(S_3, S_6) -Amalgams VI.

Wolfgang Lempken(*) - Christopher Parker(**) - Peter Rowley(***)

Introduction.

In this, the penultimate part of [LPR1], we analyse Case 3 (as described in [Section 12; [LPR1]). Our main result, Theorem 14.1, asserts that Case 3 does not occur. Since $\operatorname{core}_{G_n}V_{\beta}$ is so small, the core argument is, at times, especially deadly. Consequently we often end up in situations, where the subgroups we are interested in have trivial action on all the non-central G_{δ} -chief factors in Q_{δ} for many vertices $\delta \in O(S_3)$. This is especially unfortunate since, as Lemma 15.1 shows, U_{δ} (for $\delta \in O(S_3)$) possesses at least four non-central G_{δ} -chief factors. In fact the proof of Theorem 14.1 hinges upon overcoming just this type of situation. A significant step in dealing with this problem is made in Lemmas 16.3 and 16.4. It follows from these lemmas that there exists a critical pair (α, α') and $\rho \in \Delta(\alpha') \setminus \{\alpha' - 1\}$ for which $F_{\alpha} \cap Q_{\alpha'} \not\leq Q_{\rho}$. The group F_{γ} and its accomplice H_{δ} (where $\gamma \in O(S_3)$ and $\delta \in O(S_6)$) are defined in Section 14. These groups are "small" enough so as they fix many vertices yet are "large" from the point of view of the non-central chief factors they contain. Before the groups F_{γ} and H_{δ} can be successfully deployed we need to restrict the structure of the critical pairs in Γ . This we do in Section 15. Section 14, apart from defining F_{γ} and H_{β} , is concerned with eliminating the possibility b = 3.

Finally, as before we continue the section numbering in [LPR1] and note that this paper only refers to results and notation contained in sections 1, 2 and 12.

^(*) Indirizzo dell'A.: Institute for Experimental Mathematics, University of Essen, Ellernstrasse 29, Essen, Germany.

^(**) Indirizzo dell'A.: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

^(***) Indirizzo dell'A.: School of Mathematics, University of Manchester, Alan Turing Building, Manchester M13 9PL, United Kingdom.

14. b = 3 and the groups $T_{\delta \gamma}$.

Throughout this paper the following hypothesis is assumed to hold.

Hypothesis 14.0. (i) For each $(\alpha, \alpha') \in \mathcal{C}$ we have $\alpha \in O(S_3)$ and $[Z_{\alpha}, Z_{\alpha'}] = 1$; and

(ii)
$$\operatorname{core}_{G_{\alpha}}V_{\beta}=V_{\beta}\cap V_{\alpha-1}=Z_{\alpha}.$$

Our objective is to show that

Theorem 14.1. Hypothesis 14.0 cannot hold.

Before tackling the case b=3 we give some notation and define the groups $T_{\delta \gamma}$.

For $\delta \in O(S_6)$ we set

$$L_\delta:=O^2ig(G_\deltaig),$$
 $Y_\delta:=C_{V_\delta}ig(L_\deltaig)$ and $C_\delta:=C_{O_\delta}ig(V_\deltaig).$

We recall from Theorem 12.1 that for $\delta \in O(S_6)$, $\eta(G_\delta, V_\delta) = 1$ and V_δ/Z_δ is a quotient of $\binom{4}{1} \oplus 1$. Let $\gamma \in \Delta(\delta)$. If $V_\delta/Z_\delta \cong 4$, then we define

$$T_{\delta\gamma}:=ig[V_\delta,Q_\gamma,Q_\gammaig];$$

otherwise we define $T_{\delta\gamma}$ to be a normal fours subgroup of $G_{\delta\gamma}$ with

$$Z_{\delta} < T_{\delta \gamma} \leq Y_{\delta}$$
.

Next we describe two groups which play a crucial role later in this section and in Section 16.

$$F_{\scriptscriptstyle \gamma} := \Braket{T_{\delta_{\scriptscriptstyle \gamma}}^{G_{\scriptscriptstyle \gamma}}}$$

$$H_\delta := \Braket{F_\gamma^{G_\delta}}$$

The groups F_{γ} and H_{δ} are similar to the F_{α} and H_{β} defined in Section 12. (Indeed if $|Y_{\delta}|=2^2$, then they are the same.) We will need a result analogous to Lemma 12.5.

LEMMA 14.2. Let $(\alpha, \alpha') \in \mathcal{C}$. Then

- (i) $\eta(G_{\alpha}, F_{\alpha}) = 2$ with $Z_{\alpha} = [F_{\alpha}, Q_{\alpha}]$ and $|F_{\alpha}/Z_{\alpha}| \in \{2^2, 2^3\}$; and
- (ii) $V_{\beta} \leq V_{\beta} F_{\alpha} \leq H_{\beta}$ and $\eta(G_{\beta}, H_{\beta}/V_{\beta}) \geq 1$.

PROOF. First we observe that if $V_{\beta}/Z_{\beta}\cong 4$, then $Z_{\alpha}\leq T_{\beta\alpha}$. While, if $V_{\beta}/Z_{\beta}\ncong 4$, then $Z_{\alpha}\cap T_{\beta\alpha}=Z_{\beta}$ by Lemma 1.1(ii). Hence $T_{\beta\alpha}Z_{\alpha}\cong E(2^3)$ in either case. Since $\Omega_1(Z(Q_{\alpha}))=Z_{\alpha}$ by Lemma 12.2(i) and $V_{\beta}\leq Q_{\alpha}$, $1\neq [T_{\beta\alpha},Q_{\alpha}]\leq Z_{\alpha}$ and hence $[F_{\alpha},Q_{\alpha}]=Z_{\alpha}$. Because $Z_{\alpha}=\mathrm{core}_{G_{\alpha}}V_{\beta}$ we clearly have $F_{\alpha}\ngeq T_{\beta\alpha}Z_{\alpha}$ and now (i) follows.

Since $[V_{\beta},Q_{\beta}]=Z_{\beta}$, (i) implies that $V_{\beta} \not \geq V_{\beta}F_{\alpha} \leq H_{\beta}$. Also, from (i) and Lemma 12.2(ii), $2^2 \leq |[F_{\alpha},Q_{\beta}]| \leq 2^3$. Now suppose that $\eta(G_{\beta},H_{\beta}/V_{\beta})=0$. Then $H_{\beta}=V_{\beta}F_{\alpha}$. Hence $K_{\beta}:=[H_{\beta},Q_{\beta}]=[V_{\beta},Q_{\beta}][F_{\alpha},Q_{\beta}]=[F_{\alpha},Q_{\beta}] \stackrel{d}{\leq} G_{\beta}$. Since $|K_{\beta}| \leq 2^3$, $[K_{\beta},L_{\beta}]=1$ and so $Z_{\alpha} \cap K_{\beta}=Z_{\beta}$. Therefore $[F_{\alpha},Q_{\alpha} \cap Q_{\beta}] \leq |[F_{\alpha},Q_{\alpha}] \cap K_{\beta}=Z_{\alpha} \cap K_{\beta}=Z_{\beta}$. Hence

$$[H_{\beta},Q_{\alpha}\cap Q_{\beta}]=[V_{\beta},Q_{\alpha}\cap Q_{\beta}][F_{\alpha},Q_{\alpha}\cap Q_{\beta}]\leq Z_{\beta}$$

and so $Q_{\alpha} \cap Q_{\beta} \leq C_{Q_{\beta}}(H_{\beta}/Z_{\beta})$. Since $|K_{\beta}| \geq 2^2$, we deduce that $Q_{\alpha} \cap Q_{\beta} = C_{Q_{\beta}}(H_{\beta}/Z_{\beta}) \stackrel{d}{=} G_{\beta}$, contradicting Lemma 12.4(i). This proves (ii).

And now to the main business of this section.

Theorem 14.3. b > 5.

We suppose the theorem is false and, in the following lemmas, seek a contradiction. So, by Lemma 11.1(iii), b = 3.

For $(\alpha, \alpha') \in \mathcal{C}$ we label vertices as indicated.

So $\Delta(\beta') = \{\beta, \gamma, \alpha'\}.$

Lemma 14.4. Let $(\alpha, \alpha') \in C$.

- (i) $V_{\beta}/Z_{\beta} \cong 4 \ or \ {4 \choose 1}$.
- (ii) $R := [V_{\beta}, V_{\alpha'}] = Z_{\gamma}$.
- (iii) There exists $\rho \in \Delta(\alpha') \setminus \{\beta'\}$ such that $(\rho, \beta) \in \mathcal{C}$.

(iv) $Z_{\alpha}Q_{\alpha'}/Q_{\alpha'} = V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ is the central transvection of $G_{\beta'\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$ and $Z_{\rho}Q_{\beta}/Q_{\beta} = V_{\alpha'}Q_{\beta}/Q_{\beta}$ is the central transvection of $G_{\beta\beta'}/Q_{\beta}$ on V_{β}/Z_{β} .

(v)
$$C_{V_{\beta}}(V_{\alpha'}) = [V_{\beta}, Q_{\beta'}] = V_{\beta} \cap Q_{\alpha'} \leq V_{\beta} \text{ and}$$

 $C_{V_{\alpha'}}(V_{\beta}) = [V_{\alpha'}, Q_{\beta'}] = V_{\alpha'} \cap Q_{\beta} \leq V_{\alpha'}.$

(vi) There exists $\delta \in \Delta(\beta)$ such that $(\delta, \alpha') \in C$ and

$$\langle G_{\delta\beta}, V_{\alpha'} \rangle = G_{\beta}.$$

PROOF. First we note that

$$1
eq \left[Z_{lpha}, V_{lpha'}
ight] \leq R := \left[V_{eta}, V_{lpha'}
ight] \leq V_{eta} \cap V_{lpha'} = Z_{eta'}.$$

Since R is $G_{\beta'\gamma}$ -invariant, $Z_{\gamma} \leq R$ whence $V_{\alpha'} \not\leq Q_{\beta}$ and so there exists $\rho \in \varDelta(\alpha') \setminus \{\beta'\}$ such that $(\rho,\beta) \in \mathcal{C}$. Also we have $Z_{\beta'} = Z_{\beta}R \leq [V_{\beta},G_{\beta}]$ and therefore $V_{\beta} = [V_{\beta},G_{\beta}]$. So (i) holds. Further, $RY_{\alpha'}/Y_{\alpha'} = Z_{\beta'}Y_{\alpha'}/Y_{\alpha'} = C_{V_{\alpha'}/Y_{\alpha'}}(G_{\beta'\alpha'})$ together with Proposition 2.5(iii) yields that $Z_{\alpha}Q_{\alpha'}/Q_{\alpha'} = V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ is the central transvection of $G_{\beta'\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$ proving the first part of (iv). The second part of (iv) follows similarly.

Because $Q_{\beta'}Q_{\beta}=G_{\beta\beta'}$ and $V_{\beta}\cap Q_{\alpha'}$ is $Q_{\beta'}$ -invariant with, by (iv), $Z_{\beta}\leq V_{\beta}\cap Q_{\alpha'} \leq V_{\beta}$ we infer that $V_{\beta}\cap Q_{\alpha'}=[V_{\beta},G_{\beta\beta'}]$. Then, by (iv), $[V_{\beta}\cap Q_{\alpha'},V_{\alpha'}]\leq Z_{\beta}\cap Z_{\alpha'}=1$ and thus $C_{V_{\beta}}(V_{\alpha'})=V_{\beta}\cap Q_{\alpha'}=[V_{\beta},Q_{\beta'}]$ with a symmetric statement with β and α' interchanged, so we have (v). From (v) $V_{\alpha'}$ acts upon V_{β} as an involution and a transvection and so |R|=2. Thus $R=Z_{\gamma}$.

Since $V_{\alpha'} \not\leq Q_{\beta}$, by Proposition 2.8(viii) we may choose $\delta \in \Delta(\beta)$ such that $\langle G_{\delta\beta}, V_{\alpha'} \rangle = G_{\beta}$. If $Z_{\delta} \leq Q_{\alpha'}$, then $Z_{\delta} \leq V_{\beta} \cap Q_{\alpha'}$ and so $[Z_{\delta}, V_{\alpha'}] = 1$ by (iv). But then $Z_{\delta} \unlhd G_{\beta}$, a contradiction. Hence $(\delta, \alpha') \in \mathcal{C}$, as required.

