The *p*-adic Measure on the Orbit of an Element of \mathbb{C}_p .

V. Alexandru (*) - N. Popescu (**) - M. Vâjâitu (**) - A. Zaharescu (***)

ABSTRACT - Given a prime number p and the Galois orbit O(x) of an element x of \mathbb{C}_p , the topological completion of the algebraic closure of the field of p-adic numbers, we study functionals on the algebra $\mathcal{C}(O(x), \mathbb{C}_p)$ with values in a subfield of \mathbb{C}_p .

Introduction.

Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers, $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p , and \mathbb{C}_p the completion of $\overline{\mathbb{Q}}_p$ with respect to the p-adic valuation. Let O(x) denote the orbit of an element $x \in \mathbb{C}_p$, with respect to the Galois group $G = Gal_{cont}(\mathbb{C}_p/\mathbb{Q}_p)$. We are interested in the behavior of rigid analytic functions defined on $E(x) = (\mathbb{C}_p \cup \{\infty\}) \setminus O(x)$, the complement of O(x). In the present paper we provide several results concerned with functionals defined on the algebra $\mathcal{C}(O(x), \mathbb{C}_p)$ with values in a suitable subfield of \mathbb{C}_p . This investigation is needed in the more general attack on the problem of explicit description of rigid analytic functions on E(x), since, as we shall see below, there is a close relationship between these functionals and certain classes of rigid analytic functions. The paper consists of seven sections. The first one contains notations and some basic results. The

(*) Indirizzo dell'A.: Department of Mathematics, University of Bucharest, Romania.

E-mail: vralex@k.ro

Partially supported by Grant no. 27.694/2005, cod CNCSIS 849.

(**) Indirizzo degli A.: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania.

E-mail: Nicolae.Popescu@imar.ro Marian.Vajaitu@imar.ro

Partially supported by CEEX Program of the Romanian Ministry of Education and Research, Contract No. CEx 05-D11-11/2005.

(***) Indirizzo dell'A.: Department of Mathematics, University of Illinois at Urbana-Champaign, Altgeld Hall, 1409 W. Green Street, Urbana, IL, 61801, USA.

E-mail: zaharesc@math.uiuc.edu 2000 Mathematics Subject Classification: 11S99. second section is concerned with linear functions and functionals on various fields. Section 4 studies p-adic measures and p-adic equivariant measures on O(x). Theorem 1 shows that the study of all functionals on $\mathcal{C}(O(x), \mathbb{C}_p)$ can be reduced to the study of all functionals on $\mathcal{C}_G(O(x), \mathbb{C}_p)$. Then, using results from the previous sections, the functionals on $\mathcal{C}(O(x), \mathbb{C}_p)$ are closely related to the trace. Theorems 2 and 3 are useful complements to Theorem 1. In order to further clarify the relation between functionals and rigid analytic functions, in Section 5 we investigate the Cauchy transform of a function with respect to a measure. In the last section we present an analogue at an important theorem of Barsky [B], which relates the measures on O(x) with a suitable class of rigid analytic functions on the complement of O(x). We remark that some of the results of this paper can be extended to a wider class of compact subsets of \mathbb{C}_p .

1. Notations and basic results.

1. Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers, $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p , and \mathbb{C}_p the completion of $\overline{\mathbb{Q}}_p$ (see [Ar], [APZ1], [APZ2]). Denote by G the Galois group $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ endowed with the Krull topology. One knows that G is canonically isomorphic to $G = Gal_{cont}(\mathbb{C}_p/\mathbb{Q}_p)$, the group of all continuous automorphisms of \mathbb{C}_p . We shall identify these two groups.

For any closed subgroup H of G denote $Fix(H) = \{x \in \mathbb{C}_p : \sigma(x) = x \text{ for all } \sigma \in H\}$. Then Fix(H) is a closed subfield of \mathbb{C}_p . If $x \in \mathbb{C}_p$, denote $H(x) = \{\sigma \in G : \sigma(x) = x\}$. Then H(x) is a subgroup of G, and $Fix(H(x)) = \mathbb{Q}_p[x]$ is the closure of the polynomial ring $\mathbb{Q}_p[x]$ in \mathbb{C}_p . We say that x is a topological generic element of $\mathbb{Q}_p[x]$. Moreover, by [APZ1] one knows that any closed subfield K of \mathbb{C}_p has a topological generic element, i.e. there exists $x \in K$ such that $K = \mathbb{Q}_p[x]$.

2. Let $x \in \mathbb{C}_p$. Denote $O(x) = \{\sigma(x) : \sigma \in G\}$ the orbit of x. The map $\sigma \leadsto \sigma(x)$ from G to O(x) is continuous, and it defines a homeomorphism from G/H(x) (endowed with the quotient topology) to O(x) (endowed with the induced topology from \mathbb{C}_p) (see [APZ1]). In such a way, O(x) is a closed compact and totally disconnected subspace of \mathbb{C}_p , and the group G acts continuously on O(x): if $\sigma \in G$, $\tau(x) \in O(x)$ then $\sigma \star \tau(x) = (\sigma \tau)(x)$. One has the following result:

PROPOSITION 1. 1) The subfield $\mathbb{Q}_p[x]$ is canonically isomorphic to the set of all equivariant continuous functions $f: O(x) \to \mathbb{C}_p$, i.e. the contin-

uous functions which verify the condition: $f(\sigma \star y) = \sigma(f(y))$ for all $\sigma \in G$ and $y \in O(x)$.

