.
Then H/; = VI;FG( Hence K[; = [H/;, Qﬂ] = [Vﬁ7 Qﬁ][Fa, Qﬁ] = [Fa, Qﬁ] d Gﬁ.
Since |Kjp| < 23 [Kp,Lgl=1 and so Z,NKp =Zg. Therefore [F,,Q,NQp] <
<[F.,Q]INKpg=7Z,N Ky =Zg. Hence

[Hg, Q. N Qpl = [V, Qx N QpllF,, Q, NQpl < Zg

and so @, NQp < CQ,X(H/;/Z[;). Since |Kg| > 22, we deduce that @, N Qp =
= Cq,(Hy/Zp) 4Gy, contradicting Lemma 12.4(i). This proves (ii).

And now to the main business of this section.

THEOREM 14.3. b > 5.

We suppose the theorem is false and, in the following lemmas, seek a
contradiction. So, by Lemma 11.1(iii), b = 3.
For (o, o) € C we label vertices as indicated.

o B B’ of

o

v
So AB) = {B,y,o'}.

LemMA 14.4. Let (o, /) € C.

() Vp/Zy=4or G)
i) R = [V}, Vyl=Z,
(iii) There exists p € A@e') \ {B'} such that (p, ) € C.
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(iv) Z,Qy/Qy = VQu /Quy is the central transvection of Gy, /Qu on
Vu/Zy and Z,Qp/Qp = VyQp/Qp is the central transvection of Gy /Qp on
Vig/Zy.

) CV’;(VGU) = [V/}, Q[;f] = Vg NQy § Vﬁ and

CVy/ (V[J) = [er’a Qﬁ’] = Voc’ N Qﬁ § Va’-
(vi) There exists 0 € A(f5) such that (6,0') € C and
(Gop, Vi) = Gy.

Proor. First we note that
1+# [Za,Vw] <R:= [V/;,Vlr] <VenVy =Zg.

Since R is Gy,-invariant, Z, < R whence V, £ Qp and so there exists
p € A)\ {B'} such that (p, p) € C. Also we have Zy =ZgR <[V, Ggland
therefore Vi = [V}, Ggl. So (i) holds. Further, RY, /Y, =27 g Yo JYy =
= Cy, v, (Gp,) together with Proposition 2.5(iii) yields that Z,Q,/Q» =
= V4Qy /Qy is the central transvection of G, /Qy on V, /Z, proving the
first part of (iv). The second part of (iv) follows similarly.

Because Q@ =Gpy and VyNQy is Qp-invariant with, by (iv),
Z/g < V/; NQy § V[; we infer that V/; NQy = [Vvﬁ7 Gﬂﬂf]. Then, by (iv),
VN Qy,Vyl < ZgNZ, =1 and thus Cy,(Vy) = Vg N Qy = [V, Q] with
a symmetric statement with f and o interchanged, so we have (v). From (v)
Vi acts upon Vj as an involution and a transvection and so |[E| = 2. Thus
R=27,.

Since Vi £ Qp, by Proposition 2.8(viii) we may choose J € 4(f) such
that (Gsp, V) = Gp. If Z5 < Qy, then Z5 < VN Qy and so [Z;, V] =1 by
(iv). But then Z; <Gy, a contradiction. Hence (d,«') € C, as required.

In view of Lemma 14.4(vi) we may, and shall, assume that (x, o) is a
fixed critical pair for which (G, Vi) = Gp. Also we set J = ([U,, Qa]G”>.

LEMmMmA 14.5.

@ [Us, Q] < Z(U,).
(i) Vp<Hp<Jg<Cp <Gy and Hy <Cy <Gy
(i) [F,, Ve NQpl = Zj.

ProoF. From Lemma 14.4(v) VyNQy =[V4,Qyl = Cy,(Vy), and
Qp £ Qp by Lemma 12.2(ii). Therefore, since [V, Qy] is Qp-invariant
we get ViNQy :CVﬁ(W,) and thus VpN@Qy < Z(Up). This in turn
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implies that

ZWy) > [V Qp]™) = [Up.Qp).

from which (i) follows.

Appealing to Lemma 14.4(i) and Proposition 2.5(1) gives T, < [V, Q]
and hence F, < [U,,Q,]. Consequently H; = (F,%) < ([U,,Q,1%) = Jj.
By part (@) [U,, Q] < Cp whence Jy < Cy. Evidently Cp < Q,;/ < G, and it
is also clear that we have H, < Cy < Gy.

Now we prove (iii). By Lemma 14.4(v) V,, N Qg centralizes Vj and so
Ve N Q/; <@Q,. Hence [F,,V,N QI;] <I[F,,Q,] =Z, by Lemma 14.2().
Since F, < G, by (i), we then get [F,,V,NQpl <Z, NV, =2Zp. If
[Fy,Vy NQpl =1, then F, centralizes a hyperplane of V, and so
F.Qyw =Z,Qy = V3Qy. Hence, using Lemma 14.4(i),

FoVa) < 2V V] = 202, = 2y <V

But then VF, is normalized by (G,z, V) = G4 by the choice of the critical
pair, against Lemma 14.2(ii). This shows that [F,, V, N Qgl = Zp.

Lemma  14.6. Vp/Zg =4, In particular, T, =[Vp, QuQx] and
Foc = [UQOQa]'

PrOOF. Assume that V;/Z; = (;1), and set A(x) = {4, 1, f}. Then by

definition Ty, = Yy = E@2?) and F, = (Y;,Y,,Ys). Put X =V, N Q4. By
Lemma 14.4(v) X centralizes Vp and so X <@, <G,. Therefore
[X,Y;] < Z;.8ince [X, F,] = Zg by Lemma 14.5(iii), [X,Y;] < Z, N Zg = 1.
Likewise [X,Y,] = 1 and thus [X, F,] = 1, contrary to [X,F,] = Zs. Hence

4
Vi/Zg % < 1) and now the lemma follows from Lemma 14.4(i) and the
definition of T, and F,.

LemMa 14.7.  Put Gy = Gy /Q.. Then
() g, Jpl < Zp; and )
di) J s = Cp 1s the non-quadratic E(23)-subgroup of Gy onVy/Zy.