In view of Lemma 14.4(vi) we may, and shall, assume that (α, α') is a fixed critical pair for which $\langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$. Also we set $J_{\beta} = \langle [U_{\alpha}, Q_{\alpha}]^{G_{\beta}} \rangle$.

LEMMA 14.5.

- (i) $[U_{\alpha}, Q_{\alpha}] \leq Z(U_{\alpha})$.
- (ii) $V_{\beta} \leq H_{\beta} \leq J_{\beta} \leq C_{\beta} \leq G_{\alpha'}$ and $H_{\alpha'} \leq C_{\alpha'} \leq G_{\beta}$.
- (iii) $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] = Z_{\beta}$.

PROOF. From Lemma 14.4(v) $V_{\beta} \cap Q_{\alpha'} = [V_{\beta}, Q_{\beta'}] = C_{V_{\beta}}(V_{\alpha'})$, and $Q_{\beta} \not\leq Q_{\beta'}$ by Lemma 12.2(ii). Therefore, since $[V_{\beta}, Q_{\beta'}]$ is Q_{β} -invariant we get $V_{\beta} \cap Q_{\alpha'} = C_{V_{\beta}}(V_{\gamma})$ and thus $V_{\beta} \cap Q_{\alpha'} \leq Z(U_{\beta'})$. This in turn

implies that

$$Z(U_{eta'}) \ge \langle \left[V_{eta}, Q_{eta'}\right]^{G_{eta'}} \rangle = \left[U_{eta'}, Q_{eta'}\right],$$

from which (i) follows.

Appealing to Lemma 14.4(i) and Proposition 2.5(i) gives $T_{\beta\alpha} \leq [V_{\beta},Q_{\alpha}]$ and hence $F_{\alpha} \leq [U_{\alpha},Q_{\alpha}]$. Consequently $H_{\beta} = \langle F_{\alpha}{}^{G_{\beta}} \rangle \leq \langle [U_{\alpha},Q_{\alpha}]^{G_{\beta}} \rangle = J_{\beta}$. By part (i) $[U_{\alpha},Q_{\alpha}] \leq C_{\beta}$ whence $J_{\beta} \leq C_{\beta}$. Evidently $C_{\beta} \leq Q_{\beta'} \leq G_{\alpha'}$ and it is also clear that we have $H_{\alpha'} \leq C_{\alpha'} \leq G_{\beta}$.

Now we prove (iii). By Lemma 14.4(v) $V_{\alpha'} \cap Q_{\beta}$ centralizes V_{β} and so $V_{\alpha'} \cap Q_{\beta} \leq Q_{\alpha}$. Hence $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq [F_{\alpha}, Q_{\alpha}] = Z_{\alpha}$ by Lemma 14.2(i). Since $F_{\alpha} \leq G_{\alpha'}$ by (ii), we then get $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq Z_{\alpha} \cap V_{\alpha'} = Z_{\beta}$. If $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] = 1$, then F_{α} centralizes a hyperplane of $V_{\alpha'}$ and so $F_{\alpha}Q_{\alpha'} = Z_{\alpha}Q_{\alpha'} = V_{\beta}Q_{\alpha'}$. Hence, using Lemma 14.4(ii),

$$ig[F_lpha,V_{lpha'}ig] \leq Z_{lpha'}ig[V_eta,V_{lpha'}ig] = Z_{lpha'}Z_\gamma = Z_{eta'} \leq V_eta.$$

But then $V_{\beta}F_{\alpha}$ is normalized by $\langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$ by the choice of the critical pair, against Lemma 14.2(ii). This shows that $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] = Z_{\beta}$.

Lemma 14.6. $V_{\beta}/Z_{\beta}\cong 4$. In particular, $T_{\beta\alpha}=[V_{\beta},Q_{\alpha},Q_{\alpha}]$ and $F_{\alpha}=[U_{\alpha},Q_{\alpha},Q_{\alpha}]$.

PROOF. Assume that $V_{\beta}/Z_{\beta}\cong \binom{4}{1}$, and set $\varDelta(\alpha)=\{\lambda,\mu,\beta\}$. Then by definition $T_{\beta\alpha}=Y_{\beta}\cong E(2^2)$ and $F_{\alpha}=\langle Y_{\lambda},Y_{\mu},Y_{\beta}\rangle$. Put $X=V_{\alpha'}\cap Q_{\beta}$. By Lemma 14.4(v) X centralizes V_{β} and so $X\leq Q_{\alpha}\leq G_{\lambda}$. Therefore $[X,Y_{\lambda}]\leq Z_{\lambda}$. Since $[X,F_{\alpha}]=Z_{\beta}$ by Lemma 14.5(iii), $[X,Y_{\lambda}]\leq Z_{\lambda}\cap Z_{\beta}=1$. Likewise $[X,Y_{\mu}]=1$ and thus $[X,F_{\alpha}]=1$, contrary to $[X,F_{\alpha}]=Z_{\beta}$. Hence $V_{\beta}/Z_{\beta}\ncong \binom{4}{1}$ and now the lemma follows from Lemma 14.4(i) and the definition of $T_{\beta\alpha}$ and F_{α} .

LEMMA 14.7. Put $\bar{G}_{lpha'}=G_{lpha'}/Q_{lpha'}$. Then

- (i) $[J_{\beta}, J_{\beta}] \leq Z_{\beta}$; and
- (ii) $\bar{J}_{\beta} = \bar{C}_{\beta}$ is the non-quadratic $E(2^3)$ -subgroup of $\bar{G}_{\beta'\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$.

PROOF. Put $\Delta(\alpha) = \{\lambda, \mu, \beta\}$, $\bar{G}_{\alpha'} = G_{\alpha'}/Q_{\alpha'}$ and $X = V_{\alpha'} \cap Q_{\beta}$. From Lemma 14.5(iii) $[F_{\alpha}, X] = Z_{\beta}$. Now $T_{\beta\alpha} \leq V_{\beta}$ and $[V_{\beta}, X] = 1$ means we can assume, without loss of generality, that

$$(14.7.1) \quad [T_{\lambda\alpha}, X] = Z_{\beta} \neq Z_{\lambda}.$$

From this and Lemma 14.6 we immediately deduce

(14.7.2) $X \not\leq Q_{\lambda}$ and X does not centralize $T_{\lambda\alpha}/Z_{\lambda} = [V_{\lambda},Q_{\alpha},Q_{\alpha}]/Z_{\lambda}$; in particular, XQ_{λ}/Q_{λ} is not contained in the $E(2^3)$ -subgroup of $G_{\lambda\alpha}/Q_{\lambda}$ acting quadratically on V_{λ}/Z_{λ} .

By Lemmas 14.4(v) and 14.5(ii) we have $J_{\beta} \leq C_{\beta} \leq Q_{\alpha} \leq G_{\lambda}$ and $J_{\beta} \geq [U_{\beta'},Q_{\beta'}] \geq [V_{\alpha'},Q_{\beta'}] = X$. Combining these observations with (14.7.2) and Lemma 11.1(vii) yields

(14.7.3) \bar{J}_{β} is not contained in the $E(2^3)$ -subgroup of $\bar{G}_{\beta'\alpha'}$ acting quadratically on $V_{\alpha'}/Z_{\alpha'}$.

Since $G_{\beta'\alpha'}$ is a 2-group, $\overline{\varPhi(C_\beta)} = \varPhi(\overline{C}_\beta) \leq \varPhi(\overline{G}_{\beta'\alpha'})$. By Lemma 14.4(v) $\varPhi(\overline{G}_{\beta'\alpha'}) \cap \overline{V}_\beta = 1$ and so $\varPhi(C_\beta) \cap V_\beta \leq Q_{\alpha'}$. Because V_β/Z_β is a G_β -chief factor we deduce that

$$(14.7.4) \quad \Phi(C_{\beta}) \cap V_{\beta} \leq Z_{\beta}$$

Clearly $\Phi(C_{\beta}) \cap \Phi(C_{\alpha'})$ is normalized by $G_{\beta'\gamma}$. If $\Phi(C_{\beta}) \cap \Phi(C_{\alpha'}) \neq 1$, then $\Phi(C_{\beta}) \cap \Phi(C_{\alpha'}) \geq \Omega_1(Z(G_{\beta'\gamma})) = Z_{\gamma}$ and hence $Z_{\gamma} \leq \Phi(C_{\beta}) \cap V_{\beta}$ which contradicts (14.7.4). Therefore we have

$$(14.7.5) \quad [\Phi(C_{\beta}), \Phi(C_{\alpha'})] = \Phi(C_{\beta}) \cap \Phi(C_{\alpha'}) = 1.$$

Next, we assume that $\eta(G_{\beta}, \Phi(C_{\beta})) \neq 0$. Then $\eta(G_{\alpha'}, \Phi(C_{\alpha'})) \geq 1$ and thus $\Phi(C_{\beta}) \leq Q_{\alpha'}$ by (14.7.5). Hence $[\Phi(C_{\beta}), V_{\alpha'}] \leq Z_{\alpha'}$. Since $V_{\alpha'} \not\leq Q_{\beta}$ by Lemma 14.4(iii), we then get $[\Phi(C_{\beta}), V_{\alpha'}] = Z_{\alpha'}$ whence $Z_{\alpha'} \leq \Phi(C_{\beta}) \cap V_{\beta}$, again contradicting (14.7.4). So we have shown that

$$(14.7.6) \quad \eta(G_{\beta}, \Phi(C_{\beta})) = 0.$$

Now we suppose that $\Phi(C_{\beta}) \not\leq Q_{\alpha'}$. Then $\overline{\Phi(C_{\beta})} = Z(\overline{G}_{\beta'\alpha'}) \cap O^2(\overline{G}_{\alpha'}) \cong E(2)$. Thus

$$Z_{lpha'}igl[arPhiigl(C_etaigr),V_{lpha'}igr]=igl[V_{lpha'},Q_{eta'},Q_{eta'}igr].$$

Clearly, $K_{\beta} := \Phi(C_{\beta})V_{\beta} \unlhd G_{\beta}$ with, by (14.7.6), $\eta(G_{\beta}, K_{\beta}/V_{\beta}) = 0$. Therefore $V_{\beta}[\Phi(C_{\beta}), V_{\alpha'}] = V_{\beta}[V_{\alpha'}, Q_{\beta'}, Q_{\beta'}]$ is normalized by L_{β} and hence by $Q := [L_{\beta}, Q_{\beta}]$. Appealing to Lemma 12.4(i) we conclude that

$$egin{aligned} V_etaig[V_{lpha'},Q_{eta'},Q_{eta'}ig] = &V_etaig[V_\gamma,Q_{eta'},Q_{eta'}ig] = V_etaig[U_{eta'},Q_{eta'},Q_{eta'}ig] \ = &V_eta F_{eta'} riangleq \langle L_eta,G_{etaeta'}
angle = G_eta. \end{aligned}$$

Thus $H_{\beta}=V_{\beta}F_{\beta'}=V_{\beta}F_{\alpha}$ which is impossible by Lemma 14.2(ii), and so (14.7.7) $\Phi(C_{\beta})\leq Q_{\alpha'}$.

Now part (ii) is a direct consequence of Lemma 14.5(ii), (14.7.3), (14.7.7) and the fact that \bar{J}_{β} and \bar{C}_{β} are normal subgroups of $\bar{Q}_{\beta'} = \bar{G}_{\beta'\alpha'}$ containing the central transvection \bar{Z}_{α} .

From part (ii) we infer that $[J_{\beta},[V_{\alpha'},Q_{\beta'}]] \leq Z_{\beta'}$ and hence $[J_{\beta},[U_{\beta'},Q_{\beta'}]] \leq Z_{\beta'}$. Since $J_{\beta}=\langle [U_{\beta'},Q_{\beta'}]^{G_{\beta}}\rangle$, we then obtain

$$ig[J_eta,J_etaig]=ig\langleig[J_eta,ig[U_{eta'}Q_{eta'}ig]ig]^{G_eta}ig
angle\leqig\langle {Z_{eta'}}^{G_eta}ig
angle=V_eta.$$

Noting that $[J_{\beta}, J_{\beta}] \leq [C_{\beta}, C_{\beta}] \leq \Phi(C_{\beta})$ an application of (14.7.4) yields that $[J_{\beta}, J_{\beta}] \leq Z_{\beta}$, so completing the proof of the lemma.