- 2) There exists a family $\{M_n(x)\}_{n\geq 0}$ of polynomials in $\mathbb{Q}_p[x]$ such that
 - i) $\deg M_n(x) = n \text{ for all } n \geq 0$,

ii)
$$\frac{1}{p} < |M_n(x)| \le 1$$
,

- iii) Any element $f \in \widetilde{\mathbb{Q}_p[x]}$ can be written uniquely in the form: $f = \sum_{n \geq 0} a_n M_n(x)$ where $\{a_n\}_n$ is a sequence of elements in \mathbb{Q}_p such that $\lim_n a_n = 0$. Moreover one has: $|f| = \sup_{n \geq 0} |a_n M_n(x)|$.
- 3) If $K_x = \widetilde{\mathbb{Q}_p[x]} \cap \overline{\mathbb{Q}_p}$, then $\widetilde{K_x} = \widetilde{\mathbb{Q}_p[x]}$ and $Gal(\overline{\mathbb{Q}_p/K_x})$ is canonically isomorphic to H(x).

2. Linear functions and functionals.

1. Let K/k be a (not necessarily finite) algebraic extension, and $\{K_n\}_{n\geq 0}$, $K_0=k$, $K_n\subset K_{n+1}$ for any n, a family of subfields of K, finite over k such that $\cup_n K_n=K$. Denote by $\mathcal{L}(K/k)$ the set of all k-linear maps of K into k. Then $\mathcal{L}(K/k)$ is in a canonical way a K-vector space. Namely if $\varphi\in\mathcal{L}(K/k)$ and $x\in K$ then $x\varphi$ is the linear map defined by $(x\varphi)(a)=\varphi(xa)$ for all $a\in K$.

Now assume that k is of zero characteristic and for all $a \in K$ denote by $Tr_{K/k}(a)$ or simply by Tr(a) the element of k defined as follows: if $k \subseteq K' \subset K$ is a finite intermediate extension and $a \in K'$, then $Tr(a) = \frac{1}{[K':k]} tr_{K'/k}(a)$, where $tr_{K'/k}(a)$ denotes the usual relative trace of a over

k. It is clear that Tr(a) is independent of the choice of K'.

If K/k is a finite extension, then for any $\varphi \in \mathcal{L}(K/k)$ there exists a unique $\alpha \in K$ such that $\varphi = \alpha Tr$. Now assume $[K:k] = \infty$ and let φ_n be the restriction of φ to K_n . Then $\varphi_n \in \mathcal{L}(K_n/k)$ and so there exists a unique element $\alpha_n \in K_n$ such that for all $\alpha \in K_n$ one has:

(1)
$$\varphi_n(a) = Tr(\alpha_n a).$$

Thus for any $a \in K_n$, one has: $\varphi_{n+1}(a) = \varphi_n(a)$, and so by (1) one has: $Tr(\alpha_{n+1}a) = Tr(\alpha_na)$. This means that

(2)
$$\frac{1}{[K_{n+1}:K_n]} tr_{K_{n+1}/K_n}(\alpha_{n+1}) = \alpha_n, \ n \ge 0.$$

Conversely, let $A=\{\alpha_n\}_n$ be a sequence of elements of K such that $\alpha_n\in K_n$ for all $n\geq 0$, and that condition (2) is accomplished. Then for any $n\geq 0$ denote by $\varphi_n^A:K_n\to k$ the map $\varphi_n^A(a)=Tr(\alpha_na),\ a\in K_n$. By (2) there results that one can define a linear map $\varphi^A:K\to k$ such that the restriction of φ^A to K_n is just φ_n^A . Denote $P=\lim\left(K_n,\frac{1}{[K_{n+1}:K_n]}tr_{K_{n+1}/K_n}\right)_{n\geq 0}$. Then by the above considerations there results that the map $A\leadsto \varphi^A$ defines a k-isomorphism between the k-vector space P and $\mathcal{L}(K/k)$.

2. Now assume that K is endowed with an ultrametric absolute value $|\cdot|:K\to\mathbb{R}$. We consider the functionals $\varphi:K\to k$, i.e. all k-linear maps which are continuous.

A linear map $\varphi: K \to k$ is continuous if and only if there exists a positive real number M such that $|\varphi(a)| \leq M|a|$, for any $a \in K$. Since φ is defined uniquely by a sequence $A = \{\alpha_n\}_n$, $\alpha_n \in K$ for all $n \geq 0$, which verify condition (2), then φ is continuous if and only if there exists a positive real number M such that

$$|Tr(\alpha_n y)| \leq M|y|,$$

for all n, and all $y \in K_n$. Now one can write $y = \frac{x}{\alpha_n}$, where $x \in K_n$, and so the above condition can be written as:

$$|Tr(x)| \cdot |\alpha_n| \le M|x|,$$

for all $n \geq 0$ and any $x \in K_n$.

Let $L = K_n$, be fixed. We want to relate $\sup_{x \in K_n} \frac{tr(x)}{[L:k]|x|}$ and $\frac{\mathcal{D}_L}{[L:k]}$, where \mathcal{D}_L is the different of L with respect to k (see [Ar]).

REMARK 1. Any $x \in K_n^{\times}$ can be represented as $x = p^{l_x}\alpha$, where $1 \geq |\alpha| > \frac{1}{p}$ and l_x is integer. Then one has: $\max_{x \in K_n} \frac{|tr(x)|}{|x|} = \max_{x \in K_n, \frac{1}{p} < |x| \leq 1} \frac{|tr(x)|}{|x|}$, and the quotient between this number and $M_{K_n} = \max \left\{ |tr(x)| : x \in K_n, \frac{1}{p} < |x| \leq 1 \right\}$ is a real number whose module belongs to the real interval $\left[1, \frac{1}{p}\right)$.

If $\alpha \in K_n$ then $|\alpha| \leq |\mathcal{D}_{K_n}|^{-1}$ if and only if $|tr(\alpha O_{K_n})| \leq 1$. (Here $|tr(\alpha O_{K_n})| = \max\{|tr(\alpha X)| : x \in O_{K_n}$, the ring of integers of $K_n\}$.) Let us denote by m_{K_n} the integer part of $\log_{1/p}|\mathcal{D}_{K_n}|$. If $\alpha = p^{-m_{K_n}}$, then $|tr(p^{-m_{K_n}}O_{K_n})| \leq 1$, or equivalently $|tr(O_{K_n})| \leq (1/p)^{m_{K_n}}$. This means that $M_{K_n} \leq (1/p)^{m_{K_n}}$.