Proor. Put A(x) = {4, u,p}, Gy =G, /Q, and X =V, NQp. From
Lemma 14.5(ii) [F,, X] = Zp. Now T, < Vg and [V, X] = 1 means we can
assume, without loss of generality, that

471) [T, X] = Zp + Z;.
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From this and Lemma 14.6 we immediately deduce

(14.72) X £ Q; and X does not centralize T;,/Z; =[V;, Q4 Q,1/Z;; in
particular, XQ; /Q; is not contained in the E(23)-subgroup of G;,/Q; acting
quadratically on V,/Z;.

By Lemmas 14.4(v) and 14.5(i) we have J; <Cj; <Q, <G, and
Jp > [Up,Qpl > [Vy,Qp]l =X. Combining these observations with
(14.7.2) and Lemma 11.1(vii) yields

14.7.3) J s is not contained in the E(23)-subgroup of G/f/a, acting quad-
ratically on V, /Z,,.

7Since Q/;’w is a 2-group, P(Cp) = <D(C‘,;) < @(Gﬂ/a,). By Lemma 14.4(v)
D(Gy,)NVp =1 and so &(Cp) NVy < Q. Because Vy/Zy is a Gg-chief
factor we deduce that

(14.7.4) @(C/}) N Vﬁ < Z[j

Clearly ¢(Cs) N &(C,) is normalized by Gﬂ/},. If &(Cp) N D(Cy) # 1, then
D(Cp) N D(Cy) > Ql(Z(Gﬁ/),)) = Z, and hence Z, < &(Cy) NV which con-
tradicts (14.7.4). Therefore we have

14.75)  [@(Cp), #(Cy)] = D(Cy) N D(Cy) = 1.

Next, we assume that 7(Gg, &(Cy)) # 0. Then (G, ®(C,)) > 1 and thus
D(Cp) < Qn by (14.7.5). Hence [D(Cp), V] < Z,,. Since V,; £ Qp by Lem-
ma 14.4(iii), we then get [®(Cy), Vy] = Z,» whence Z,, < @(C) NV, again
contradicting (14.7.4). So we have shown that

(14.7.6) H(G/;, @(Cﬁ)) =0.

Now we suppose that &(Cs) £ Q. Then &(Cy) = Z(Gﬁ/xl) NO%Gy) =
=~ K(2). Thus
Zo:/ [@(Cﬁ), fo] == [sz, Q[}', Q/}/] .

Clearly, K := ®(Cyp)Vp < Gy with, by (14.7.6), n(Gg, K3/ Vp) = 0. Therefore
Vsl @(Cp), Vul = VylVy, Qﬁ/, Qﬁ/] is normalized by Lg and hence by
Q := [Lg, Q. Appealing to Lemma 12.4(i) we conclude that

V[V, Qp, Qp] =V [V, Qp, Qp] = V3 [Up, Qp. Q]
=VyFy <Ly, Gyy) = Gp.
Thus Hy = VyFy = ViF, which is impossible by Lemma 14.2(ii), and so
(14.7.71) @(Cp) < Qy.
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Now part (ii) is a direct consequence of Lemma 14.5(ii), (14.7.3), (14.7.7)
and the fact that J; and Cj; are normal subgroups of Q p = Gﬁ/x, containing
the central transvection Z,.

From part (i) we infer that [Jp,[V,,Qy]1<Zy and hence
[/, [Up,Qpll < Zy. Since Jp = ([Uﬁ/7Qﬁ/]Gﬁ>, we then obtain

Gy
g, T5] = ([J5: [Up@Qp]]™") < (Zp") = V.
Noting that [Jg,Jg] < [Cg,Cpl < &(Cp) an application of (14.7.4) yields
that [Jp,Jg] < Zp, so completing the proof of the lemma.

LEMMA 14.8. Put Vi* = Vy[Hg,Qpl Then the following statements
hold:

A) n(Gg,Cp/ V) =n(Gp,Hg/Vp) =1 and the only non-central Gg-
chief factor within Cy/Vy is not isomorphic to Vg /Zg, as a Gg/Qp-module;
(i) Jp=Hp=[Hp,Ggl and Hg/Vg* =4 or (411), and
(i) V" =VplFy,Qpl and V" NCy =1[Vp,QpllFy,Qpl  with
[V/g* : V[;] < 2and [V/g* : V/g* NCyl=2

Proor. Because Cy < Gg
[Cors T, T5] < [T, Tp) < Zp <V,
by Lemma 14.7@i). Therefore

(14.8.1) Jg acts quadratically on C, /V,, and so (by Lemma 14.7(ii)) the
non-central G, -chief factors within C, /V,, are not isomorphic to V,, /Z, as
Gy /Q.-modules.

Using Lemma 14.7(ii) we see that
B(2) < [Cp Vil < Vo @y] = Vi N Qs = E(2Y).
Now E@?) =Z, <V,NQ and so |[Cy/Vp,V,] <2° Then Lemmas
14.2(ii), 14.4(iv) and (14.8.1) force
(14.82) 5(Gy,Cy/Vp) = 1.

Nowset Hg" = [Hp, Gpl,and note that n(Gg, Hg") = 2and Hy" > V. Also,
by (14.8.1), [[Hy"/V}, Vil = 2% and thus [V, Qg1 = Vi N @y < Hy". Em-
ploying Lemma 11.1(vii) gives Hyg" >[Uy,Qp]. Since Jy= ([Uﬁ/,Q/;/]G">2
> Hy > Hg" we obtain

(14.83) J; = Hy = [Hp, Gy).
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Gy, V" / Vi) # 0, then (G, Hp/ V™) = 0 and so Hy = Vi[Hp, QpIF,
which, commutating sufficiently often with Qp, forces the untenable
Hﬁ = V/;F%. Thus ﬂ(G/g, V[g*) = H(Gﬁ, Vﬁ) = H(Gﬁ,Hﬁ/Vﬁ*) =1. Now
[F,: (F, N VpIF,,Qpl]l <2 means that we have |F,V;"/V;"| =2 with
Hﬁ/V/;* = <(F1V/;*/V[g*)G/f>. Since Hﬁ = [I‘I/g7 Gﬁ] and n(G/;7Hﬁ/V[;*) =1we

easily see that Hg/Vy" > 4 or (411) .
From n(Gg, V" /Vp) =0, we clearly have V" = Vy[F,, Qpl = V§[Fy, Q]
with [V* : V] < 2,
Vi N Cy = (Vg Cy) [Fy, Q) = [Vi, Qp] [Fyr, Qs]
and [Vp" : V3" N C,] = 2. This completes the proof of the lemma.