Lemma 14.8. Put $V_{\beta}^* = V_{\beta}[H_{\beta}, Q_{\beta}]$. Then the following statements hold:

(i) $\eta(G_{\beta}, C_{\beta}/V_{\beta}) = \eta(G_{\beta}, H_{\beta}/V_{\beta}) = 1$ and the only non-central G_{β} -chief factor within C_{β}/V_{β} is not isomorphic to V_{β}/Z_{β} , as a G_{β}/Q_{β} -module;

(ii)
$$J_{\beta}=H_{\beta}=[H_{\beta},G_{\beta}]$$
 and $H_{\beta}/{V_{\beta}}^{*}\cong 4$ or $\binom{4}{1}$; and

(iii) $V_{\beta}^* = V_{\beta}[F_{\beta'}, Q_{\beta}]$ and $V_{\beta}^* \cap C_{\alpha'} = [V_{\beta}, Q_{\beta'}][F_{\beta'}, Q_{\beta}]$ with $[V_{\beta}^* : V_{\beta}] \le 2$ and $[V_{\beta}^* : V_{\beta}^* \cap C_{\alpha'}] = 2$.

PROOF. Because $C_{\alpha'} \leq G_{\beta}$

$$ig[C_{lpha'},J_eta,J_etaig] \leq ig[J_eta,J_etaig] \leq Z_eta \leq V_{lpha'},$$

by Lemma 14.7(i). Therefore

(14.8.1) J_{β} acts quadratically on $C_{\alpha'}/V_{\alpha'}$ and so (by Lemma 14.7(ii)) the non-central $G_{\alpha'}$ -chief factors within $C_{\alpha'}/V_{\alpha'}$ are not isomorphic to $V_{\alpha'}/Z_{\alpha'}$ as $G_{\alpha'}/Q_{\alpha'}$ -modules.

Using Lemma 14.7(ii) we see that

$$E(2^3) \lesssim [C_{eta}, V_{lpha'}] \leq [V_{lpha'}, Q_{eta'}] = V_{lpha'} \cap Q_{eta} \cong E(2^4).$$

Now $E(2^2) \cong Z_{\beta'} \leq V_{\alpha'} \cap Q_{\beta}$ and so $|[C_{\beta}/V_{\beta}, V_{\alpha'}]| \leq 2^2$. Then Lemmas 14.2(ii), 14.4(iv) and (14.8.1) force

(14.8.2)
$$\eta(G_{\beta}, C_{\beta}/V_{\beta}) = 1.$$

Now set $H_{\beta}^* = [H_{\beta}, G_{\beta}]$, and note that $\eta(G_{\beta}, H_{\beta}^*) = 2$ and $H_{\beta}^* \geq V_{\beta}$. Also, by (14.8.1), $|[H_{\beta}^*/V_{\beta}, V_{\alpha'}]| = 2^2$ and thus $[V_{\alpha'}, Q_{\beta'}] = V_{\alpha'} \cap Q_{\beta} \leq H_{\beta}^*$. Employing Lemma 11.1(vii) gives $H_{\beta}^* \geq [U_{\beta'}, Q_{\beta'}]$. Since $J_{\beta} = \langle [U_{\beta'}, Q_{\beta'}]^{G_{\beta}} \rangle \geq H_{\beta} \geq H_{\beta}^*$ we obtain

$$(14.8.3) \quad J_{\beta} = H_{\beta} = [H_{\beta}, G_{\beta}].$$

If $\eta(G_{\beta},V_{\beta}^*/V_{\beta}) \neq 0$, then $\eta(G_{\beta},H_{\beta}/V_{\beta}^*)=0$ and so $H_{\beta}=V_{\beta}[H_{\beta},Q_{\beta}]F_{\alpha}$ which, commutating sufficiently often with Q_{β} , forces the untenable $H_{\beta}=V_{\beta}F_{\alpha}$. Thus $\eta(G_{\beta},V_{\beta}^*)=\eta(G_{\beta},V_{\beta})=\eta(G_{\beta},H_{\beta}/V_{\beta}^*)=1$. Now $[F_{\alpha}:(F_{\alpha}\cap V_{\beta})[F_{\alpha},Q_{\beta}]]\leq 2$ means that we have $|F_{\alpha}V_{\beta}^*/V_{\beta}^*|=2$ with $H_{\beta}/V_{\beta}^*=\langle (F_{\alpha}V_{\beta}^*/V_{\beta}^*)^{G_{\beta}}\rangle$. Since $H_{\beta}=[H_{\beta},G_{\beta}]$ and $\eta(G_{\beta},H_{\beta}/V_{\beta}^*)=1$ we easily see that $H_{\beta}/V_{\beta}^*\cong 4$ or $\binom{4}{1}$.

From $\eta(G_{\beta}, V_{\beta}^*/V_{\beta}) = 0$, we clearly have $V_{\beta}^* = V_{\beta}[F_{\alpha}, Q_{\beta}] = V_{\beta}[F_{\beta'}, Q_{\beta}]$ with $[V_{\beta}^* : V_{\beta}] \leq 2$,

$${V_{eta}}^* \cap {C_{lpha'}} = ig(V_{eta} \cap {C_{lpha'}}ig)ig[{F_{eta'}}, Q_{eta}ig] = ig[{V_{eta}}, Q_{eta'}ig]ig[{F_{eta'}}, Q_{eta}ig]$$

and $[V_{\beta}^*:V_{\beta}^*\cap C_{\alpha'}]=2$. This completes the proof of the lemma.

We are now in a position to complete the proof of Theorem 14.3. Using Lemma 14.6 we see that

$$(14.3.1) \quad Q_{\beta}/C_{\beta} \cong (V_{\beta}/Z_{\beta})^* \cong V_{\beta}/Z_{\beta}.$$

So we have $(Q_{\beta'} \cap Q_{\alpha'})/C_{\alpha'} \cong E(2^3)$. Since, by Lemmas 14.7(ii) and 14.8(ii), $H_{\beta}Q_{\alpha'}/Q_{\alpha'}$ is the non-quadratic $E(2^3)$ -subgroup of $G_{\beta'\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$, (14.3.1) implies

 $(14.3.2) \ [(Q_{\beta'}\cap Q_{\alpha'})/C_{\alpha'}, H_{\beta}] \cong E(2); \text{in particular} \ [H_{\beta}\cap Q_{\alpha'}: H_{\beta}\cap C_{\alpha'}] \geq 2$ and therefore $[H_{\beta}: H_{\beta}\cap C_{\alpha'}] \geq 2^4$.

We now observe from Lemma 14.8(iii) that $V_{\beta}^* \cap H_{\alpha'} = V_{\beta}^* \cap C_{\alpha'}$ with $[V_{\beta}^* : V_{\beta}^* \cap H_{\alpha'}] = 2$. Combining Lemmas 14.4(iii), (vi), 14.7(ii) and 14.8(ii) with Proposition 2.5(ii) gives

$$\left[H_{eta}/{V_{eta}}^*:\left[H_{eta}/{V_{eta}}^*,H_{lpha'}
ight]
ight]=2^2,$$

and consequently

$$\left[H_{\beta}:H_{\beta}\cap H_{\alpha'}\right]\leq \left[H_{\beta}:\left[H_{\beta},H_{\alpha'}\right]\left(V_{\beta}^*\cap H_{\alpha'}\right)\right]\leq 2^3.$$

Since $H_{\beta} \cap H_{\alpha'} \leq H_{\beta} \cap C_{\alpha'}$, this clearly contradicts (14.3.2), so proving Theorem 14.3.

15. The structure of critical pairs.

The main result in this section is Theorem 15.7.

From Theorem 14.3 we have $b \ge 5$, and so U_{α} is elementary abelian. Our first result shows that there is an abundance of non-central chief factors in U_{α} .

LEMMA 15.1. Let $(\alpha, \alpha') \in C$.

- (i) $\eta(G_{\alpha}, U_{\alpha}) \geq 4$.
- (ii) If $\eta(G_{\alpha},U_{\alpha})=4$, then $[U_{\alpha},Q_{\alpha};3]=[V_{\beta},Q_{\alpha};3]=Z_{\alpha}$ and $V_{\beta}/Z_{\beta}\cong 4$ or $\binom{4}{1}$.

PROOF. Put $V_{\beta}^{(i)} = [V_{\beta}, Q_{\alpha}; i]$ and $U_{\alpha}^{(i)} = [U_{\alpha}, Q_{\alpha}; i]$ for $i \in \mathbb{N} \cup \{0\}$; let $n \in \mathbb{N}$ be such that $V_{\beta}^{(n)} \neq 1$ and $V_{\beta}^{(n+1)} = 1$. By Lemma 12.2(i) $\Omega_1(Z(Q_{\alpha})) = Z_{\alpha}$ and since $V_{\beta}^{(n)}$ is a $G_{\alpha\beta}$ -invariant subgroup of $\Omega_1(Z(Q_{\alpha}))$, Theorem 12.1 and Proposition 2.5(i) imply

(15.1.1)
$$n \ge 3$$
 and $Z_{\beta} \le V_{\beta}^{(n)} \le Z_{\alpha} = U_{\alpha}^{(n)}$.

Now suppose that $\eta(G_{\alpha},U_{\alpha}{}^{(j)}/U_{\alpha}{}^{(j+1)})=0$ for some $j\in\{0,1,\ldots,n-1\}$. Then $U_{\alpha}{}^{(j)}=U_{\alpha}{}^{(j+1)}V_{\beta}{}^{(j)}$ and hence $U_{\alpha}{}^{(j+1)}=U_{\alpha}{}^{(j+2)}V_{\beta}{}^{(j+1)}$. So $U_{\alpha}{}^{(j)}=U_{\alpha}{}^{(j)}=U_{\alpha}{}^{(j+2)}V_{\beta}{}^{(j)}$ and consequently $U_{\alpha}{}^{(j)}=V_{\beta}{}^{(j)}\leq \mathrm{core}_{G_{\alpha}}V_{\beta}=Z_{\alpha}$. This implies $U_{\alpha}{}^{(n-1)}\leq Z_{\alpha}$ whence $U_{\alpha}{}^{(n)}=1$, a contradiction. Thus we have

$$(15.1.2) \quad \eta(G_{\alpha}, U_{\alpha}^{(j)}/U_{\alpha}^{(j+1)}) \ge 1 \text{ for } j \in \{0, 1, \dots, n-1\}.$$

Clearly (15.1.1) and (15.1.2) give (i). Now assume that $\eta(G_{\alpha}, U_{\alpha}) = 4$. Then, by (15.1.1) and (15.1.2), $Z_{\beta} \leq V_{\beta}^{(3)} \leq U_{\alpha}^{(3)} = Z_{\alpha}$. Since $V_{\beta}^{(3)} \not\leq Z_{\beta}$, $V_{\beta}^{(3)} = U_{\alpha}^{(3)} = Z_{\alpha}$ which establishes (ii).

Lemma 15.2. For
$$(\alpha, \alpha') \in \mathcal{C}$$
, $V_{\alpha'} \not\leq G_{\alpha}$; in particular $V_{\alpha'} \not\leq Q_{\beta}$.

PROOF. Let $(\alpha, \alpha') \in \mathcal{C}$, put $\Delta(\alpha) = \{\lambda, \mu, \beta\}$ and assume by way of contradiction that $V_{\alpha'} \leq G_{\alpha}$. Since $Z_{\alpha} \leq G_{\alpha'}$ and $Z_{\alpha} \not\leq Q_{\alpha'}$, we have

$$(15.2.1) \quad V_{\alpha'} \leq G_{\alpha\beta} \text{ with } [Z_{\alpha},V_{\alpha'}] = Z_{\beta} \neq Z_{\alpha'}.$$

Note that there exists $\rho \in \Delta(\alpha')$ such that $Z_{\rho} \not\leq Q_{\alpha}$; moreover Z_{ρ} acts as an involution on U_{α} .

$$(15.2.2) \quad U_{\alpha} \not \leq G_{\alpha'}; \text{ in particular } U_{\alpha} \not \leq Q_{\alpha'-1}.$$

Suppose that $U_{\alpha} \leq G_{\alpha'}$ holds. Then, since U_{α} is abelian and $V_{\alpha'} \leq G_{\alpha}$, U_{α} acts quadratically on $V_{\alpha'}$. Since $\eta(G_{\alpha},U_{\alpha}) \geq 4$ by Lemma 15.1(i) and $[U_{\alpha} \cap Q_{\alpha'}: U_{\alpha} \cap Q_{\alpha'} \cap Q_{\rho}] \leq 2$, we see that $U_{\alpha}Q_{\alpha'}/Q_{\alpha'} \cong E(2^3)$ with $\eta(G_{\alpha},U_{\alpha})=4$. Also, from $|[U_{\alpha},V_{\alpha'}]| \geq 2^4$, Lemma 15.1(ii) and Proposition 2.5(ii) force $V_{\alpha'}/Z_{\alpha'}\cong \binom{4}{1}$ with $[U_{\alpha},V_{\alpha'}]\cong E(2^4)$.