Let $\alpha = p^{-(m_{K_n}+1)}$. Then there exists $y \in O_{K_n}$ such that $|trp^{-(m_{K_n}+1)}y| > 1$ or equivalently $\log_{1/p}|try| < m_{K_n} + 1$. Therefore one obtains

$$\log_{1/p}(M_{K_n}) < m_{K_n} + 1 \text{ or } \left(\frac{1}{p}\right)^{m_{K_n}+1} < M_{K_n}.$$

Thus we have $m_{K_n} \leq \log_{1/p}(M_{K_n}) < m_{K_n} + 1$. In conclusion, one has the following result:

PROPOSITION 2. The linear mapping $\varphi: K \to k$, $\varphi = \varphi^A$, is continuous if and only if there exists a positive real number M such that:

(3)
$$\frac{|\mathcal{D}_{K_n}||\alpha_n|}{[K_n:k]} \le M, \text{ for all } n \ge 1.$$

REMARK 2. Let $x \in \mathbb{C}_p$ such that Tr(x) is defined (see [APZ2]). One has the following result. Let $K = \widehat{\mathbb{Q}_p[x]} \cap \overline{\mathbb{Q}_p}$, and $K = \cup_n K_n$ be the union of a filtered family of finite extensions of \mathbb{Q}_p . The following assertions are equivalent:

- 1) The sequence $\{|Tr(M_n(x))|\}_n$ is bounded (see Proposition 1).
- 2) The sequence $\left\{\frac{|\mathcal{D}_{K_n/\mathbb{Q}_p}|}{|[K_n:\mathbb{Q}_p]|}\right\}_n$ is bounded.
- 3) The linear map $Tr: K \to \mathbb{Q}_p$ is continuous.

These results are related to some results from [APP].

3. Denote by \mathcal{A} the set of all elements $A \in P$ which verify condition (3) for a suitable M > 0. It is easy to see that \mathcal{A} is a k-vector subspace of P. Denote by K' the k-vector space of all k-functionals on K. By the above considerations one has:

PROPOSITION 3. The mapping $A \leadsto \varphi^A$ defines an isomorphism of k-vector spaces between A and K'.

Now let $A=\{\alpha_n\}_n$ be an element of $\mathcal A$ such that $\alpha_n\neq 0$ for all $n\geq 0$. Let $\psi\in K', \psi=\varphi^B, B=\{\beta_n\}_n\in \mathcal A$. Denote $u_n=\frac{\beta_n}{\alpha_n}, n\geq 0$. We assert that the sequence $\{u_n\}_n$ is bounded, i.e. there exists a real number M>0 such that $|u_n|\leq M$ for all $n\geq 0$. Indeed, assume that there exists a subsequence $\{u_q\,n\}$ such that $|u_{q_n}|\to\infty$. Then $|1/u_{q_n}|\to 0$ and so $\lim_n\psi(1/u_{q_n})=0$. But $\psi(1/u_{q_n})=Tr(\alpha_{q_n})$, and thus $\varphi^A(1)=0$, a contradiction.

If for any $n \geq 0$, one denotes $\varphi_n = u_n \varphi^A$, then one has: $\psi(x) = \lim_n \varphi_n(x)$ for any $x \in K$. Indeed, for n large enough one has: $\varphi_n(x) = (u_n \varphi^A)(x) = \varphi^A(u_n x) = Tr(\alpha_n u_n x) = Tr(\beta_n x) = \psi(x)$. This shows that the sequence $\{\varphi_n\}_n$ converges pointwise to ψ in K' and so by the Banach-Steinhaus Theorem (see [R]) one has $\psi = \lim_n \varphi_n = \lim_n (u_n \varphi^A)$.

PROPOSITION 4. Notations and hypotheses are as above. Let $\varphi = \varphi^A$. Denote by S_A the family of all sequences $u = \{u_n\}_n$ such that:

- 1) $u_n \in K_n$ for all $n \geq 1$.
- 2) The sequence of real numbers $|u_n|$ is bounded.
- 3) One has: $\frac{1}{[K_{n+1}:K_n]}tr_{K_{n+1}/K_n}(u_{n+1})=u_n,\ n\geq 0.$

For any $u = \{u_n\}_n \in S_A$, denote by u_{φ} the mapping defined by: $(u_{\varphi})(x) = \lim_n \varphi(u_n x)$. Then $u_{\varphi} \in K'$ and if $\varphi \neq 0$, then for any $\psi \in K'$ there exists a unique $u \in S_A$ such that $u_{\varphi} = \psi$.

We leave the details to the reader.

3. Integration on C(X, K).

- 1. Let K be a field which is complete with respect to an ultrametric absolute value $|\cdot|$, and let X be a compact ultrametric space. Denote by C(X,K) the K-algebra of all continuous functions from X to K (see [Sch]). Also, denote by $\Omega(X)$ the collection of all the open compact subspaces of X. By a K-valued measure on X we mean a function $\mu:\Omega(X)\to K$ such that:
- (i) If $U,V\in \Omega(X),\ U\cap V=\emptyset,$ then $\mu(U\cup V)=\mu(U)+\mu(V)$ (additivity).
 - (ii) $\|\mu\| = \sup\{|\mu(U)| : U \in \Omega(X)\} < \infty$ (boundedness).

The *K*-valued measures on *K* form a normed vector space M(X,K) under the obvious operations and with the norm $\|\cdot\|$ defined by (ii).

The following statement (see [Sch]) can be viewed as the ultrametric analog of Riesz representation theorem:

PROPOSITION 5. For each $\varphi \in C(X,K)'$ (the space of all functionals on C(X,K)), the mapping $U \leadsto \varphi(\xi_U) = \mu_{\varphi}(U)$, $U \in \Omega(X)$, is a measure μ_{φ} on X (here ξ_U denotes the characteristic function of U). The mapping $\varphi \leadsto \mu_{\varphi}$ is a K-linear isometry of C(X,K)' onto M(X,K).