We are now in a position to complete the proof of Theorem 14.3. Using
Lemma 14.6 we see that

14.3.1) Qp/Cp = (Vy/Zp)" = Vy/Z.
So we have (Qy NQ.)/C., = E(2?). Since, by Lemmas 14.7(ii) and

14.8(i), HpQ»/Q is the non-quadratic E(2%)-subgroup of Gy, /Qs on
Vi, /Z.s, (14.3.1) implies

(14.3.2) [(Qﬁ/ NQw)/Cy, Hgl= E(2); in particular [HgNQ, : HgNCy]>2
and therefore [Hy : Hy; N Cy] > 2.

We now observe from Lemma 14.8(ii) that V" N H,, = V3" N C, with
[V : V"N H,] = 2. Combining Lemmas 14.4(ii), (vi), 14.7(ii) and 14.8(ii)
with Proposition 2.5(ii) gives

[Hy/ V" [Hy/ V' Hy]] = 2%,
and consequently
[H/j ZHﬂ ﬂHa/} < [Hﬁ : [H[;,Ha/} (V/}* ﬂHw)] < 23,

Since HgNH, < HgNCy, this clearly contradicts (14.3.2), so proving
Theorem 14.3.

15. The structure of critical pairs.

The main result in this section is Theorem 15.7.

From Theorem 14.3 we have b > 5, and so U, is elementary abelian.
Our first result shows that there is an abundance of non-central chief
factors in U,.
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LemMmA 15.1. Let (o, /) € C.

@ nGy,Uy) = 4
(i) If n(Gy,U) =4, then [U,Qy3]=[Vp,Qx3l=2, and

4
Vi/Zg =4 or <1>

ProoF. Put V% = [V}, Q,;iland UP = [U,, Q,; il for i € N U {0}; let
neN be such that V4™ #1 and V;“*V =1. By Lemma 12.2()
21(Z(Q,)) = Z, and since Vﬁ(") is a G,p-invariant subgroup of 2,(Z(Q.)),
Theorem 12.1 and Proposition 2.5@) imply

(15.1.1) n>3and Z; <V, < Z, = U,.

Now suppose that (G, U," /U,Y*Y) = 0 for some j € {0,1,...,n — 1}.
Then U," = U,9PV? and hence U, = U,V S0 U,Y =
= U,V and consequently U,” = V" < coreg,Vj = Z,. This implies
U, < 7, whence U,"™ = 1, a contradiction. Thus we have

15.12) 7(G,, U,?/U,9") > 1 forj € {0,1,...,n — 1}.

Clearly (15.1.1) and (15.1.2) give (i). Now assume that #(G,, U,) = 4. Then,
by (15.1.1) and (15.1.2), Z; <V,;® <U,® =Z,. Since V;® £ Z,,
Vs® = U,® = Z, which establishes (i).

LEMMmA 16.2. For (a,0) € C, Vi £ Gy tn particular V, £ Qp.

Proor. Let (a,&') € C, put 4(2) = {4, 1, f} and assume by way of con-
tradiction that V,, < G,. Since Z, < G, and Z, £ Q,/, we have

(15.2.1) Vi < Gyp With [Z,, Vil = Zg # Zyy.

Note that there exists p € 4(¢) such that Z, £ Q,; moreover Z, acts as an
involution on U,,.

15.2.2) U, £ Gy; in particular U, £ Q.1

Suppose that U, < G, holds. Then, since U, is abelian and V,, < G, U,
acts quadratically on V,. Since 5(G,,U,) >4 by Lemma 15.1(i) and
[U,NQy : U, NQyNQ,1 <2, we see that U,Q,/Q, = E(2%) with
nG,, U,) = 4. Also, from |[U,,V,]| > 2% Lemma 15.1(ii) and Proposition
2.5(ii) force V, /Z, = (;l) with [U,, V] = E@%).

Since Z, interchanges 4 and yx, Z, normalizes V :=V,V,. Since
VinV,=Z,and V, = E@9,V:=V/Z,=V, x V,with V, = E@H=V
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and hence [V, Z,] = E®2Y. Now (Zy,Z,) =Zg and V < U, yields
B@)<[V.7,] < [U. V],
contrary to [U,, V] = E@2%). So we have (15.2.2).
Because b > 5and V), Z Vo Vi, Vol =1V, Vy2l <V, NV, =Z, and
50 [U,, Vy_2] < Z,. From (15.2.2) and [U,, V2] < Cz, (V) = Z we obtain
(15.23) [U,,Vu—z] = Zg.

(1524) U, £ Qs

Assume U, < Q,_2 holds. Since U, £ @, 1 by (1562.2) and Z, | =
=Zy oZy, Uy, Zyl#1. Hence [U,NQy_1NQy,Vy]=1 and so
Uoc N Qv/—l mQa’ S CUQ(Z/)) Now [Ux : fo N ro’—l] S 2 and W(Gx; Uc{) Z 4
forces (U, N Qy_1)Qx/Q. to be the quadratic E(23)-subgroup of Gy _1,/Q.
onV,/Z, and [U, : U, NQ, 1] = 2. Also we note that [U, N Q,_1,V,1Z,
has index 22 in V, and that [U, N Qy_1,Vy,] < U,. So U, centralizes
[U,NnQy_1,Vy] and U, £ Q,_; whence, using the core argument,
[UsNQy—1,Vy]l <coreg, V,=7Z, 1. But this is impossible since
(U,NQy-1)Q./Qy in the quadratic E(2%)-subgroup of Gy 1,/Q, on
Vy/Z,y. Therefore U, £ Q,_s.