Since Z_{ρ} interchanges λ and μ , Z_{ρ} normalizes $V := V_{\lambda}V_{\mu}$. Since $V_{\lambda} \cap V_{\mu} = Z_{\alpha}$ and $V_{\alpha'} \cong E(2^{6})$, $\bar{V} := V/Z_{\alpha} = \bar{V}_{\lambda} \times \bar{V}_{\mu}$ with $\bar{V}_{\lambda} \cong E(2^{4}) \cong \bar{V}_{\mu}$

and hence $[\bar{V}, Z_{\theta}] \cong E(2^4)$. Now $[Z_{\alpha}, Z_{\theta}] = Z_{\theta}$ and $V \leq U_{\alpha}$ yields

$$E(2^5) \leq [V, Z_{
ho}] \leq [U_{lpha}, V_{lpha'}],$$

contrary to $[U_{\alpha}, V_{\alpha'}] \cong E(2^4)$. So we have (15.2.2).

Because $b \geq 5$ and $V_{\lambda} \underset{Z_{\rho}}{\sim} V_{\mu}$, $[V_{\lambda}, V_{\alpha'-2}] = [V_{\mu}, V_{\alpha'-2}] \leq V_{\lambda} \cap V_{\mu} = Z_{\alpha}$ and so $[U_{\alpha}, V_{\alpha'-2}] \leq Z_{\alpha}$. From (15.2.2) and $[U_{\alpha}, V_{\alpha'-2}] \leq C_{Z_{\alpha}}(V_{\alpha'}) = Z_{\beta}$ we obtain (15.2.3) $[U_{\alpha}, V_{\alpha'-2}] = Z_{\beta}$.

(15.2.4) $U_{\alpha} \not\leq Q_{\alpha'-2}$

Assume $U_{\alpha} \leq Q_{\alpha'-2}$ holds. Since $U_{\alpha} \not\leq Q_{\alpha'-1}$ by (15.2.2) and $Z_{\alpha'-1} = Z_{\alpha'-2}Z_{\alpha'}$, $[U_{\alpha},Z_{\alpha'}] \neq 1$. Hence $[U_{\alpha} \cap Q_{\alpha'-1} \cap Q_{\alpha'},V_{\alpha'}] = 1$ and so $U_{\alpha} \cap Q_{\alpha'-1} \cap Q_{\alpha'} \leq C_{U_{\alpha}}(Z_{\rho})$. Now $[U_{\alpha}:U_{\alpha} \cap Q_{\alpha'-1}] \leq 2$ and $\eta(G_{\alpha},U_{\alpha}) \geq 4$ forces $(U_{\alpha} \cap Q_{\alpha'-1})Q_{\alpha'}/Q_{\alpha'}$ to be the quadratic $E(2^3)$ -subgroup of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$ and $[U_{\alpha}:U_{\alpha} \cap Q_{\alpha'-1}] = 2$. Also we note that $[U_{\alpha} \cap Q_{\alpha'-1},V_{\alpha'}]Z_{\alpha'}$ has index 2^2 in $V_{\alpha'}$ and that $[U_{\alpha} \cap Q_{\alpha'-1},V_{\alpha'}] \leq U_{\alpha}$. So U_{α} centralizes $[U_{\alpha} \cap Q_{\alpha'-1},V_{\alpha'}]$ and $U_{\alpha} \not\leq Q_{\alpha'-1}$ whence, using the core argument, $[U_{\alpha} \cap Q_{\alpha'-1},V_{\alpha'}] \leq \operatorname{core}_{G_{\alpha'-1}}V_{\alpha'} = Z_{\alpha'-1}$. But this is impossible since $(U_{\alpha} \cap Q_{\alpha'-1},V_{\alpha'})Q_{\alpha'}$ in the quadratic $E(2^3)$ -subgroup of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$. Therefore $U_{\alpha} \not\leq Q_{\alpha'-2}$.

$$(15.2.5) [Z_{\alpha}, V_{\alpha'}] = [U_{\alpha}, V_{\alpha'-2}] = Z_{\beta} \le V_{\alpha'-2} \cap V_{\alpha'} = Z_{\alpha'-1} \text{ and } Z_{\alpha'-1} = Z_{\alpha'-2}Z_{\beta}.$$

By (15.2.3) and (15.2.4) $Z_{\beta} \neq Z_{\alpha'-2}$. Now (15.2.5) follows from (15.2.1) and (15.2.3).

Put $\widetilde{V}_{\alpha'-2}=V_{\alpha'-2}/Y_{\alpha'-2}$ and $P_{\alpha'-2}=\langle U_{\alpha},G_{\alpha'-2\alpha'-1}\rangle$. Since $Z_{\alpha'-1}=Z_{\alpha'-2}Z_{\beta}$, $P_{\alpha'-2}$ centralizes $Z_{\alpha'-1}$ and, as $U_{\alpha}\not\leq G_{\alpha'-2\alpha'-1}$ by (15.2.2), $\bar{P}_{\alpha'-2}:=P_{\alpha'-2}/Q_{\alpha'-2}\cong S_4\times Z_2$ with $\widetilde{V}_{\alpha'-2}|_{\bar{P}_{\alpha'-2}}\cong \begin{pmatrix} 1\\2\\1 \end{pmatrix}$. However, by (15.2.5), $[U_{\alpha},\widetilde{V}_{\alpha'-2}]=\widetilde{Z}_{\beta}=\widetilde{Z}_{\alpha'-1}=C_{\widetilde{V}_{\alpha'-2}}(P_{\alpha'-2})$ which implies $U_{\alpha}\leq O_2(P_{\alpha'-2})\leq C_{\alpha'-2\alpha'-1}$. This contradiction completes the proof of Lemma 15.2.

LEMMA 15.3. Let $(\alpha, \alpha') \in \mathcal{C}$ and $R = [V_{\beta}, V_{\alpha'}]$. If $\eta(G_{\beta}, W_{\beta}) = 2$ or $\eta(G_{\beta}, [W_{\beta}, Q_{\beta}]V_{\beta}/V_{\beta}) = 0$, then the following hold:

- (i) $R \leq Z_{\alpha+2} \cap Z_{\alpha'-1}$ with $RZ_{\beta} = Z_{\alpha+2}$ and $RZ_{\alpha'} = Z_{\alpha'-1}$. If, moreover, b = 5, then $R = Z_{\alpha+3} = Z_{\alpha'-2}$;
- over, b=5, then $R=Z_{\alpha+3}=Z_{\alpha'-2}$; (ii) $V_{\beta}=[V_{\beta},G_{\beta}]$ and so $V_{\beta}/Z_{\beta}\cong 4$ or $\binom{4}{1}$;
 - (iii) $V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ is the central transvection of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ acting on

 $V_{\alpha'}/Z_{\alpha'}$ with a symmetric statement holding for $V_{\alpha'}$ with the roles of β and α' interchanged; and

(iv) either $W_{\beta} \leq Q_{\alpha'-2}$ or $W_{\beta}Q_{\alpha'-2}/Q_{\alpha'-2}$ is the central transvection of $G_{\alpha'-3\alpha'-2}/Q_{\alpha'-2}$ on $V_{\alpha'-2}/Z_{\alpha'-2}$, and so $[W_{\beta}:W_{\beta}\cap Q_{\alpha'-2}]\leq 2$.

PROOF. Put $W_{\beta}^{(1)} = [W_{\beta}, Q_{\beta}]$ and $W_{\beta}^* = W_{\beta}^{(1)} V_{\beta}$. Note that $\eta(G_{\beta}, W_{\beta}/W_{\beta}^*) \neq 0$ else $W_{\beta} = W_{\beta}^{(1)} U_{\alpha}$ which produces the absurd $W_{\beta} = U_{\alpha}$. So we have $\eta(G_{\beta}, W_{\beta}^*/V_{\beta}) = 0$. Appealing to Lemma 12.7 gives $R \leq V_{\alpha'-2} \cap V_{\alpha'} = Z_{\alpha'-1}$. Since $V_{\alpha'} \not\leq Q_{\beta}$ by Lemma 15.2, there exists $\rho \in \Delta(\alpha')$ such that $(\rho, \beta) \in \mathcal{C}$, and likewise we deduce $R \leq V_{\beta} \cap V_{\alpha+3} = Z_{\alpha+2}$. This proves (i)

Since $Z_{\alpha+2} = RZ_{\beta} \leq [V_{\beta}, G_{\beta}]$, the statements in (ii) and (iii) follow readily while (iv) is an easy consequence of (iii).

LEMMA 15.4. Let
$$(\alpha, \alpha') \in \mathcal{C}$$
. If $Z_{\alpha'} \leq V_{\beta}$, then $|V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2$.

PROOF. Let $(\alpha, \alpha') \in \mathcal{C}$ be such that $Z_{\alpha'} \leq V_{\beta}$ and assume that $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \neq 2$. So, by Lemma 15.2, $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \geq 2^2$. Also Lemma 15.3 implies that

$$(15.4.1) \quad \eta(G_{\beta}, W_{\beta}) \geq 3.$$

Clearly we have $W_{\beta} \leq G_{\alpha'-2}$. Since $b \geq 5$, $Z_{\alpha'} \leq V_{\beta} \leq Z(W_{\beta})$ and so W_{β} centralizes $Z_{\alpha'-1} = Z_{\alpha'-2}Z_{\alpha'}$. Thus $W_{\beta} \leq C_{G_{\alpha'-2}}(Z_{\alpha'-1}Y_{\alpha'-2}/Y_{\alpha'-2})$ and therefore $X := W_{\beta} \cap G_{\alpha'-2\alpha'-1}$ has index at most 2 in W_{β} by the parabolic argument (Lemma 3.10). Note that $X \leq C_{G_{\alpha'-1}}(Z_{\alpha'-1}) = Q_{\alpha'-1} \leq G_{\alpha'}$, and set $X^* = (X \cap Q_{\alpha'})V_{\beta}$. Then $[X : X^*] \leq 2^3$ and

$$[X^*, V_{\alpha'}] = [X \cap Q_{\alpha'}, V_{\alpha'}]R \le Z_{\alpha'}R \le V_{\beta}.$$

Hence, putting $\widetilde{W}_\beta=W_\beta/V_\beta$, we have $\widetilde{X}^*\leq C_{\widetilde{W}_\beta}(V_{\alpha'})$. Using (15.4.1) we then get

$$\begin{split} 2^4 & \leq \left[\widetilde{W}_\beta : C_{\tilde{W}_\beta}(V_{\alpha'})\right] \leq \left[\widetilde{W}_\beta : \widetilde{X}^*\right] = \left[W_\beta : X^*\right] \\ & = \left[W_\beta : X\right] \left[X : X^*\right] \leq 2^4 \end{split}$$

and consequently $[W_{\beta}:X]=2$ and $[X:X^*]=2^3$. In particular (15.4.2) $G_{\alpha'-1\alpha'}=Q_{\alpha'}X$.

Since $[X, V_{\alpha'}] \leq X \cap V_{\alpha'} \leq Q_{\beta} \cap V_{\alpha'}$ and $[V_{\alpha'} : Q_{\beta} \cap V_{\alpha'}] \geq 2^2$, (15.4.2) together with Proposition 2.5(i) implies that

$$(15.4.3) \ \left[X,V_{\alpha'}\right] = X \cap V_{\alpha'} = Q_{\beta} \cap V_{\alpha'} \stackrel{<}{\scriptscriptstyle 4} V_{\alpha'} \ \text{with} \ V_{\alpha'}/Z_{\alpha'} \cong 1 \oplus 4 \ \text{or} \ 1 \oplus \binom{4}{1}$$

It now follows from (15.4.3) that $Z_{\alpha'-1} = Z_{\alpha'-2}Z_{\alpha'} \leq Q_{\beta} \cap V_{\alpha'} = [X,V_{\alpha'}] \leq [V_{\alpha'},G_{\alpha'}]$ whence $V_{\alpha'} = [V_{\alpha'},G_{\alpha'}]$, which contradicts the structure of $V_{\alpha'}$ given in (15.4.3). Thus we infer that $|V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2$ must hold.