4. Equivariant measures on O(x).

1. Let $x \in \mathbb{C}_p$. The subset of $C(O(x), \mathbb{C}_p)$ consisting of all equivariant elements (see Proposition 1) is denoted by $C_G(O(x), \mathbb{C}_p)$. The mapping $f \leadsto f(x)$ defines an isomorphism between $C_G(O(x), \mathbb{C}_p)$ and $\widehat{\mathbb{Q}_p[x]}$. We shall identify these \mathbb{Q}_p -algebras via this isomorphism.

Let $f \in C(O(x), \mathbb{C}_p)$ and $\sigma \in G$. Denote by $\sigma \star f$ the function defined by: $(\sigma \star f)(y) = f(\sigma^{-1}(y))$ for all $y \in O(x)$. In this way the group G acts continuously on the algebra $C(O(x), \mathbb{C}_p)$.

2. Let K be a closed and normal subfield of \mathbb{C}_p (i.e. for any $\sigma \in G$, one has $\sigma(K) = K$). By an equivariant K-functional on $C(O(x), \mathbb{C}_p)$ we mean a linear and continuous map $\varphi : C(O(x), \mathbb{C}_p) \to K$ such that $\varphi(\sigma \star f) = \varphi(\varphi(f))$ for all $\sigma \in G$ and all $f \in C(O(x), \mathbb{C}_p)$. It is easy to see that by the correspondence stated in Proposition 5, the equivariant K-functionals on $C(O(x), \mathbb{C}_p)$ are in one to one correspondence with the so called equivariant measures on O(x), i.e. the elements $\mu \in M(O(x), \mathbb{C}_p)$, such that $\mu(\sigma U) = \varphi(\mu(U))$ for all $U \in \Omega(O(x))$ and $\sigma \in G$. In this paper we consider mainly the case $K = \mathbb{Q}_p$ and shall investigate the above correspondence between functionals and measures.

THEOREM 1. Any \mathbb{Q}_p -functional $\varphi: C_G(O(x), \mathbb{C}_p) \to \mathbb{Q}_p$ can be uniquely extended to a \mathbb{C}_p -functional $\widetilde{\varphi}: C(O(x), \mathbb{C}_p) \to \mathbb{C}_p$ and this functional provides us with a measure μ_{φ} on O(x) with values in $\overline{\mathbb{Q}}_p$. The measure μ_{φ} is equivariant.

Next, we recall an important criterion for the existence of a measure with given properties.

PROPOSITION 6 (The abstract Kummer congruences, [Ka]). Let \mathcal{X} be a compact ultrametric space, let O_p be the ring of integers of \mathbb{C}_p and let $\{f_i\}$ be a system of continuous functions from $\mathcal{C}(\mathcal{X}, O_p)$. If the \mathbb{C}_p -linear span of $\{f_i\}$ is dense in $\mathcal{C}(\mathcal{X}, \mathbb{C}_p)$ and $\{\lambda_i\}$ is an arbitrary system of elements of O_p , then the following assertions are equivalent:

- a) There is $\mu \in \mathcal{M}(X, O_p)$ with the property $\int_{\mathcal{X}} f_i d\mu = \lambda_i$.
- b) For an arbitrary choice of elements $\gamma_i \in \mathbb{C}_p$ almost all of which vanish,

$$\sum_i \gamma_i f_i(x) \in p^n O_p \text{ for all } x \in \mathcal{X} \text{ implies } \sum_i \gamma_i \lambda_i \in p^n O_p.$$

Now, let $\{a_n\}_{n\geq 0}$ be a bounded sequence of \mathbb{Q}_p . Let us define $\varphi: C_G(O(x), \mathbb{C}_p) \to \mathbb{Q}_p$ such that $\varphi(M_n(x)) = a_n$. As we know from Proposition 1 any $f \in C_G(O(x), \mathbb{C}_p)$ can be written as $f = \sum_{n\geq 0} \alpha_n M_n(x)$, with $\alpha_n \to 0$. We define $\varphi(f) := \sum_{n\geq 0} \alpha_n a_n$. Using Theorem 1 we have a similar result of abstract Kummer congruences. More precisely we have:

PROPOSITION 7. Let $\{a_n\}_{n\geq 0}$ be a bounded sequence of \mathbb{Q}_p . There exists a unique functional $\varphi: C(O(x), \mathbb{C}_p) \to \mathbb{C}_p$ such that $\varphi(M_n(x)) = a_n$, for any $n \geq 0$.

THEOREM 2. If μ is an equivariant measure on O(x) with values in $\overline{\mathbb{Q}}_p$ then the mapping $f \leadsto \int\limits_{O(x)} f(t) d\mu(t)$ is a functional on $C_G(O(x), \mathbb{C}_p)$ with values in \mathbb{Q}_p .

PROOF OF THEOREM 1. We use the notations from Proposition 1. For any $s \geq 0$ let us denote $A_s = \varphi(M_s(x))$. Then for any $u = \sum_s a_s M_s(x)$, one has $\varphi(u) = \sum_s a_s A_s$. Since the equality is true for any $u \in \mathbb{Q}_p[x]$, there results that the sequence $\{A_s\}_s$ of p-adic numbers is bounded and so the set of all \mathbb{Q}_p -functionals on $\widehat{\mathbb{Q}_p[x]} = C_G(O(x), \mathbb{C}_p)$ is in one to one correspondence with the set of bounded sequences $\{A_s\}_s$ of p-adic numbers.