(1525) [Zocv VO{']:[UOC; Vot’—2]:Z/)’ < Va’—ZQVa’ :Zoc’—l and Zoc’—l :Zoc’—ZZ/)’-

By (15.2.3) and (15.2.4) Zg # Z, 2. Now (15.2.5) follows from (15.2.1)
and (15.2.3).

Put Vy o=Vy 2/Yy_s and P, _s= (U, Gy_9,1). Since Z, 4=
=Zy 22y, Py o centralizes Z, ; and, as U, £ Gy_2y-1 by (156.2.2),
1
Py 2:=Py 2/Qy 228y x 7s with V,, 5| p,,=| 2 |. However, by (15.2.5),
1
[Uo:a V(x/—2] = Z/} = Za/—l = C{/’ (Pa/_z) which lmphes Um < OZ(PO:’—Z) <
< Gy_24_1. This contradiction Ezompletes the proof of Lemma 15.2.

Lemma 15.3. Let (a,0') € C and R =[Vy, V] If n(Gp, Wg) =2 or
n(Gp, [Ws, Qp1V3/ V) = 0O, then the following hold:
(i) R<ZyoNZy_ 1 with RZg = Zy2 and RZy = Zy_1. If, more-
over, b=>5then R=72,.3=2, 3; 4
(i) Vp =1[Vp,Ggland so Vp/Zg =4 or <1>;

(i) VpQyw/Qy ts the central transvection of Gy_14/Qy acting on



(Ss, Sg)-Amalgams VI 245

Vu/Zy with a symmetric statement holding for V, with the roles of f and
o interchanged; and

(iv) etther Wy < Q2 or WyQy_2/Qy—2 1s the central transvection
of Gy—3w—2/Qu—20n Vy_9/Zy_s and so [Wp: WgNQu_2] < 2.

Proor. Put Wy® =[W;,Q;] and W;" = W;"V,. Note that
G, Ws/Ws*) #0 else Wy =W;PU, which produces the absurd
Wy = U,. So we have n(Gg, Wy"/Vp) = 0. Appealing to Lemma 12.7 gives
R<VyoNVy=2Zy_;. Since Vy, £ Qp by Lemma 15.2, there exists
p € A) such that (p, f) € C, and likewise we deduce R < Vg NV, 3 = Z,.».
This proves (i)

Since Z,.9 = RZp < [Vp,Ggl, the statements in (ii) and (iii) follow
readily while (iv) is an easy consequence of (iii).

LeEmmA 15.4. Let (o, o) € C. If Zy < V/;, then |Va/Q/5/Q[;| =2

Proor. Let (a,0/) €C be such that Z, <Vs and assume that
[VuQs/Qp| # 2. So, by Lemma 15.2, |V,Qs/Qp| > 22. Also Lemma 15.3
implies that
15.4.1) n(G,;,W/;) > 3.

Clearly we have Wy < Gy _». Since b > 5, Zy < Vi < Z(Wjy) and so Wy
centralizes Zy 1 =2y, 2Zy. Thus Wy <Cgq, (Zy 1Yy 2/Yy ) and
therefore X := Wg N G, _2,-1 has index at most 2 in W; by the parabolic
argument (Lemma 3.10). Note that X <Cg, (Zy 1) = Q-1 < Gy, and
set X* = (X N Q,)Vj. Then [X : X*] < 23 and

(X" Vy] = [XNQx,Vy|R < ZyR < V.
Hence, putting Wﬁ = Wpg/Vj, we have X+ < CW/;(VM). Using (15.4.1) we

then get N o
2! < [Wp: Cy, (V)] <[Wp: X'] = [W: X7

:[Wﬁ :X] [X :X*] <24
and consequently [W; : X] =2 and [X : X*] = 23, In particular
154.2) Gy_1y = Q.X.

Since [X,V,1<XNV,<QsNV, and [V, :QsNV,]> 2?2 (154.2)
together with Proposition 2.5(1) implies that

(154.3) [X,V,] =XV, =QpNVy 5 Vy with V,/Zy = 1@ 4 or 1& (‘11)
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It now follows from (156.4.3) that Zy_ 1 =Zy 2Zy <QpNV, =
=[X,V,]<[Vy,G,] whence V, = [V,,G,], which contradicts the struc-
ture of V,, given in (15.4.3). Thus we infer that |V,,Q/Qs| = 2 must hold.

COROLLARY 15.5. If (o,0/) € C and |V3Qu/Qu|> 22 then |V, Qp/Qp| > 2%

Proor. Suppose we have (o,0/) €C with [V3Q,/Qy|> 2% Then
Zp £V, by Lemmas 15.2 and 15.4. Hence [V, NQp, V] =1. Since Vp
cannot centralize a hyperplane of V., [V, : V,, N Qpl > 22 which proves the
result.

LEMMA 15.6. Let (o,o/) € C and suppose that |VsQ,/Qy| > 2% and
hence by Corollary 155 |V,Qp/Qp| > 22 Then the following statements
hold.

() VpQu/Qu = VuQp/Qp = E@2?);
(i) WgnNGy_1 < Gy,
(i) Py 2 := (Wp,Qu-1) < Gy_2=Qy_2Py 3 and Py_3 > Ly _s;
@iv) b :A5; and R
W) if Gy =Gy /Qy, then Wy o= E(@23) and W, o acts quad-
ratically on Vi /Z, with

4 4
< ! /< .
(1) vz ;) o1

Proor. PutR =[Vj,V,]and (A}“r =G, /Qy.By Lemmas 15.2 and 154
Zy £ Vgand Zy £ V. Hence [V, Yy ] = [Vy,Yg] = 1. Since [V, : RY ] =
=[Vp: RYp] = 22 we obtain (i). Noting that R £ Z,,_; and [Wp, V]l =1, the
core argument yields (ii).

Lemma 15.3 (iii) gives
(15.6.1) n(G,hW/;) > 3.

(1562) VﬂQOﬂ//QC{/ < (Wﬁ N Ga’)Qa’/Qfx’ gE(ZS)

Since Wy N Gy centralizes RY, /Y, = E(22), Proposition 2.5(vi) implies
that (Ws N G,)Q./Qw is elementary abelian, so giving (15.6.2).