COROLLARY 15.5. If $(\alpha, \alpha') \in \mathcal{C}$ and $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$, then $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \geq 2^2$.

PROOF. Suppose we have $(\alpha, \alpha') \in \mathcal{C}$ with $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$. Then $Z_{\beta} \not\leq V_{\alpha'}$ by Lemmas 15.2 and 15.4. Hence $[V_{\alpha'} \cap Q_{\beta}, V_{\beta}] = 1$. Since V_{β} cannot centralize a hyperplane of $V_{\alpha'}$, $[V_{\alpha'}: V_{\alpha'} \cap Q_{\beta}] \geq 2^2$ which proves the result.

LEMMA 15.6. Let $(\alpha, \alpha') \in \mathcal{C}$ and suppose that $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$, and hence by Corollary 15.5 $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \geq 2^2$. Then the following statements hold.

- (i) $V_{\beta}Q_{\alpha'}/Q_{\alpha'} \cong V_{\alpha'}Q_{\beta}/Q_{\beta} \cong E(2^2)$;
- (ii) $W_{\beta} \cap G_{\alpha'-1} \leq G_{\alpha'}$;
- $(\mathrm{iii}) \ \ P_{\alpha'-2}:=\langle W_\beta,Q_{\alpha'-1}\rangle \leq G_{\alpha'-2}=Q_{\alpha'-2}P_{\alpha'-2} \ \ and \ \ P_{\alpha'-2}\geq L_{\alpha'-2};$
- (iv) b = 5; and
- (v) if $\widehat{G}_{\alpha'} = G_{\alpha'}/Q_{\alpha'}$, then $\widehat{W}_{\alpha'-2} \cong E(2^3)$ and $W_{\alpha'-2}$ acts quadratically on $V_{\alpha'}/Z_{\alpha'}$ with

$$egin{pmatrix} 4 \ 1 \end{pmatrix} \lesssim V_{lpha'}/Z_{lpha'} \lesssim egin{pmatrix} 4 \ 1 \end{pmatrix} \oplus 1.$$

PROOF. Put $R = [V_{\beta}, V_{\alpha'}]$ and $\widehat{G}_{\alpha'} = G_{\alpha'}/Q_{\alpha'}$. By Lemmas 15.2 and 15.4 $Z_{\alpha'} \not\leq V_{\beta}$ and $Z_{\beta} \not\leq V_{\alpha'}$. Hence $[V_{\beta}, Y_{\alpha'}] = [V_{\alpha'}, Y_{\beta}] = 1$. Since $[V_{\alpha'} : RY_{\alpha'}] = [V_{\beta} : RY_{\beta}] = 2^2$ we obtain (i). Noting that $R \not\leq Z_{\alpha'-1}$ and $[W_{\beta}, V_{\beta}] = 1$, the core argument yields (ii).

Lemma 15.3 (iii) gives

 $(15.6.1) \quad \eta(G_{\beta}, W_{\beta}) \geq 3.$

$$(15.6.2) \quad V_{\beta}Q_{\alpha'}/Q_{\alpha'} \leq (W_{\beta} \cap G_{\alpha'})Q_{\alpha'}/Q_{\alpha'} \leq E(2^3).$$

Since $W_{\beta} \cap G_{\alpha'}$ centralizes $RY_{\alpha'}/Y_{\alpha'} \cong E(2^2)$, Proposition 2.5(vi) implies that $(W_{\beta} \cap G_{\alpha'})Q_{\alpha'}/Q_{\alpha'}$ is elementary abelian, so giving (15.6.2).

We now establish part (iii). Suppose that $Q_{\alpha'-2}P_{\alpha'-2} \neq G_{\alpha'-2}$. Then $\langle W_{\beta}, G_{\alpha'-2\alpha'-1} \rangle \neq G_{\alpha'-2}$ and so, by the parabolic argument, $[W_{\beta}: W] \leq 2$ where $W := W_{\beta} \cap G_{\alpha'-2\alpha'-1}$. By (ii) $W \leq G_{\alpha'}$, and by (15.6.2) $[W: V_{\beta}(W \cap Q_{\alpha'})] \leq 2$. Clearly $[V_{\beta}(W \cap Q_{\alpha'}), V_{\alpha'}] \leq RZ_{\alpha'}$. Putting $\bar{W}_{\beta} = W_{\beta}/V_{\beta}$ we have $[\bar{W}_{\beta}: \overline{V_{\beta}(W \cap Q_{\alpha'})}] \leq 2^2$ and $|[\overline{V_{\beta}(W \cap Q_{\alpha'})}, V_{\alpha'}]| \leq 2$.

Since $V_{\alpha'}Q_{\beta}/Q_{\beta} \cong E(2^2)$, this gives $\eta(G_{\beta}, \bar{W}_{\beta}) \leq 1$, contradicting (15.6.1). This proves part (iii).

As a direct consequence of (iii), Proposition 2.5(ii) and Lemmas 12.7 and 15.2 we have

- (15.6.3) (i) $Z_{\alpha'}R$ is not normal in $G_{\alpha'-1\alpha'}$ and $Z_{\beta}R$ is not normal in $G_{\beta\alpha+2}$.
 - (ii) Either
 - (a) $4 \le V_{lpha'}/Z_{lpha'} \le 4 \oplus 1$ and $\widehat{V}_{eta} \sim \langle s_1, t
 angle$ or
 - (b) $\binom{4}{1} \leq V_{\alpha'}/Z_{\alpha'} \leq \binom{4}{1} \oplus 1$ and $\widehat{V}_{\beta} \sim \langle s_1, t \rangle$ or $\langle s_2, t \rangle$ (using the notation of Proposition 2.5).

Moving onto part (iv), we now assume b>5 and derive a contradiction. Set $W_0=W_\beta\cap Q_{\alpha'-2}$. By (ii) $W_0\leq G_{\alpha'}$. Since W_β is abelian we observe that $[W_\beta:W_0]\leq 2^3\geq [W_0:W_0\cap Q_{\alpha'}]$. Now W_β being abelian and (iii) imply that $Z_{\alpha'}\not\leq W_\beta$. Hence $[W_0\cap Q_{\alpha'},V_{\alpha'}]=1$, and so $[W_\beta:C_{W_\beta}(V_{\alpha'})]\leq 2^6$. Therefore, by (15.6.1), $\eta(G_\beta,W_\beta)=3$, $[W_\beta:C_{W_\beta}(V_{\alpha'})]=2^6$ and $W_0Q_{\alpha'}/Q_{\alpha'}\cong E(2^3)$.

(15.6.4) The non central G_{β} chief factors in W_{β} are isomorphic natural S_6 -modules.

Observe that $V_{\alpha'}$ acts quadratically upon W_{β} since $[W_{\beta}, V_{\alpha'}] \leq W_{\alpha'-2}$. By (15.6.3)(i) $V_{\alpha'}Q_{\beta}/Q_{\beta} \nleq Z(G_{\beta\alpha+2}/Q_{\beta})$ from which (15.6.4) follows.

Since $W_0Q_{\alpha'}/Q_{\alpha'}\cong E(2^3)$ with W_0 acting quadratically on $V_{\alpha'}$, we may choose $t\in W_0$ so that $V_\beta\langle t\rangle Q_{\alpha'}=W_0Q_{\alpha'}$ with t acting as a transvection on $V_{\alpha'}/Y_{\alpha'}$. Hence t acts as a transvection on $V_{\alpha'}/Z_{\alpha'}$ and, recalling that $Z_{\alpha'}\not\leq W_\beta$, we see that $C:=C_{V_{\alpha'}}(t)$ has index 2 in $V_{\alpha'}$. Therefore $C\not\leq Q_\beta$. Now

$$[W_0,C]=ig[V_eta\langle t
angleig(W_0\cap Q_{lpha'}ig),Cig]=ig[V_eta,Cig]\leq V_eta$$

and consequently $[W_{\beta}/V_{\beta}:C_{W_{\beta}/V_{\beta}}(C)] \leq 2^3$. Since $\eta(G_{\beta},W_{\beta}/V_{\beta})=2$, C must induce a transvection on at least one non-central G_{β} -chief factor within W_{β}/V_{β} . Appealing to (15.6.4) gives that C induces a transvection on V_{β}/Y_{β} and hence on V_{β}/Z_{β} . Because $Z_{\beta} \not\leq V_{\alpha'}$, C induces a transvection on V_{β} . But then $[W_0,C]=[V_{\beta},C]\cong \mathbb{Z}_2$ whereas $[W_0,C/Y_{\alpha'}]\cong E(2^2)$. From this untenable situation we deduce that b=5.

Finally we consider part (v). By (15.6.3) $\widehat{V}_{\beta} \not\preceq \widehat{G}_{\alpha'-1\alpha'} = \widehat{Q}_{\alpha'-1}$. So, since $V_{\beta} \leq W_{\alpha'-2}$ (as b=5) and $\widehat{W}_{\alpha'-2} \unlhd \widehat{Q}_{\alpha'-1}$, $\widetilde{V}_{\beta} \not\subseteq \widehat{W}_{\alpha'-2}$. Evidently we have $[V_{\beta}, W_{\alpha'-2}] \leq V_{\beta}$ and consulting (15.6.3)(ii) we see that $\widehat{V}_{\beta} \cap (\widehat{G}_{\alpha'-1\alpha'})' = 1$.

So $\widehat{W}_{\alpha'-2} \leq C_{\widehat{G}_{\alpha'-1\alpha'}}(\widehat{V}_{\beta})$. Hence $\widehat{W}_{\alpha'-2} \cong E(2^3)$ by (15.6.3)(ii). Now if (v) is false, then (15.6.3)(i) must hold and therefore $\widehat{W}_{\alpha'-2}$ is the non-quadratic $E(2^3)$ -subgroup of $\widehat{G}_{\alpha'-1\alpha'}$ (acting on $V_{\alpha'}/Z_{\alpha'}$). Thus $Y_{\alpha'}[V_{\alpha'},W_{\alpha'-2}] = Y_{\alpha'}[V_{\alpha'},G_{\alpha'-1\alpha'}] \stackrel{<}{\geq} V_{\alpha'}$. Next we observe that $[W_{\alpha'-2},W_{\alpha'-2}] \leq Q_{\alpha'}$. So, since $G_{\alpha'-2}$ is transitive on vertices distance 2 away from $\alpha'-2$ and b=5, $[W_{\alpha'-2},W_{\alpha'-2}] \leq Q_{\beta}$ also. This then gives, since $Y_{\alpha'} \leq Q_{\beta}$, that

$$Y_{lpha'}ig[V_{lpha'},W_{lpha'-2}ig] \leq Y_{lpha'}ig[W_{lpha'-2},W_{lpha'-2}ig] \leq Q_eta$$

Therefore $[V_{\alpha'}:V_{\alpha'}\cap Q_{\beta}]=2$, against $[V_{\alpha'}:V_{\alpha'}\cap Q_{\beta}]=2^2$. This establishes (v) and completes the proof of the lemma.

Theorem 15.7. Let $(\alpha, \alpha') \in \mathcal{C}$. Then

- (i) $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2;$
- (ii) $|[V_{\beta}, V_{\alpha'}]| = 2$ and $[V_{\beta}, V_{\alpha'} \cap Q_{\beta}] = 1 = [V_{\alpha'}, V_{\beta} \cap Q_{\alpha'}];$ and
- (iii) there exists $\delta \in \Delta(\beta)$ such that $(\delta, \alpha') \in \mathcal{C}$ and $\langle G_{\delta\beta}, V_{\alpha'} \rangle = G_{\beta}$.

PROOF. (i) Assume by way of contradiction that the assertion is false. Then from Lemma 15.6 we have

(15.7.1) b = 5;

(15.7.2) if $\hat{G}_{\alpha'}=G_{\alpha'}/Q_{\alpha'}$, then $\hat{W}_{\alpha'-2}\cong E(2^3)$ and $W_{\alpha'-2}$ acts quadratically on $V_{\alpha'}/Z_{\alpha'}$ where

$$\binom{4}{1} \lesssim V_{lpha'}/Z_{lpha'} \lesssim \binom{4}{1} \oplus 1;$$
 and

(15.7.3) $P_{\alpha'-2} := \langle W_{\beta}, Q_{\alpha'-1} \rangle \leq G_{\alpha'-2} = Q_{\alpha'-2} P_{\alpha'-2}$.