Now let U be an open ball on O(x), $x \in U$, and denote $H(U) = \{\sigma \in G : \sigma U = U\}$. Then H(U) is a subgroup of G, and denote by K_U the subfield of $\overline{\mathbb{Q}}_p$ fixed by H(U). Since $H(x) \subseteq H(U)$, then $K_U \subseteq K_x = \widehat{\mathbb{Q}_p[x]} \cap \overline{\mathbb{Q}}_p$. It is clear that $[G:H(U)] < \infty$ and let $S_n = \{\sigma_1 = e, \sigma_2, \ldots, \sigma_n\}$ be a system of representatives for the right cosets of G with respect to H(U). Also choose $\alpha \in \overline{\mathbb{Q}}_p$ such that $K_u = \mathbb{Q}_p(\alpha)$. It is clear that the elements $\{\sigma_1(\alpha), \ldots, \sigma_n(\alpha)\}$ are distinct, and the balls $\{\sigma_i(U)\}_{1 \le i \le n}$ are pair-wise disjoint and cover O(x). Let us put

$$\begin{cases} f_0^{(U)} = \sum_{\sigma_i \in S_n} \sigma_i(1) \xi_{\sigma_i(U)} = \xi_{O(T)} \\ f_1^{(U)} = \sum_{\sigma_i \in S_n} \sigma_i(\alpha) \xi_{\sigma_i(U)} \\ \dots \\ f_{n-1}^{(U)} = \sum_{\sigma_i \in S_n} \sigma_i(\alpha^{n-1}) \xi_{\sigma_i(U)}. \end{cases}$$

We assert that the function $f_i^{(U)}$ is equivariant for all $i, 0 \le i < n$, i.e. $f_i^{(U)}(\sigma(y)) = \sigma(f_i^{(U)}(y))$ for all $y \in O(x)$ and any $\sigma \in G$. For that it is enough to assume i=1. Firstly, we remark that one has: $f_i^{(U)}(y) = \sigma_i(y)$ for $y \in \sigma_i(U)$, $1 \le i \le n$. Now we can write: $f_{\sigma,1}^{(U)} = \sigma f_1^{(U)}(\sigma^{-1}(y)) = \sigma \sigma_i(\alpha)$ if $\sigma^{-1}(y) \in \sigma_i U$ (or equivalently $x \in \sigma \sigma_i(U)$).

It is clear that the following permutations

$$(5) \quad \begin{pmatrix} \sigma_1 U & \sigma_2 U & \dots & \sigma_n U \\ \sigma \sigma_1 U & \sigma \sigma_2 U & \dots & \sigma \sigma_n U \end{pmatrix}, \quad \begin{pmatrix} \sigma_1(\alpha) & \sigma_2(\alpha) & \dots & \sigma_n(\alpha) \\ \sigma \sigma_1(\alpha) & \sigma \sigma_2(\alpha) & \dots & \sigma \sigma_n(\alpha) \end{pmatrix}$$

coincide, so the applications

$$\begin{pmatrix} \sigma_1 U & \sigma_2 U & \dots & \sigma_n U \\ \sigma_1(\alpha) & \sigma_2(\alpha) & \dots & \sigma_n(\alpha) \end{pmatrix}, \begin{pmatrix} \sigma \sigma_1 U & \sigma \sigma_2 U & \dots & \sigma \sigma_n U \\ \sigma \sigma_1(\alpha) & \sigma \sigma_2(\alpha) & \dots & \sigma \sigma_n(\alpha) \end{pmatrix}$$

also coincide. This shows that $f_1^{(U)} = f_{\sigma,1}^{(U)}$, i.e. f_1 is equivariant.

Furthermore (4) is a Cramer system whose determinant is different from zero. It follows that

(6)
$$\sum_{i=0}^{n-1} \mathbb{Q}_p(\alpha) f_i^{(U)} = \sum_{i=1}^n \mathbb{Q}_p(\alpha) \xi_{\sigma_i U},$$

and this sum is direct. This shows that the functional φ can be extended uniquely to a functional

$$\widetilde{\varphi}: \mathcal{C}_G(O(x), \mathbb{C}_p) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p \to \overline{\mathbb{Q}}_p.$$

According to ([Sch], page 273), the \mathbb{C}_p -algebra $\mathcal{C}(O(x), \mathbb{C}_p)$ has an orthonormal basis consisting of characteristic functions of balls. Then the $\overline{\mathbb{Q}}_p$ -subalgebra $\mathcal{C}_G(O(T), \mathbb{C}_p) \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p$ is dense in the \mathbb{C}_p -algebra $\mathcal{C}(O(T), \mathbb{C}_p)$. But then $\widetilde{\varphi}$ can be extended uniquely to a \mathbb{C}_p -functional:

$$\widetilde{\varphi}: \mathcal{C}(O(T), \mathbb{C}_p) \to \mathbb{C}_p.$$

Then by Riesz's Theorem (Proposition 5) there exists a unique measure μ_{φ} on O(x) associated to $\widetilde{\varphi}$. It is clear that for any ball U in O(x), $\mu_{\varphi}(U) = \widetilde{\varphi}(\xi_U)$, can be obtained from (4) by applying the functional $\widetilde{\varphi}$. We must show that the measure μ_{φ} is equivariant. For that let as above U be an open ball of O(x) which contains x. Denote $A = (a_{ij})$ the $n \times n$ matrix, where $a_{ij} = \sigma_i(\alpha^j)$, $1 \le i \le n$, $0 \le j < n - 1$. Then by (4) there results:

$$\begin{pmatrix} \xi_{\sigma_1(U)} \\ \vdots \\ \xi_{\sigma_n(U)} \end{pmatrix} = A^{-1} \begin{pmatrix} f_0^{(U)} \\ \vdots \\ f_{n-1}^{(U)} \end{pmatrix}$$

and so by applying $\widetilde{\varphi}$ one has:

$$\begin{pmatrix} \mu_{\varphi}(\sigma_1(U)) \\ \vdots \\ \mu_{\varphi}(\sigma_n(U)) \end{pmatrix} = A^{-1} \begin{pmatrix} \varphi(f_0^{(U)}) \\ \vdots \\ \varphi(f_{n-1}^{(U)}) \end{pmatrix}.$$

Now for $\sigma \in G$ denote by A_{σ} the matrix obtained from A by applying σ to all the entries of A. Then $(A_{\sigma})^{-1} = A_{\sigma}^{-1}$.