We now establish part (iii). Suppose that Q, sP, 2 # G, _s. Then
(Wg,Gy—24-1) # Gy_2 and so, by the parabolic argument, [Wy: W] < 2
where W :=W;NGysy1. By G) W<G,, and by (1562
(W V/;(W NQy)] < 2. Clearly [V/;(W NQy),Vyl < RZ,. Putting W/; =
=W;/V; we have [W;: V;(WNQ,) <22 and |[V;(WNQ,),Vy] <2
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Since V,Qp/Qp = E(2?), this gives n(Gﬁ,WB) <1, contradicting (15.6.1).
This proves part (iii).

As a direct consequence of (iii), Proposition 2.5(1ii)) and Lemmas 12.7
and 15.2 we have

(15.6.3) (i) Z,R is not normal in G, _1, and ZR is not normal in G, 2.
(ii) Either R
(@) 4<Vy/Zy,<4@®1and Vg ~ (s1,t) or

(b) <411> <Vu/Zy < (i) ®1 and Vi ~ (s1,1) or (s5,f) (using the

notation of Proposition 2.5).

Moving onto part (iv), we now assume b > 5 and derive a contradiction.
Set Wo = W N Q2. By (ii) Wy < G,. Since Wy is abelian we observe that
[Wlf :Wol < 23 > [Wy: WoNQy]. Now W/; being abelian and (iii) imply that
Zy % Wy Hence[Wy N Qy, Vyl =1,andso[Wy : Cy, (V)] < 26, Therefore,
by (15.6.1), n(Gg, W) = 3, [Wp : Cw, (V)] = 26 and WoQy /Q, = E(23).

(15.6.4) The non central Gy chief factors in Wy are isomorphic natural
Sg-modules.

Observe that V,, acts quadratically upon Wy since [Wg, V] < W, 2. By
(15.6.3)10) V. Qp/Qp £ Z(Gpyi2/Qp) from which (15.6.4) follows.

Since WyQ, /Qy = E(2%) with Wy acting quadratically on V,,, we may
choose t € Wy so that Vi(t)Q, = WoQ, with ¢ acting as a transvection on
Vy/Yy. Hence t acts as a transvection on V,/Z, and, recalling that
Zy £ Wp, we see that C := Cy,(f) has index 2 in V. Therefore C' £ Qp.
Now

[Wo,C1 = [Vi(t)(Wo N Qyx),C] = [V,C] <V

and consequently [W;/Vp: CW/f /V,J(C)] < 23, Since nGg, Wg/Vp) =2, C
must induce a transvection on at least one non-central Gg-chief factor
within Wy /Vg. Appealing to (15.6.4) gives that C induces a transvection on
V/Yp and hence on V/Zs. Because Zg £ V,,, C induces a transvection on
Vj. But then [Wy,C] = [V}, C] = 7 whereas [Wy,C/Y,] = E@2?%). From
this untenable situation we deduce that b = 5.

Finally we consider part (V) By (15.6.3) Vﬁ A aw o = @U/ 1. So, since
Vi < Wy_3 (as b=5) and Wa 2<‘Qx L V/;#Wx _s. EV]dently we have
[V, Wy_2] <V} and consulting (15.6.3)(ii) we see that V/; N (G%/ w) =1
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So W, 2 < Cp, (V). Hence W, = E@*) by (15.63)(i). Now if (v) is
false, then (15.6.3)(i)Amust hold and therefore Wa/_g is the non-quadratic
E@23)-subgroup of Gy 1, (acting on V,/Z,). Thus Y,[V,, Wy o] =
= Ylf[Va/,Gar,W]ng/. Next we observe that [W, o, W, 2] < Q.. So,
since G, _g is transitive on vertices distance 2 away from o/ — 2 and b = 5,
[Wy_o, Wy_2] < Qp also. This then gives, since Y, < @, that

Y [V, Wy 2] < Yo [Wo—2, Wy_s] < Qg
Therefore [V, :VyNQpl=2, against [V, : V, NQl = 22 This estab-

lishes (v) and completes the proof of the lemma.

THEOREM 15.7. Let (a,a’) € C. Then

@ |V /Qu| = [VyQp/Qpl = 2;
() |[Vp, Vil =2 and [Vg, Vy NQpl =1 =[V,, V5N Qy]; and
(iii) there exists 6 € A(P) such that (6,0') € C and (Gsp, V) = Gp.

Proor. (i) Assume by way of contradiction that the assertion is false.
Then from Lemma 15.6 we have
(15.7.1) b=5;
15.7.2) if aw = Gy /Qy, then War,g ~ E(2%) and W,_s acts quadratically

on V, /Z, where
G) <Vy/Zy < (;1) ®1; and

(15.73) Py _2:= (Wp, Q1) < Gy 2 = Qu 2Py 2.

Put Wg* = [Wy, WslVp and R = [V, V). Bringing together (15.7.1),
(15.7.2) and Lemmas 11.1(vii), 15.6(ii) we obtain

(15.7.4) WyQy—2/Qu—2 = WyQy—2/Qy—2 = E(2%) with both groups acting
quadratically on V,y_2/Z, 5 and Wy" < Q2 N Wy < Gy.

By (15.7.4) we have
Yoz+3 =Y, 2 < [W[}»Va’72]Zoc+2 < [Wﬂvwﬁ] Vﬂ = Wﬁ*

Since Gy is transitive on vertices distance 2 from f, (Y;.Y,,Y,,3) < Wp",
where A(x + 2) = {f, 7, 0 + 3}. Now (15.7.2) and the definition of ', 2 implies
that F,.2 < Wy, whence Hy < Wg". Therefore n(Gg, Wg*) > 2 by Lem-
ma 14.2(ii). Since W;" centralizes RY, /Y, = E@22), Wp* acts quadratically
onV,/Y,. Then V,Qs/Qp = E(2%) forces
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(15.7.5) W5 Qy/Qy| = 2% with Z, < [W;*,V,]1=~ E@"); hence Z, ;=
= Zy_oTy < Wy

From (15.7.4) we have [[V,,_o, Wg], W] < Z,,_2 and thus [[Wp, W], W] <
< V. So [Wy, Wy"] < V. Hence, as Z,, 1 < Wg" by (15.7.5),

(Zy—1, W] < W', Wy N Vo S VN Vyo = Zyss.