Put $W_{\beta}^* = [W_{\beta}, W_{\beta}]V_{\beta}$ and $R = [V_{\beta}, V_{\alpha'}]$. Bringing together (15.7.1), (15.7.2) and Lemmas 11.1(vii), 15.6(ii) we obtain

(15.7.4) $W_{\beta}Q_{\alpha'-2}/Q_{\alpha'-2}\cong W_{\alpha'}Q_{\alpha'-2}/Q_{\alpha'-2}\cong E(2^3)$ with both groups acting quadratically on $V_{\alpha'-2}/Z_{\alpha'-2}$ and $W_{\beta}^*\leq Q_{\alpha'-2}\cap W_{\beta}\leq G_{\alpha'}$.

By (15.7.4) we have

$$Y_{\alpha+3} = Y_{\alpha'-2} \le \left[W_{\beta}, V_{\alpha'-2} \right] Z_{\alpha+2} \le \left[W_{\beta}, W_{\beta} \right] V_{\beta} = W_{\beta}^*.$$

Since G_{β} is transitive on vertices distance 2 from β , $\langle Y_{\beta}, Y_{\gamma}, Y_{\alpha+3} \rangle \leq W_{\beta}^*$, where $\varDelta(\alpha+2)=\{\beta,\gamma,\alpha+3\}$. Now (15.7.2) and the definition of $F_{\alpha+2}$ implies that $F_{\alpha+2}\leq W_{\beta}^*$, whence $H_{\beta}\leq W_{\beta}^*$. Therefore $\eta(G_{\beta},W_{\beta}^*)\geq 2$ by Lemma 14.2(ii). Since W_{β}^* centralizes $RY_{\alpha'}/Y_{\alpha'}\cong E(2^2)$, W_{β}^* acts quadratically on $V_{\alpha'}/Y_{\alpha'}$. Then $V_{\alpha'}Q_{\beta}/Q_{\beta}\cong E(2^2)$ forces

(15.7.5) $|W_{\beta}^*Q_{\alpha'}/Q_{\alpha'}|=2^3$ with $Z_{\alpha'}\leq [W_{\beta}^*,V_{\alpha'}]\cong E(2^4);$ hence $Z_{\alpha'-1}==Z_{\alpha'-2}Z_{\alpha'}\leq W_{\beta}^*.$

From (15.7.4) we have $[[V_{\alpha'-2}, W_{\beta}], W_{\beta}] \leq Z_{\alpha'-2}$ and thus $[[W_{\beta}, W_{\beta}], W_{\beta}] \leq V_{\beta}$. So $[W_{\beta}, W_{\beta}^*] \leq V_{\beta}$. Hence, as $Z_{\alpha'-1} \leq W_{\beta}^*$ by (15.7.5),

$$\left[Z_{\alpha'-1},W_{\beta}\right] \leq \left[W_{\beta}^*,W_{\beta}\right] \cap V_{\alpha'-2} \leq V_{\beta} \cap V_{\alpha'-2} = Z_{\alpha+2}.$$

Therefore W_{β} normalizes the group $X:=Y_{\alpha'-2}Z_{\alpha+2}Z_{\alpha'-1}$. Symmetrically we deduce that $W_{\alpha'}$ also normalizes X. By (15.7.3) $W_{\beta}Q_{\alpha'-2} \neq W_{\alpha'}Q_{\alpha'-2}$ and so Proposition 2.8(vii) yields that

(15.7.6) $P := \langle W_{\beta}, Q_{\alpha'-2}, W_{\alpha'} \rangle = N_{G_{\alpha'-2}}(X)$ with $|X/Y_{\alpha'-2}| \in \{2, 2^2\}$ and $P/Q_{\alpha'-2} \cong S_4 \times \mathbb{Z}_2$.

If $|X/Y_{\alpha'-2}|=2$, then $X=Y_{\alpha'-2}Z_{\alpha'-1}$ is normalized by $P_{\alpha'-2}$ which is impossible by (15.7.3). So $|X/Y_{\alpha'-2}|=2^2$. But then $O_2(P/Q_{\alpha'-2})$ is the only $E(2^3)$ -subgroup of $P/Q_{\alpha'-2}$ which acts quadratically on $V_{\alpha'-2}/Z_{\alpha'-2}$, so (15.7.4) forces $W_\beta Q_{\alpha'-2}=W_{\alpha'}Q_{\alpha'-2}$, a contradiction. Therefore (i) holds.

(ii) In view of part (i) and Lemma 15.2 it is sufficient for us to show that for $(\alpha, \alpha') \in \mathcal{C}$ $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$. So we assume $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] \neq 1$ and argue for a contradiction. Since $V_{\beta} \not\leq Q_{\alpha'}$, we have

$$(15.7.7) \quad Z_{\alpha'} = \left[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'} \right] \leq V_{\beta} \text{ and } \left| \left[V_{\beta}, V_{\alpha'} \right] \right| \geq 2^2.$$

Clearly there exists $\rho \in \Delta(\alpha')$ for which $[V_{\beta} \cap Q_{\alpha'}, Z_{\rho}] = Z_{\alpha'}$. Put $\Delta(\rho) = \{\alpha', \sigma, \tau\}$ and $V = V_{\sigma}V_{\tau}$. Since $V_{\beta} \cap Q_{\alpha'}$ interchanges σ and τ , $V_{\sigma} \cap V_{\tau} = Z_{\rho}$ and $Z_{\alpha'} \leq [V_{\beta} \cap Q_{\alpha'}V]$, we deduce that

$$(15.7.8) \quad |\lceil V_{\beta} \cap Q_{\alpha'}, V \rceil| \ge |V_{\sigma}|/2.$$

 $(15.7.9) \quad U_{\rho} \not\leq G_{\beta}.$

For $U_{\rho} \leq G_{\beta}$ implies that V normalizes $V_{\beta} \cap Q_{\alpha'}$ and so

$$|[V_{\beta}\cap Q_{\alpha'},V]|\leq |V_{\beta}|/4=|V_{\sigma}|/4,$$

contradicting (15.7.8). Hence $U_{\rho} \not\leq G_{\beta}$.

(15.7.10) $U_{\rho} \not\leq Q_{\alpha+3}$

Assume $U_{\rho} \leq Q_{\alpha+3}$ holds. Then $U_{\rho} \leq G_{\alpha+2}$ and so $U_{\rho} \not\leq Q_{\alpha+2}$ by (15.7.8). Since $[V_{\beta}, V_{\alpha'}] \leq V_{\beta} \cap V_{\alpha'}$ and $[U_{\rho}, V_{\alpha'}] = 1$, the core argument forces

$$\left[V_{\beta},V_{\alpha'}\right] \leq \mathrm{core}_{G_{\alpha+2}}V_{\beta} = Z_{\alpha+2}.$$

Then (15.7.7) gives $Z_{\alpha+2} = [V_{\beta}, V_{\alpha'}] \leq V_{\alpha}$, which yields $U_{\rho} \leq C_{G_{\alpha+2}}(Z_{\alpha+2}) = Q_{\alpha+2} \leq G_{\beta}$, against (15.7.9). Therefore $U_{\rho} \not\leq Q_{\alpha+3}$, as asserted.

Since $[V_{\alpha+3},V_{\alpha'}]=1=[V_{\beta},V_{\alpha+3}]=1,\ V_{\beta}\cap Q_{\alpha'}$ centralizes $[V_{\alpha+3},U_{\rho}]==[V_{\alpha+3},V]=[V_{\alpha+3},V_{\sigma}][V_{\alpha+3},V_{\tau}].$ From $V_{\beta}\cap Q_{\alpha'}$ interchanging σ and τ we get $[V_{\alpha+3},U_{\rho}]=[V_{\alpha+3},V_{\sigma}]=[V_{\alpha+3},V_{\tau}]\leq V_{\sigma}\cap V_{\tau}\cap C(V_{\beta}\cap Q_{\alpha'})=C_{Z_{\rho}}(V_{\beta}\cap Q_{\alpha'})=Z_{\alpha'}.$ Now (15.7.10) implies that

$$(15.7.11) \quad \left[V_{\alpha+3}, U_{\rho}\right] = Z_{\alpha'} \leq V_{\alpha+3} \text{ and } Z_{\alpha'} \neq Z_{\alpha+3}.$$

Combining (15.7.7) and (15.7.11) gives $Z_{\alpha'} \leq V_{\beta} \cap V_{\alpha+3} = Z_{\alpha+2}$ and then

$$Z_{lpha+2}=Z_{lpha+3}\,Z_{lpha'}. \quad ext{So} \quad U_
ho \leq P_{lpha+3}:=C_{G_{lpha+3}}(Z_{lpha+2}) \quad ext{with} \quad \widetilde{V}_{lpha+3}|_{P_{lpha+3}}\cong egin{pmatrix} 1\ 2\ 1 \end{pmatrix}$$

(where $\widetilde{V}_{\alpha+3} = V_{\alpha+3}/Y_{\alpha+3}$). From (15.7.11) $U_{\rho} \leq O_2(P_{\alpha+3}) \leq G_{\alpha+2\alpha+3}$ which then gives $U_{\rho} \leq Q_{\alpha+2}$, contradicting (15.7.9) and concluding the proof of (ii).

(iii) Since $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$ by (ii), we may argue as in Lemma 14.4(vi).

16. Case 3 bites the dust.

Employing Theorem 15.7 we begin this section by determining, for a critical pair (α, α') , which vertices H_{β} fixes and the location of the commutator $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}]$.

LEMMA 16.1. Let $(\alpha, \alpha') \in \mathcal{C}$. Then

- (i) $H_{\beta} \leq Q_{\alpha'-2} \cap Q_{\alpha'-1}$;
- (ii) $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq Z_{\beta}$; and
- (iii) H_{β} is abelian.

PROOF. Assume first that $H_{\beta} \not\leq Q_{\alpha'-2}$. Then there exists $\beta-1 \in \varDelta(\beta)$ such that $F_{\beta-1} \not\leq Q_{\alpha'-2}$. Putting $\varDelta(\beta-1) = \{\beta,\sigma,\tau\}$ we have $F_{\beta-1} = \langle T_{\beta\beta-1}, T_{\sigma\beta-1}, T_{\tau\beta-1} \rangle$. Since $T_{\beta\beta-1} \leq V_{\beta} \leq Q_{\alpha'-2}$, we may assume without loss of generality that $T_{\sigma\beta-1} \not\leq Q_{\alpha'-2}$ and hence $V_{\sigma} \not\leq Q_{\alpha'-2}$. So we may find $\gamma \in \varDelta(\sigma)$ such that $(\gamma,\alpha'-2) \in \mathcal{C}$. By Theorem 15.7 $V_{\alpha'-2}Q_{\sigma}/Q_{\sigma}$ acts as a transvection upon V_{σ}/Z_{σ} with $C_{V_{\sigma}}(V_{\alpha'-2}) = V_{\sigma} \cap Q_{\alpha'-2} \leq V_{\sigma}$. Hence $V_{\sigma} = (V_{\sigma} \cap Q_{\alpha'-2})T_{\sigma\beta-1}$ and consequently $[V_{\sigma},V_{\alpha'-2}] = [T_{\sigma\beta-1},V_{\alpha'-2}]$. If $V_{\beta}/Z_{\beta} \not\cong E(2^4)$, then $[T_{\sigma\beta-1},V_{\alpha'-2}] \leq Z_{\sigma}$. While if $V_{\beta}/Z_{\beta} \cong E(2^4)$, then $T_{\sigma\beta-1}/Z_{\sigma} = [V_{\sigma},Q_{\beta-1};2]/Z_{\sigma}$ is centralized by all transvections of $G_{\sigma\beta-1}/Q_{\sigma}$.

Hence in either case we have

$$ig[V_{\sigma},V_{lpha'-2}ig]=ig[T_{\sigmaeta-1},V_{lpha'-2}ig]\leq Z_{\sigma},$$

whence $V_{\alpha'-2} \leq Q_{\sigma}$, a contradiction. So we have shown that $H_{\beta} \leq Q_{\alpha'-2}$.