Since $f_i^{(U)}$ are equivariant functions, one has: $f_i^{(\sigma(U))} = f_i^{(U)}$ for all $\sigma \in G$. Then one obtains $\mu_{\varphi}(\sigma U) = \sigma \mu_{\varphi}(U)$, for all $\sigma \in G$, as claimed.

PROOF OF THEOREM 2. Let μ be an equivariant measure on O(x) with values in $\overline{\mathbb{Q}}_p$. Denote by $\varphi: \mathcal{C}(O(x), \mathbb{C}_p) \to \mathbb{C}_p$ the functional associated to μ . We must show that for any $f \in \mathcal{C}_G(O(x), \mathbb{C}_p)$ one has $\varphi(f) \in \mathbb{Q}_p$. Since any element $f \in \mathcal{C}_G(O(x), \mathbb{C}_p) = \widehat{\mathbb{Q}_p[x]}$ is a limit of a sequence $\{a_n\}_n$ of elements of K_x (see [APZ1]) it is enough to show that for $a \in K_x$, one has $\varphi(a) \in \mathbb{Q}_p$. But this follows by the proof of Proposition 5 (see [Sch]) since μ is equivariant. Some details are left to the reader (see also the proof of Theorem 3).

3. By the above considerations there results that if $\varphi: \mathcal{C}_G(O(x), \mathbb{C}_p) \to \mathbb{Q}_p$ is a functional then the associated measure μ_{φ} (Proposition 5) takes values in $K_x = \widehat{\mathbb{Q}_p[x]} \cap \overline{\mathbb{Q}}_p$. At this point we describe the equivariant measures on O(x) with values in \mathbb{Q}_p .

Theorem 3. For the element $x \in \mathbb{C}_p$ the following assertions are equivalent:

- 1) There exists a functional $\varphi : \mathcal{C}_G(O(x), \mathbb{C}_p) \to \mathbb{Q}_p$ such that for any open ball U of O(x) one has: $\mu_{\varphi}(U) \in \mathbb{Q}_p$.
- 2) The function $Tr: K_x \to \mathbb{Q}_p$ defined by $Tr(\alpha) = \frac{1}{\deg \alpha} \cdot tr_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}(\alpha)$ is continuous and one has: $\varphi(\alpha) = Tr(\alpha)$ for all $\alpha \in K_x$.

PROOF. Let $\alpha \in K_x$, and $\alpha = \sigma_1(\alpha), \cdots, \sigma_n(\alpha)$ be all the conjugates of α over \mathbb{Q}_p , $n = \deg(\alpha)$. Since $\alpha \in \widetilde{\mathbb{Q}_p[x]}$, denote $\overline{\alpha} : O(x) \to \mathbb{C}_p$ the local constant function defined by $\overline{\alpha}(\sigma(x)) = \sigma(\alpha)$. One has: $\varphi(\alpha) = \varphi(\overline{\alpha})$. The elements $\sigma_i(x)$, $1 \le i \le n$ are all distinct and let $\varepsilon > 0$ be a real number such that all the balls $B(\sigma_i(x), \varepsilon)$ are pairwise disjoint. Denote $H(x, \varepsilon) = \{\sigma \in G : |\sigma(x) - x| < \varepsilon\}$. Then $H(x, \varepsilon)$ is a subgroup of G of finite index. If $N = [G : H(x, \varepsilon)]$ and $\{\tau_i\}_{1 \le i \le N}$ is a set of right representatives for the cosets of G with respect to $H(x, \varepsilon)$, then the balls $\{B(\tau_i(x), \varepsilon)\}_{1 \le i \le N}$ cover O(x)

and are any two disjoint. One has $B(\tau_i(x),\varepsilon)=\tau_i(B(x,\varepsilon))$, and so by hypothesis there results that $\mu_{\varphi}(B(\tau_i(x),\varepsilon))=\mu_{\varphi}(B(x,\varepsilon))$. Since $\varphi(1)=1$, one has:

$$\mu_{\varphi}(\sigma(x)) = 1 = \sum_{i} \mu_{\varphi}(B(\tau_{i}(x), \varepsilon)) = N\mu_{\varphi}(B(x, \varepsilon)).$$

According to our choice of ε , there results that on any ball $B(\tau_i(x), \varepsilon)$ the function $\overline{\alpha}$ is constant and $N = k \deg(\alpha)$, where k is an integer. Then

$$\varphi(\overline{\alpha}) = \sum_{i} \overline{\alpha}(\tau_{i}(x))\mu_{\varphi}(B(\tau_{i}(x), \varepsilon)).$$

Since for exactly k balls $B(\tau_i(x), \varepsilon)$ the function $\overline{\alpha}$ takes the same values $\sigma_j(\alpha)$, by the above considerations one further obtains

$$\varphi(\alpha) = \varphi(\overline{\alpha}) = \sum_{j=1}^{n} k \sigma_j(\alpha) \mu \varphi(B(x, \varepsilon)) = nk \mu_{\varphi}(B(x, \varepsilon) \cdot \frac{1}{n} \left(\sum_{j=1}^{n} \sigma_j(\alpha) \right) = Tr(\alpha).$$

The implication from 2) to 1) is left to the reader.

REMARK 3. Let φ be as in Theorem 3. By the above considerations there results that for any $\varepsilon>0$, one has: $\mu_{\varphi}(B(x,\varepsilon))=\frac{1}{N}$, where $N=[G:H(x,\varepsilon)]$. This shows that the p-adic measure μ_{φ} coincides with the p-adic Haar measure π_x defined in [APZ2].

Under the hypothesis of Theorem 3 there results that if $\mathbb{Q}_p \subset K_1 \subset \cdots \subset K_n \subset \cdots \subset K_x$ is a tower of finite extensions of \mathbb{Q}_p such that $\bigcup_n K_n = K_x$, then by considerations from Section 3, one has $\varphi = \varphi^A$, when $A = \left\{ \frac{1}{[K_n : \mathbb{Q}_n]} \right\}_{n \geq 1}$.