Therefore Wy normalizes the group X := Y, 22,97, _1. Symmetrically we
deduce that W, also normalizes X. By (15.7.3) W3Q,_2 # Wy Qy_2 and so
Proposition 2.8(vii) yields that

(157.6) P = (Wp,Qu_2, Wy) = Ng, (X) with |X/Y, 5| € {2,2°} and
P/Q1172 >~ S4 X Z/Z

If | X/Y,y_o| =2, then X = Y,,_2Z,_; is normalized by P, _s which is
impossible by (15.7.3). So |X /Y, _2| = 22. But then O2(P/Q, _2) is the only
E(23)-subgroup of P/Q,_» which acts quadratically on V, 5/Z, 2, s0
(15.7.4) forces WsQy_2 = W, Qy_2, a contradiction. Therefore (i) holds.

(ii) In view of part (i) and Lemma 15.2 it is sufficient for us to show that
for (o, o) € C [V N Qy,Vy] = 1. So we assume [V N Qy,Vy]#1 and ar-
gue for a contradiction. Since Vj £ Q, we have

(1577 Zy = [VyNQy,Vy] < Vyand |[V, V]| > 2%

Clearly there exists p e A(¢') for which [VyNQy,Z,]=Z,. Put
Alp) ={d',0,7} and V =V,V.. Since VyNQ, interchanges ¢ and r,
VoV, =2Z,and Z, <[V;NQyV], we deduce that

(15.7.8) |[VsnQu, V]| > |V,|/2.
(15.7.9) U, £ Gg.
For U, < Gg implies that V normalizes Vg N Q, and so
Vs 0 Qu, VI < [Vil /4 = [Vol/4,
contradicting (15.7.8). Hence U, £ Gy.
(15.7.10) U, £ Qus3
Assume U, < Q43 holds. Then U, < G2 and so U, £ Q.2 by (15.7.8).

Since [V, Vy] < VN Vy and [U,, V] = 1, the core argument forces
[W;, V“,] < coreg,,, V/; =Zyio.
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Then (15.7.7) gives Z,,2 = [V}, V,] < V,, which yields U, < Cg,.,(Z,42) =
= Q42 < G, against (15.7.9). Therefore U, £ Q,.+3, as asserted.

Since [V,43,Vy]1 =1=1[V;,V, 3] =1, Vg N Qy centralizes [V, 3,U,] =
=[V.43,V]=[V,13,V51[Viys, Ve ]. From Vg N Q. interchanging o and r we get
[Vaz+3; U/)] = [Va+3;Vﬂ] = [V1+37 V‘L’] < VU th n C(Vﬁ mQu’) = CZP (Vﬁ N Qa’) =
= Z,. Now (15.7.10) implies that

(15.7.11) [VH?,, U,,] =Zy <Vysand Z, # Z,,3.
Combining (15.7.7) and (15.7.11) gives Z, < VgNV,43 = Z,2 and then

1
Zyiz =Zys3Zy. S0 U, < Pyig:=0Cg,,,(Zy2) with Vislp = (2)
1

(where V,3 = V,3/Y,;3). From (15.7.11) U, < 02(P,3) < Gy2,,3 which
then gives U, < Q,2, contradicting (15.7.9) and concluding the proof of (ii).

(iii) Since [V N Qw, V»1 = 1 by (ii), we may argue as in Lemma 14.4(vi).

16. Case 3 bites the dust.

Employing Theorem 15.7 we begin this section by determining, for a
critical pair («,o’), which vertices Hj fixes and the location of the com-
mutator [F,, V,, N Qpl.

LEMMA 16.1. Let (o, o) € C. Then

() Hg < Qy2NQy_1;
(i) [Fy,VyNQpl < Zg and
(ili) Hp 1s abelian.

Proor. Assume first that Hg £ Qv —_2. Then there exists f — 1 € 4(f)
such that Fp i £ Q2. Putting A —1)={p,0,7} we have Fy_; =
= (Tpp-1, Top-1,Trp-1). Since Tpp_1 < Vp < Qy_2, we may assume without
loss of generality that T5s_1 £ Q. —2 and hence V,; £ Qy_s. So we may find
y € A(g) such that (y,o/ —2) € C. By Theorem 15.7 V,, 2Q,/Q, acts as a
transvection upon V,/Z, with Cy (Vy 2)=V,NQy 25V, Hence
Ve =VoNQu_2)Tsp-1 and consequently [V, Vy_ol =[Top-1,Vy_2] If
Vg/Zp % E@Y), then [Top_1,Vy_2] < Z,. While if Vy/Zs = E@2"), then
Top-1/Zs = [Vs,Qp-1;2]/Z, is centralized by all transvections of Ggp-1/@Qs-
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Hence in either case we have
[V07V1’72] = [Taﬁfhvx’fd < Zaa

whence V,_2 < @, a contradiction. So we have shown that Hp < Q.
Assume next that Hy £ Qy_1. So Hy is transitive on A/ — 1) \ {o/ — 2}
and therefore, as Hp < Qp, QpVy = QpUy—_1. Again, we may find
p—1¢€4(p)\ {e+2} such that Fiy_; £ Qy_1 (note that F, o < U, <
< Qu’—l)- Since 7’](GO(/_1, Uy_1)>4 by Lemma 151 and U :=U,_1 N
N Qp § U,_1, we infer that |[Fp_1,U]| > 23. On the other hand, by the
Gp-1/Qp-1 module structure of Fg_1/Z_1, obviously |[Fs_1, U]| < 23, and
so we have Zp 1 <[Fp_;,U]l= E©23). Thence Zp1 <Uy_y and so
[Zp-1,Uy-1] = 1. Consequently U < Q41 and thus, by Lemma 14.2(i),

[Fs_1,U] < [Fp-1,Qp-1] = Zp-1,
contrary to |[Fp_1, U]l = 23, Thus we conclude that H p < Qy_1, and we
have proven (i).