Assume next that $H_{\beta} \not\leq Q_{\alpha'-1}$. So H_{β} is transitive on $\varDelta(\alpha'-1)\setminus\{\alpha'-2\}$ and therefore, as $H_{\beta} \leq Q_{\beta}$, $Q_{\beta}V_{\alpha'} = Q_{\beta}U_{\alpha'-1}$. Again, we may find $\beta-1\in \varDelta(\beta)\setminus\{\alpha+2\}$ such that $F_{\beta-1}\not\leq Q_{\alpha'-1}$ (note that $F_{\alpha+2}\leq U_{\alpha+2}\leq Q_{\alpha'-1}$). Since $\eta(G_{\alpha'-1},U_{\alpha'-1})\geq 4$ by Lemma 15.1 and $U:=U_{\alpha'-1}\cap Q_{\beta}\subseteq U_{\alpha'-1}$, we infer that $|[F_{\beta-1},U]|\geq 2^3$. On the other hand, by the $G_{\beta-1}/Q_{\beta-1}$ module structure of $F_{\beta-1}/Z_{\beta-1}$, obviously $|[F_{\beta-1},U]|\leq 2^3$, and so we have $Z_{\beta-1}\leq [F_{\beta-1},U]\cong E(2^3)$. Thence $Z_{\beta-1}\leq U_{\alpha'-1}$ and so $[Z_{\beta-1},U_{\alpha'-1}]=1$. Consequently $U\leq Q_{\beta-1}$ and thus, by Lemma 14.2(i),

$$[F_{\beta-1}, U] \leq [F_{\beta-1}, Q_{\beta-1}] = Z_{\beta-1},$$

contrary to $|[F_{\beta-1}, U]| = 2^3$. Thus we conclude that $H_{\beta} \leq Q_{\alpha'-1}$, and we have proven (i).

For (ii) observe that from Theorem 15.7 $V_{\alpha'} \cap Q_{\beta} \leq Q_{\alpha}$ and hence $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq [F_{\alpha}, Q_{\alpha}] = Z_{\alpha}$. From (i) we have $F_{\alpha} \leq H_{\beta} \leq G_{\alpha'}$ and therefore

$$[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq V_{\alpha'} \cap Z_{\alpha} \leq Q_{\alpha'} \cap Z_{\alpha} = Z_{\beta},$$

as required.

Because $H_{\beta} \leq W_{\beta} \leq Q_{\alpha}$ we have, using Lemma 14.2(i), $[F_{\alpha}, H_{\beta}] \leq Z_{\alpha}$ and hence $[H_{\beta}, H_{\beta}] \leq V_{\beta}$. Since, by Theorem 15.7, $V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ acts as a transvection of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$, it follows from part (i) that $[H_{\beta}, H_{\beta}] \leq Q_{\alpha'}$. Recalling that $Y_{\beta} \leq C_{V_{\beta}}(V_{\alpha'}) \leq Q_{\alpha'}$ we see that $[H_{\beta}, H_{\beta}] \leq Y_{\beta}$. Now $H_{\beta} \leq Q_{\alpha+3}$ (using part (i) if b=5). Let $\gamma \in \Delta(\beta)$ and $\delta \in \Delta(\gamma) \setminus \{\beta\}$. Since G_{β} is transitive on vertices distance 2 from $\beta, H_{\beta} \leq Q_{\delta}$ and therefore

$$[T_{\delta \gamma}, H_{\beta}] \leq [V_{\delta}, Q_{\delta}] \cap Y_{\beta} = Z_{\delta} \cap Y_{\beta} = 1.$$

Hence

$$ig[H_eta,H_etaig]=\left\langleig[T_{\delta\gamma},H_etaig]^{G_eta}
ight
angle=1,$$

which proves (iii).

Lemma 16.2. Let $(\alpha, \alpha') \in \mathcal{C}$ and suppose that $U_{\alpha} \leq G_{\alpha'}$. Then $[U_{\alpha}, H_{\beta}] = 1$.

PROOF. Set $\Delta(\alpha) = \{\beta, \lambda, \mu\}$. Again we have $H_{\beta} \leq Q_{\alpha+3}$ and hence $H_{\beta} \leq Q_{\lambda} \cap Q_{\mu}$. Therefore

$$\left[H_{\beta},U_{\alpha}\right]=\left[H_{\beta},V_{\lambda}V_{\mu}\right]=\left[H_{\beta},V_{\lambda}\right]\left[H_{\beta},V_{\mu}\right]\leq Z_{\lambda}Z_{\mu}=Z_{\alpha}$$

By Lemma 16.1 $H_{\beta} \leq G_{\alpha'}$ and thus, as $Z_{\alpha}Q_{\alpha'}/Q_{\alpha'} = V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ acts as a transvection on $V_{\alpha'}/Z_{\alpha'}$, $[H_{\beta},U_{\alpha}] \leq Q_{\alpha'}$. Hence $[H_{\beta},U_{\alpha}] \leq Z_{\alpha} \cap Q_{\alpha'} = Z_{\beta}$. This in turn implies that $[H_{\beta},V_{\lambda}] \leq Z_{\lambda} \cap Z_{\beta} = 1$ as well as $[H_{\beta},V_{\mu}] \leq Z_{\mu} \cap Z_{\beta} = 1$, so giving $[H_{\beta},U_{\alpha}] = 1$.

LEMMA 16.3. There exists a critical pair (α, α') which satisfies the following two conditions:

- (i) $\langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$ and
- (ii) $[F_{\alpha}, V_{\alpha'} \cap Q_{\beta}] = 1$.

PROOF. Suppose the lemma is false. So by Lemma 16.1(ii) $[F_{\delta},V_{\delta'}\cap Q_{\delta+1}]=Z_{\delta+1}$ for all $(\delta,\delta')\in\mathcal{C}$ with $\langle G_{\delta\delta+1},V_{\delta'}\rangle=G_{\delta+1}$. By Theorem 15.7(iii) we may select a critical pair (α,α') satisfying condition (i). So, since $F_{\alpha}\leq H_{\beta}\leq G_{\alpha'}$,

$$Z_eta = \left[F_lpha, V_{lpha'} \cap Q_eta
ight] \leq \left[F_lpha, V_{lpha'}
ight] \leq V_{lpha'}.$$

Now $[T_{\beta\alpha},V_{\alpha'}\cap Q_{\beta}] \leq [V_{\beta},V_{\alpha'}\cap Q_{\beta}] = 1$ and so we have $[T_{\lambda\alpha},V_{\alpha'}\cap Q_{\beta}] = Z_{\beta}$ where $\lambda\in\varDelta(\alpha)\setminus\{\beta\}$. Because $T_{\lambda\alpha}\unlhd G_{\lambda\alpha}$ and $V_{\alpha'}\cap Q_{\beta}\leq Q_{\alpha}\leq G_{\lambda}$ we obtain $Z_{\alpha}=Z_{\lambda}Z_{\beta}\leq T_{\lambda\alpha}$ and hence, by the definition of $T_{\lambda\alpha}$,

(16.3.1)
$$V_{\beta}/Z_{\beta} \cong 4$$
 and $T_{\lambda\alpha} = [V_{\lambda}, Q_{\alpha}; 2] \cong E(2^3)$.

From $[T_{\lambda\alpha},V_{\alpha'}\cap Q_{\beta}]=Z_{\beta}\neq Z_{\lambda}$ we also deduce that

(16.3.2) $V_{\alpha'} \cap Q_{\beta} \not\leq Q_{\lambda}$ and $V_{\alpha'} \cap Q_{\beta}$ does not centralize $T_{\lambda\alpha}/Z_{\lambda}$; in particular, $(V_{\alpha'} \cap Q_{\beta})Q_{\lambda}/Q_{\lambda}$ and hence $(Q_{\alpha} \cap Q_{\beta})Q_{\lambda}/Q_{\lambda}$ is not contained in the $E(2^3)$ -subgroup of $G_{\lambda\alpha}/Q_{\lambda}$ acting quadratically on V_{λ}/Z_{λ} .

By Lemma 16.1(iii) H_{β} is abelian and hence H_{β} acts quadratically on $V_{\alpha'}$. Since $E(2^2) \cong Z_{\beta}[V_{\beta}, V_{\alpha'}] \leq [H_{\beta}, V_{\alpha'}]$ and $\eta(G_{\beta}, H_{\beta}/V_{\beta}) \geq 1$, (16.3.1) implies that

$$(16.3.3) \quad E(2^3) \cong C_{V_{\alpha'}}(H_{\beta}) = [H_{\beta}, V_{\alpha'}] \ge Z_{\beta}[V_{\beta}, V_{\alpha'}] Z_{\alpha'-1} \ge E(2^2).$$

Furthermore, $\eta(G_{\beta}, H_{\beta}) = 2$ and $V_{\alpha'}Q_{\beta}/Q_{\beta}$ acts as a transvection on each of the two non-central G_{β} chief factors within H_{β} which must be isomorphic natural G_{β}/Q_{β} -modules.

(16.3.4) $F_{\alpha}Q_{\alpha'} \supseteq V_{\beta}Q_{\alpha'}$ and, in particular, $|(Q_{\alpha'-2} \cap Q_{\alpha'-1})Q_{\alpha'}/Q_{\alpha'}| \ge 2^3$

Suppose that $F_{\alpha}Q_{\alpha'}=V_{\beta}Q_{\alpha'}$ holds. Then

$$ig[F_lpha,V_{lpha'}ig]=ig[F_lpha\cap Q_{lpha'},V_{lpha'}ig]ig[V_eta,V_{lpha'}ig]\leq Z_{lpha'}ig[V_eta,V_{lpha'}ig]\cong Eig(2^2ig).$$

Since $[V_{\beta}, V_{\alpha'}] \neq Z_{\beta} = [F_{\alpha}, V_{\alpha'} \cap Q_{\beta}]$ we get

$$Z_{lpha'} \leq igl[F_lpha, V_{lpha'} igr] = Z_eta igl[V_eta, V_{lpha'} igr] \leq V_eta.$$

But then $V_{\beta}F_{\alpha} \stackrel{\triangleleft}{=} \langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$, against Lemma 14.2(i). Therefore we must have $F_{\alpha}Q_{\alpha'} \supseteq Z_{\alpha}Q_{\alpha'} = V_{\beta}Q_{\alpha'}$. Hence $|(Q_{\alpha'-2} \cap Q_{\alpha'-1})Q_{\alpha'}/Q_{\alpha'}| \ge 2^2$. Combining (16.3.2) and Lemma 11.1(vii) with the fact that $\langle s_1, t \rangle$ is not a normal subgroup of T (see Proposition 2.5(ii)) yields that $|(Q_{\alpha'-2} \cap Q_{\alpha'-1})Q_{\alpha'}/Q_{\alpha'}| \ge 2^3$, as required.

$$(16.3.5) \quad [U_{\alpha}, Z_{\alpha'}] = 1$$

From (16.3.3)

$$Z_{\alpha'} \leq [H_{\beta}, V_{\alpha'}] \leq H_{\beta} \leq W_{\beta}.$$

If b>5, then (16.3.5) clearly holds, so we now assume b=5. Since $Z_{\beta} \leq V_{\alpha'}$, we have

$$Z_{\beta} \leq V_{\beta} \cap V_{\alpha+3} \cap V_{\alpha'} = Z_{\alpha+2} \cap Z_{\alpha'-1}.$$

Because $Z_{\beta} \neq Z_{\alpha+3} \leq Z_{\alpha+2} \cap Z_{\alpha'-1}$ we deduce that $Z_{\alpha+2} = Z_{\alpha'-1}$. Consequently $Z_{\alpha'} \leq Z_{\alpha'-1} = Z_{\alpha+2} \leq V_{\beta}$. Now $[V_{\beta}, W_{\beta}] = 1$ implies that (16.3.5) holds when b = 5.