5. Cauchy Transforms on O(x).

1. Let $x \in \mathbb{C}_p$. For any real number $\varepsilon > 0$ denote $B(x,\varepsilon) = \{y \in \mathbb{C}_p : |x-y| < \varepsilon\}$ and $B[x,\varepsilon] = \{y \in \mathbb{C}_p : |x-y| \le \varepsilon\}$. Also denote $E(x,\varepsilon) = \{y \in \mathbb{C}_p : |y-t| \ge \varepsilon$, for all $t \in O(x)\}$. The complement of $E(x,\varepsilon)$ in $\mathbb{C}_p \cup \{\infty\}$ is denoted by $V(x,\varepsilon)$. Both sets $E(x,\varepsilon)$ and $V(x,\varepsilon)$ are open and closed, and one has: $\cap_{\varepsilon} V(x,\varepsilon) = O(x)$. Denote $E(x) = \cup_{\varepsilon} E(x,\varepsilon) = \mathbb{C}_p \cup \{\infty\} \setminus O(x)$.

For any $x \in \mathbb{C}_p$ and $\varepsilon > 0$ denote $H(x, \varepsilon) = \{ \sigma \in G : |\sigma(x) - x| < \varepsilon \}$ and $H[x, \varepsilon] = \{ \sigma \in G : |\sigma(x) - x| \le \varepsilon \}$. Let S_{ε} (respectively $\overline{S}_{\varepsilon}$) be a complete

system of representatives for the right cosets of G with respect to $H(x, \varepsilon)$ (respectively $H[x, \varepsilon]$). Then $E(x, \varepsilon) = \bigcup_{\sigma \in S_s} B(\sigma(x), \varepsilon)$.

2. Let $\varphi: C(O(x), \mathbb{C}_p) \to K$ be a functional, where K is a suitable closed subfield of \mathbb{C}_p . Also denote by μ the measure associated to φ according to Proposition 5. Then for any $f \in C(O(x), \mathbb{C}_p)$ one has:

$$\varphi(f) = \int_{O(x)} f(t)d\mu(t).$$

For any $z \in E(x)$ and any $f \in C(O(x), \mathbb{C}_p)$, the function $T(f, z) : O(x) \to \mathbb{C}_p$ defined by

$$T(f,z)(t) = \frac{f(t)}{z-t}, \ t \in O(x)$$

belongs to $C(O(x), \mathbb{C}_p)$. Hence for any $z \in E(x)$ one can define the element

$$F_K(\mu, f, z) = \int\limits_{O(x)} rac{f(t)}{z - t} d\mu(t),$$

called the Cauchy transform of f with respect to μ (or φ).

Now let $z_0 \in E(x)$. Then for any $z \in E(x)$ and $t \in O(x)$ one can write:

(7)
$$\frac{f(t)}{z_0 - t} = \frac{f(t)}{z - t} + \frac{f(t)(z - z_0)}{(z - t)^2} + \dots + \frac{f(t)(z - z_0)^n}{(z - t)^{n+1}} + \dots$$

Generally the series (7) does not converge, but it converges for a suitable choice of z. Indeed, let $|z_0-t| \ge \varepsilon$ for all $t \in O(x)$, and let a be a real number such that $0 < \frac{\varepsilon}{a} < 1$. Then for any $z \in B(z_0, \varepsilon^2/a)$, the series (7) converges since one has: $\left|\frac{z-z_0}{z-t}\right|^n \le \left(\frac{\varepsilon}{a}\right)^n \cdot \frac{1}{\varepsilon} < 1$, for any $t \in O(x)$. Hence for any $z \in B(z_0, \varepsilon^2/a)$ one can write:

(8)
$$\int_{O(z)} \frac{f(t)}{z_0 - t} d\mu(t) = \int_{O(z)} \frac{f(t)}{z - t} d\mu(t) + \dots + \int_{O(z)} \frac{f(t)(z - z_0)^n}{(z - t)^{n+1}} d\mu(t) + \dots$$

and this series is also convergent (since φ is continuous) for all $z \in B(z_0, \varepsilon^2/a)$.

3. Let $\{\varepsilon_n\}_n$ be a strictly decreasing sequence of positive real numbers with limit zero. One can assume that $S_n\subseteq S_{n+1}$ for all $n\geq 0$, where $S_n=S_{\varepsilon_n}$

For any $n \ge 0$, choose an element $a_n \in K_x$ such that $|x - a_n| < \varepsilon_n$. Then by ([Sch], page 276) it follows that

$$F_K(\mu, f, z) = \lim_n \sum_{\sigma \in S_n} \mu(B(\sigma(x), \varepsilon_n)) \frac{f(\sigma(x))}{z - \sigma(x)}.$$

By this equality it also follows that

(9)
$$F_K(\mu, f, z) = \lim_{n} \sum_{\sigma \in S_n} \mu(B(\sigma(x), \varepsilon_n)) \frac{f(\sigma(a_n))}{z - \sigma(a_n)}.$$

By the above considerations one obtains the following result.

THEOREM 4. Let $x \in \mathbb{C}_p$, and let $\varphi : C(O(x), \mathbb{C}_p) \to K$ be a functional, where K is a closed subfield of \mathbb{C}_p . Then for any $f \in C(O(x), \mathbb{C}_p)$ the function $F_K(\mu, f, z) : E(x) \to \mathbb{C}_p$ defined by (8) is a rigid analytic function on E(x), and $\lim_{z \to \infty} F_K(\mu, f, z) = 0$.

4. If the field K and the functional φ are fixed we shall write simply F(f,z) instead of $F_K(\mu,f,z)$.

6. Equivariant Cauchy Transforms.

1. For $x \in \mathbb{C}_p$ consider an equivariant functional $\varphi : C_G(O(x), \mathbb{C}_p) \to \mathbb{Q}_p$. By Theorem 1 the associate measure $\mu = \mu_{\varphi}$ is equivariant. On has the following result:

THEOREM 5. For any nonzero element $f \in C_G(O(x), \mathbb{C}_p)$, the function F(f, z), the Cauchy transform of f with respect to φ , is an equivariant rigid analytic function defined on E(x). Any element of O(x) is a singular point for F(f, z), if $F(f, z) \neq 0$.