For (ii) observe that from Theorem 15.7 V, N Qs < @, and hence
[Fo, Vo NQpl < [Fy,Qs] =Z,. From (i) we have F, <Hy <G, and
therefore

[F.,VuNQp| S VyNZy < QuNZy=Zy,
as required.

Because Hg < Wy < Q, we have, using Lemma 14.2(), [F,, Hg] < Z,
and hence [Hg, Hg] < Vy. Since, by Theorem 15.7, V4Q, /Q. acts as a
transvection of Gy_1,/Qy on V,/Z,, it follows from part (i) that
[Hp,Hgl < Q. Recalling that Yy <Cy,(Vy) <@, we see that
[Hp,Hg] < Yg. Now Hp < Q.13 (using part (i) if b =5). Let y € A(f) and
0 € A(y) \ {B}. Since Gy is transitive on vertices distance 2 from f, Hg < @5
and therefore

[Té‘/vHﬁ] < [Vﬁa Qo‘] NYp=2Z;NYp=1.
Hence
[Hy, Hp| = <[T5}'7H[f]6ﬁ> =1,

which proves (iii).

LEmMA 16.2. Let (a,o/) € C and suppose that U, < G,. Then
[U.,Hpl =1
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ProoF. Set A(x) = {p,4,1}. Again we have Hy < Q,,3 and hence
Hg < Q; N Q. Therefore

[H 7fo] = [H,B;V}Vv,u] = [H/hVA] [H 7V,u] < Z}.Z,u :Zac

By Lemma 16.1 Hg < G, and thus, as Z,Q,/Q» = VsQy/Qx acts as a
transvection on V,/Z,, [Hy, U,] < Q.. Hence [Hy,U,]l < Z,NQy = Z.
This in turn implies that [Hp, V;1<Z;NZg=1 as well as [H,V,] <
<Z,NZg=1,so0giving [Hg,U,] = 1.

LEMMA 16.3.  There exists a critical pair (o, o) which satisfies the fol-
lowing two conditions:
(1) < a/{, > Gﬁ and
(i) [F.,VyNQpl=1

ProOOF. Suppose the lemma is false. So by Lemma 16.1(i)
[F(;, V(;f n Q5+1] = Z()qu for all ((5, (5/) € C with <G5(5+1, V5/> = G5+1. By Theo-
rem 15.7(iii) we may select a critical pair (o, ') satisfying condition (i). So,
since I, < Hp < Gy,

Z/j’ = [vaoc’ QQB] < [Fmva’] < Vot’-

Now [Ty, Ve N Qpl < [V, V., NQpl=1and so we have [T, V, N Qpl=2Zp
where 4 € A(x) \ {}. Because T}, <G;, and V,, N Qs < Q, < G; we obtain
Zy = Z;Zp < T;, and hence, by the definition of 7',

(16.3.1) Vp/Zz=~4and T, = [V;,Q,2] = E(2%).
From [T, V., NQpl = Zp # Z; we also deduce that

(16.3.2) V, NQp £ Q; and V,, NQp does not centralize 7';,/Z;; in parti-
cular, (V, N Qp)Q,/Q, and hence (@, N Qp)Q;/Q; is not contained in the
E(23)-subgroup of G;,/Q; acting quadratically on V;/Z;.

By Lemma 16.1(iii) Hp is abelian and hence H; acts quadratically on
V. Since E@22) 2 Zy[V, V1< [Hg, Vy1 and n(Gy, Hp/Vp) > 1, (16.3.1)
implies that

(16.3.3) E(2°) = Cv,(Hp) = [Hp,Vyy] > Zs [V, Vo] Z 1 > E(2%).

Furthermore, 7(Gg, Hg) = 2 and V,,Qp/Qp acts as a transvection on each of
the two non-central Gy chief factors within Hy which must be isomorphic
natural G/@Qp-modules.
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(16.3.4) F.Q, 2VsQy, and, in particular, [(Qy_2 N Qy—1)Qx/Qx| > 2°

Suppose that F,Q, = V3Q, holds. Then

[Fa, Vl/] = [Fl NQ., Va/] [V[g, Va/] < Zy [V[g, Vll] = E(Zz)
Since [V, V] # Zp = [F, Vo N Qp] we get
Zi' < I:FmVot’] = Z/j [Vﬂ7Vx’] < Vﬁ

But then V3F, 2 (G4, V) = G, against Lemma 14.2(i). Therefore we must
have F,Q, 2 Z,Q, = V3Qy. Hence [(Qy—2 N Qy-1)Qyx/Qx| > 22. Combin-
ing (16.3.2) and Lemma 11.1(vii) with the fact that (s;,t) is not a
normal subgroup of 7T (see Proposition 2.5(ii)) yields that
(Qy—2NQy_1)Q./Qyx| > 23, as required.
(16.35) [U,,Zs] =1

From (16.3.3)

Zy < [Hp,Vy| <Hg < W

If b>5, then (16.3.5) clearly holds, so we now assume b =5. Since
Zg <V, we have

Zp <VgNVusNVy =ZyoNZy_y.

Because Zp # Zyi3 < Zyy2 N Zy_1 we deduce that Z,.o = Z,_;. Conse-
quently Zy < Zy 1 =Z,2 < Vg Now [Vp, Wg] =1 implies that (16.3.5)
holds when b = 5.