We claim that $U_{\alpha} \leq Q_{\alpha'-2}$. For if $U_{\alpha} \not\leq Q_{\alpha'-2}$ then there exists $\alpha-2 \in \Delta^{[2]}(\alpha)$ such that $(\alpha-2,\alpha'-2) \in \mathcal{C}$. Moreover, by Theorem 15.7(iii), we can also assume that $\langle G_{\alpha-2\alpha-1}, V_{\alpha'-2} \rangle = G_{\alpha-1}$ (where $\{\alpha-1\} = \Delta(\alpha) \cap \Delta(\alpha-2)$). Hence, by our supposition,

$$Z_{lpha-1} = \left[F_{lpha-2}, V_{lpha'-2} \cap Q_{lpha-1}
ight] \leq V_{lpha'-2} \leq Q_{lpha'}$$

whence $Z_{\alpha}=Z_{\alpha-1}Z_{\beta}\leq Q_{\alpha'}$. With this contradiction we have established the claim. Now, using (16.3.5), we deduce that $U_{\alpha}\leq C_{G_{\alpha'-1}}(Z_{\alpha'-1})=$ $=Q_{\alpha'-1}\leq G_{\alpha'}$. Applying Lemma 16.2 gives $[U_{\alpha},H_{\beta}]=1$. Therefore U_{α} centralizes $[H_{\beta},V_{\alpha'}]\cong E(2^3)$ and so U_{α} acts quadratically on $V_{\alpha'}$. Since $F_{\alpha}\leq U_{\alpha}$, (16.3.4) implies that $|U_{\alpha}Q_{\alpha'}/Q_{\alpha'}|\geq 2^2$ so we see that

$$ig[U_lpha,V_{lpha'}ig] \leq C_{V_{lpha'}}(U_lpha) = ig[H_eta,V_{lpha'}ig].$$

Hence we obtain $[U_{\alpha}, V_{\alpha'}] \leq [H_{\beta}, V_{\alpha'}] \leq H_{\beta}$. Thus $H_{\beta}U_{\alpha} \leq \langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$ from which we conclude that $W_{\beta} = H_{\beta}U_{\alpha}$ and $\eta(G_{\beta}, W_{\beta}) = \eta(G_{\beta}, H_{\beta}) = 2$.

Since $\eta(G_{\beta},W_{\beta}/[W_{\beta},Q_{\beta}]V_{\beta})\neq 0$, there exists a G_{β} -invariant subgroup E of W_{β} containing $[W_{\beta},Q_{\beta}]V_{\beta}$ such that W_{β}/E is a natural or the dual of an orthogonal G_{β}/Q_{β} -module. Appealing to [Proposition 3; LPR2] yields $V_{\lambda}E/E\cong E(2^3)$ (where $\lambda\in \varDelta(\alpha)\setminus\{\beta\}$). Since $[Q_{\lambda},V_{\lambda}]=Z_{\lambda}\leq Z_{\alpha}\leq E$, $(Q_{\lambda}\cap Q_{\alpha})Q_{\beta}/Q_{\beta}$ centralizes the group $V_{\lambda}E/E\cong E(2^3)$. Using (16.3.4) and Lemma 11.1(vii) $|(Q_{\lambda}\cap Q_{\alpha})Q_{\beta}/Q_{\beta}|\geq 2^3$ and so it is the $E(2^3)$ -quadratic subgroup of $G_{\alpha\beta}/Q_{\beta}$ on V_{β}/Z_{β} . This contradicts (16.3.2) and concludes the proof of the lemma.

From now on (α, α') will be a critical pair satisfying conditions (i) and (ii) of Lemma 16.3.

LEMMA 16.4. (i)
$$F_{\alpha}Q_{\alpha'}=Z_{\alpha}Q_{\alpha}=V_{\beta}Q_{\alpha'}$$
. Moreover $[F_{\alpha},V_{\alpha'}]=Z_{\alpha'}[V_{\beta},V_{\alpha'}]\cong E(2^2)$ with $[F_{\alpha}\cap Q_{\alpha'},V_{\alpha'}]=Z_{\alpha'}\not\leq V_{\beta}F_{\alpha}$; and (ii) $H_{\alpha+3}\leq Q_{\beta}\cap Q_{\alpha}$.

PROOF. Recall that $F_{\alpha} \leq H_{\beta} \leq G_{\alpha'}$. Since F_{α} centralizes a hyperplane in $V_{\alpha'}$ (by condition (ii) of Lemma 16.3) we obviously have $F_{\alpha}Q_{\alpha'} = Z_{\alpha}Q_{\alpha'} = V_{\beta}Q_{\alpha'}$. Now the other statements in (i) are easy consequences of the fact that $H_{\beta} \geq V_{\beta}F_{\alpha}$.

In proving (ii) we may assume b=5. Suppose for the moment that $U_{\alpha} \leq Q_{\alpha'-2}$ and let $\lambda \in \varDelta(\alpha) \setminus \{\beta\}$. By Lemma 15.2 we cannot have $(\tau,\lambda) \in \mathcal{C}$ for any $\tau \in \varDelta(\alpha'-2)$, and hence $V_{\alpha'-2} \leq Q_{\lambda}$. Because $Z_{\lambda} \not\leq V_{\alpha'-2}$, $[V_{\lambda},V_{\alpha'-2}]=1$ and therefore $[U_{\alpha},V_{\alpha'-2}]=1$. So $U_{\alpha} \leq G_{\alpha'}$ and hence, using Lemma 16.2, $[U_{\alpha},H_{\beta}]=1$. Thus $[H_{\alpha+3},U_{\alpha+2}]=1$. In particular $[H_{\alpha+3},V_{\beta}]=1$ which then yields $H_{\alpha+3} \leq Q_{\alpha} \cap Q_{\beta}$. Therefore (ii) holds when $U_{\alpha} \leq Q_{\alpha'-2}$. Now we consider the case $U_{\alpha} \not\leq Q_{\alpha'-2}$. Then there exists $\alpha-2\in \varDelta^{[2]}(\alpha)$ such that $(\alpha-2,\alpha'-2)\in\mathcal{C}$. Set $\{\alpha-1\}=\varDelta(\alpha)\cap \varDelta(\alpha-2)$. By Lemma 16.2 there exists $\tau\in \varDelta(\alpha'-2)$ such that $(\tau,\alpha-1)\in\mathcal{C}$. Applying Lemma 16.1(i) to this critical pair gives $H_{\alpha'-2} \leq Q_{\alpha} \cap Q_{\beta}$. This proves (ii) since $\alpha'-2=\alpha+3$.

By Lemma 16.4(i) there exists $\rho \in \Delta(\alpha') \setminus \{\alpha' - 1\}$ such that $[F_{\alpha} \cap Q_{\alpha'}, Z_{\rho}] = Z_{\alpha'}$ and (hence) $F_{\alpha} \cap Q_{\alpha'} \not\leq Q_{\rho}$. Also we note that

Lemma 16.5. $(\rho, \beta) \in \mathcal{C}$.

PROOF. If the lemma is false, then $Z_{\rho} \leq Q_{\beta} \leq G_{\alpha}$ whence $Z_{\alpha'} = [F_{\alpha} \cap Q_{\alpha'}, Z_{\rho}] \leq [F_{\alpha}, Z_{\rho}] \leq F_{\alpha}$, contrary to Lemma 16.4(i).

LEMMA 16.6. $\eta(G_{\rho}, U_{\rho}) \leq 3$.

PROOF. Put $\Delta(\rho) = \{\alpha', \sigma, \tau\}$.

Assume for the moment that $V_{\sigma} \not\leq Q_{\alpha+3}$. Then there exists $\sigma+1 \in \varDelta(\sigma)$ such that $(\sigma+1,\alpha+3) \in \mathcal{C}$. By Lemma 15.2 there exists $\mu \in \varDelta(\alpha+3)$ for which $(\mu,\sigma) \in \mathcal{C}$ and by Theorem 5.7(iii) we may choose μ so as $\langle G_{\mu\alpha+3}, V_{\sigma} \rangle = G_{\alpha+3}$. Additionally assume that $[F_{\mu}, V_{\sigma} \cap Q_{\alpha+3}] = 1$ (so condition (ii) of Lemma 16.3 holds for (μ,σ)). Applying Lemma 16.4(i) to (μ,σ) gives $[F_{\mu} \cap Q_{\sigma}, V_{\sigma}] = Z_{\sigma}$. Since $V_{\sigma} \leq G_{\alpha+3}$, we then obtain

$$Z_{\sigma} = ig[F_{\mu} \cap Q_{\sigma}, V_{\sigma}ig] \leq ig[H_{lpha+3}, V_{\sigma}ig] \leq H_{lpha+3}.$$

By Lemma 16.1(i) $H_{\alpha+3} \leq Q_{\beta}$ and thus $Z_{\rho} = Z_{\alpha'}Z_{\sigma} \leq Q_{\beta}$, contrary to $(\rho,\beta) \in \mathcal{C}$ (Lemma 16.5). Therefore we must have $[F_{\mu},V_{\sigma}\cap Q_{\alpha+3}] \neq 1$ and recourse to Lemma 16.1(ii) gives $[F_{\mu},V_{\sigma}\cap Q_{\alpha+3}] = Z_{\alpha+3}$. Since $F_{\mu} \leq G_{\sigma}$ by Lemma 16.1(i), this gives $Z_{\alpha+3} \leq V_{\sigma}$. Clearly, as $F_{\alpha} \leq U_{\alpha}$ and $b \geq 5$, $F_{\alpha} \cap Q_{\alpha'}$ centralizes $Z_{\alpha+3}$ and therefore $Z_{\alpha+3} \leq V_{\sigma} \cap V_{\tau} = Z_{\rho}$ by the core argument. Because $Z_{\rho} \not\leq Q_{\beta}$ and $Z_{\alpha'} \not\leq Q_{\beta}$ it follows that $Z_{\alpha+3} = Z_{\alpha'}$. But then $Z_{\alpha'} \leq V_{\beta}$ which is ruled out by Lemma 16.4(i). Hence we deduce that $V_{\sigma} \leq Q_{\alpha+3}$. As a consequence of this Lemma 15.2 implies that $(\alpha+2,\sigma) \not\in \mathcal{C}$ and so $[Z_{\alpha+2},V_{\sigma}] \leq Z_{\sigma}$. In view of $Z_{\rho} = Z_{\alpha'}Z_{\sigma},Z_{\alpha'} \leq Q_{\beta}$ and $(\rho,\beta) \in \mathcal{C}$, we have $[Z_{\alpha+2},V_{\sigma}] = 1$. Consequently $V_{\sigma} \leq C_{G_{\alpha+2}}(Z_{\alpha+2}) = Q_{\alpha+2}$. Similarly we obtain $V_{\tau} \leq Q_{\alpha+2}$ and thus

(16.6.1) $U_{\rho} \leq G_{\beta}$.

Since $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$ and $F_{\alpha} \cap Q_{\alpha'} \not \leq Q_{\rho}$,

$$\begin{split} \left[V_{\beta} \cap Q_{\alpha'}, U_{\rho} \right] = & \left[V_{\beta} \cap Q_{\alpha'}, V_{\sigma} \right] \left[V_{\beta} \cap Q_{\alpha'}, V_{\tau} \right] \\ = & \left[V_{\beta} \cap Q_{\alpha'}, V_{\sigma} \right] \leq V_{\beta} \cap V_{\sigma}. \end{split}$$

The core argument and Lemma 16.5 give

$$[V_{eta} \cap Q_{lpha'}, U_{
ho}] \leq V_{eta} \cap Z_{
ho} = Z_{lpha'}.$$

Now $Z_{\alpha'} \not\leq V_{\beta}$ by Lemma 16.4(i) forces $[V_{\beta} \cap Q_{\alpha'}, U_{\rho}] = 1$. Hence, by (16.6.1), $|U_{\rho}Q_{\beta}/Q_{\beta}| \leq 2$. So

(16.6.2)
$$[U_{\varrho}: U_{\varrho} \cap Q_{\alpha}] \leq 2^2$$
.

Observe that

$$[F_{\alpha} \cap Q_{\alpha'}, U_{
ho} \cap Q_{lpha}] \leq Z_{lpha} \cap U_{
ho} \leq Z_{lpha} \cap Q_{lpha'} = Z_{eta}.$$

Therefore for $f \in F_{\alpha} \cap Q_{\alpha'}$, $|[f, U_{\rho}]| \leq 2^3$ by (16.6.2). Since $F_{\alpha} \cap Q_{\alpha'} \not\leq Q_{\rho}$, we conclude that $\eta(G_{\rho}, U_{\rho}) \leq 3$.

Together Lemmas 15.1 and 16.6 are responsible for the demise of Case 3, and so Theorem 14.1 is proven.

REFERENCES

- [LPR1] W. LEMPKEN C. PARKER P. ROWLEY, (S₃, S₆)-amalgams I-V, Nova J. Algebra Geom., 3 (1995), pp. 209–269, 271–311, 313–356; Rend. Sem. Mat. Univ. Padova 114 (2005), pp. 1–19, 117 (2007), pp. 231–256.
- [LPR2] W. Lempken C. Parker P. Rowley, A note on (S_3, S_5) and (S_3, S_6) amalgams, J. of Algebra, 143 (1991), pp. 518–522.

Manoscritto pervenuto in redazione il 19 settembre 2006