We claim that U, <Q,_s. For if U, £ Q, o then there exists
o — 2 € A% (o) such that (o« — 2,4’ — 2) € C. Moreover, by Theorem 15.7(iii),
we can also assume that (Gy_9,-1,Vy_2) =Gy1 (Where {o—1} =
= A(a) N Ao — 2)). Hence, by our supposition,

Zy1= [FCHZ; Vy2n Qafl] <Vye< Qa’

whence Z, = Z,_1Zg < Q.. With this contradiction we have established
the claim. Now, using (16.3.5), we deduce that U, <Cg, (Z, 1) =
= Qy-1 < Gy. Applying Lemma 16.2 gives [U,, Hg] = 1. Therefore U,
centralizes [Hp, V] = E23) and so U, acts quadratically on V,. Since
F, < U,, (16.3.4) implies that |U,Q, /Q./| > 22 so we see that

[Uaqu’} < CVX/(Ua) = [Hﬁ;Vo:’]

Hence we obtain [U,,V, ] < [H, V1< Hp. Thus HgU, 2 (G, V) = Gy
from which we conclude that Wy = HyU, and n(Gg, Wg) = n(Gg, Hp) = 2.
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Since n(Gy, Wg/[Wg,QplVp) # 0, there exists a Gy-invariant subgroup
E of W containing [Wy, Qz]V such that Wy /E is a natural or the dual of an
orthogonal Gy/Qz-module. Appealing to [Proposition 3; LPR2] yields
V,E/E =~ E@23) (where A¢€ A)\ {B}). Since [Q;,V:1=2,<7,<E,
(@1 N Q,Qp/Qp centralizes the group V£ /K = E(23). Using (16.3.4) and
Lemma 11.1(vii) |(Q; N Q.)Qp/Qs| > 2* and so it is the E(2%)-quadratic
subgroup of G,s/Qp on Vi /Zy. This contradicts (16.3.2) and concludes the
proof of the lemma.

From now on («, o') will be a critical pair satisfying conditions (i) and (ii)
of Lemma 16.3.

Lemma  164. () F,Qy = Z,Q, = VpQy. Moreover [F,,Vy]=
= Zy[Vp, Vyl = E@Q®) with [F, N Qy,Vyl = Zy % VsFy; and
(i) Hoc+3 < Q[f N ro

Proor. Recall that I, < Hy < G,. Since F, centralizes a hyperplane
in V, (by condition (ii) of Lemma 16.3) we obviously have F,Q, =
= Z,Qy = VyQ.. Now the other statements in (i) are easy consequences of
the fact that Hy 2 VyF,.

In proving (i) we may assume b = 5. Suppose for the moment that
U, <Qu_2andlet 2 € 4(x) \ {f}. By Lemma 15.2 we cannot have (z,1) € C
for any te (e —2), and hence V, 5 <@Q,. Because Z; £V, o,
[Vi,Vy_2] =1 and therefore [U,, V,_2] = 1. So U, < G, and hence, using
Lemma 162, [U, Hpl=1. Thus [H,4s3,U,21=1. In particular
[H,43, V] = 1 which then yields H, 3 < Q, N Q. Therefore (ii) holds when
U, <Qy_2. Now we consider the case U, £ Q,_2. Then there exists
o« —2 € AN () such that (x — 2,4 —2) € C. Set {a— 1} = A(@) N Az — 2).
By Lemma 16.2 there exists t € A4(o/ — 2) such that (z,« — 1) € C. Applying
Lemma 16.1() to this critical pair gives H,_» < @, N Qp. This proves (ii)
since o/ —2 = o + 3.

By Lemma 16.4(i) there exists pe A@)\{«' —1} such that
[Fy,NQy,Z,] = Z, and (hence) F, N Q. £ Q,. Also we note that

LemMma 16.5. (p, ) € C.

Proor. If the lemma is false, then Z,<Qp <G, whence
Zy =F,NQy,Z,] <[F,,Z,] <F,, contrary to Lemma 16.4().

LEmma 16.6.  5(G,,U,) < 3.

Proor. Put 4(p) = {o/,0,7}.
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Assume for the moment that V,, £ Q,.3. Then there exists o + 1 € A(g)
such that (6 + 1,2 4+ 3) € C. By Lemma 15.2 there exists u € 4(o + 3) for
which (¢,0) € C and by Theorem 5.7(iii) we may choose u so as
(Gut3, Vo) = Gors. Additionally assume that [F,, V, N Qyi3] =1 (so con-
dition (ii) of Lemma 16.3 holds for (i, ¢)). Applying Lemma 16.4@) to (u, o)
gives [F, N Q,, V5] = Z,. Since V,; < Gyy3, we then obtain

Zg = [F;thmVa] < [H9£+37V()'] SHoc+3-

By Lemma 16.1G) H,,3 < Qg and thus Z, = Z,Z, < Qp, contrary to
(p, p) € C (Lemma 16.5). Therefore we must have [F,, Vo N Q,3] # 1 and
recourse to Lemma 16.1(ii) gives [F,, V, N Q,43] = Z,43. Since I, < G, by
Lemma 16.1(1), this gives Z,,3 <V,. Clearly, as F, < U, and b > 5,
F,NQy centralizes Z,,3 and therefore Z,.3 <V, NV, =7, by the core
argument. Because Z, £ Qg and Z,, £ Qy it follows that Z,,3 = Z,,. But
then Z,, <V which is ruled out by Lemma 16.4(i). Hence we deduce that
V; < Q3. As a consequence of this Lemma 15.2 implies that (« + 2,0) € C
and so [Z,42, V] < Z,. Inviewof Z, =Z,Z,,Z, < Qg and (p, p) € C, we
have [Z,.2,V,] = 1. Consequently V, < Cq. ,(Z,.2) = Q2. Similarly we
obtain V; < Q.2 and thus

16.6.1) U, < Gy.
Since [V N Qy,Vyl=1and F, NQy £ Q,,
[Vﬁ N Qx’a U/)} = [V/f N Q%’a VU] [Vv/)’ N Qoﬁ Vr]
:[Vﬁ NQy, Vﬂ] < V/; nvV,.

42

The core argument and Lemma 16.5 give
[Vﬁ NQy, Up] <V ﬂZp =Zy.

Now Z, £Vp by Lemma 16.4(G1) forces [VyN@Q.,U,] =1. Hence,
by (16.6.1), |U,Qp/Qp] < 2. So

16.6.2) [U,:U,NQ,| <2°.
Observe that
F.NQ,,U,NQy <Z,NU,<Z,NQy = Zy.

Therefore for f € F, NQu, |[f,U,]| < 23 by (16.6.2). Since F, N Qy £ Q),
we conclude that n(G,, U,) < 3.

Together Lemmas 15.1 and 16.6 are responsible for the demise of Case
3, and so Theorem 14.1 is proven.
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