PROOF. We observe that for any $z \in E(x)$ and any $\sigma \in G$, one has $\sigma(z) \in E(x)$. Recall that F(f,z) is *equivariant* if for any $\sigma \in G$ one has: $F(f,\sigma(z)) = \sigma(F(f,z))$. Now this equality is true since φ is equivariant (see (8)). Furthermore if $F(f,z) \neq 0$, it has a singular point (a pole) which must belong to O(x). Then by equivariance all elements of O(x) are poles for F(f,z).

COROLLARY 1. For an element $x \in \mathbb{C}_p$ the following assertions are equivalent:

- a) O(x) is a finite set.
- b) $x \in \overline{\mathbb{Q}}_p$.
- c) There exists an element $f \in C_G(O(x), \mathbb{C}_p)$, $f \neq 0$ such that $F(f,z) \in \mathbb{Q}_p(z)$.
- 2. For $f \in C_G(O(x), \mathbb{C}_p)$ the element f(x) belongs to $\widetilde{\mathbb{Q}_p[x]}$, and so with notations as in Proposition 1 one has: $f(x) = \sum_n a_n M_n(x)$. Then for any $t \in O(x)$ it follows $f(t) = \sum_n a_n M_n(t)$. Then by (8) one can write:

$$F(f,z) = \sum_{n \ge 0} \int\limits_{O(x)} \frac{f(t)(z-z_0)^n}{(z-t)^{n+1}} d\mu(t) = \sum_{n \ge 0} \sum\limits_{m \ge 0} \int\limits_{O(x)} \frac{a_m M_m(t)(z-z_0)^n}{(z-t)^{n+1}} d\mu(t).$$

7. Cauchy Transforms of measures.

1. In what follows we shall prove that Barsky's Theorem (see [B]) is valid for E(x), $x \in \mathbb{C}_p$. Namely, we shall prove that there exists a bijective mapping between the measures on O(x) and rigid analytic functions on E(x) with residue zero at infinity and which verify some boundary conditions

Let $F: E(x) \to \mathbb{C}_p$ be a rigid analytic function such that $F(\infty) = 0$ and that the set of real numbers $\{\varepsilon \| F\|_{E(x,\varepsilon)}\}_{\varepsilon>0}$ is bounded. (Here $\| F\|_{E(x,\varepsilon)} = \sup_{z \in E(x,\varepsilon)} |F(z)|$.)

One knows that $E(x,\varepsilon)=\mathbb{C}_p\cup\{\infty\}\setminus V(x,\varepsilon)$, and $V(x,\varepsilon)=\cup_{\sigma\in S_\varepsilon}B(\sigma(x),\varepsilon)$. By the Mittag-Leffler Theorem (see [FV]) one can write:

$$F(z) = \sum_{\sigma \in S_c} \sum_{n > 1} \frac{a_{n,\sigma}^{(\varepsilon)}}{(z - \sigma(x))^n}, \ z \in E(x,\varepsilon), \ a_{n,\sigma}^{(\varepsilon)} \in \mathbb{C}_p.$$

One also has

$$F(z) = \sum_{\sigma \in S_c} F_{\sigma}^{(\varepsilon)}(z),$$

where $F_{\sigma}^{(\varepsilon)}(z) = \sum_{n\geq 1} \frac{a_{n,\sigma}^{(\varepsilon)}}{(z-\sigma(x))^n}$, $\frac{|a_{n,\sigma}^{(\varepsilon)}|}{\varepsilon^n} \to 0$. Then by Cauchy's inequalities,

$$|a_{n,\sigma}^{(\varepsilon)}| \le \varepsilon^n ||F||_{E(x,\varepsilon)}, \ n \ge 1.$$

By the unicity of Mittag-Leffler's conditions for any $0 < \varepsilon' < \varepsilon$ one has

$$F_{\sigma}^{(arepsilon)}(z) = \sum_{{ au \in S_{arepsilon'}} top { au} \in {ar{z}}} F_{ au}^{(arepsilon')}(z), \;\; z \in E(x,arepsilon)$$

(here $\hat{\tau} = \hat{\sigma}$ means $\tau \in \sigma H(x, \varepsilon)$) and so

(11)
$$\sum_{n\geq 1} \frac{a_{n,\sigma}^{(\varepsilon)}}{(z-\sigma(x))^n} = \sum_{\substack{\tau \in S_{s'} \\ z=z}} \sum_{m\geq 1} \frac{a_{m,\tau}^{(\varepsilon')}}{(z-\tau(x))^m}.$$

Since $|z - \sigma(x)| \ge \varepsilon$, and $|\sigma(x) - \tau(x)| < \varepsilon$, it follows that $|z - \tau(x)| = |z - \sigma(x)|$ and so:

(12)
$$\frac{a_{m,\tau}^{(\varepsilon')}}{(z-\tau(x))^m} = \frac{a_{m,\sigma}^{(\varepsilon')}}{(z-\sigma(x))^m \left(1 - \frac{\tau(x) - \sigma(x)}{z-\sigma(x)}\right)^m} \\
= \frac{a_{m,\tau}^{(\varepsilon')}}{(z-\sigma(x))^m} \sum_{k>0} {m+k-1 \choose k} \left[\frac{\tau(x) - \sigma(x)}{z-\sigma(x)}\right]^k.$$

If we denote m + k = n, then by identifying the coefficients of the terms of degree n in (11) and (12) one obtains:

(13)
$$a_{n,\sigma}^{(\varepsilon)} = \sum_{\substack{\tau \in S_{\varepsilon'} \\ \tau = \hat{\sigma}}} \sum_{k=0}^{n-1} {n-1 \choose k} a_{n-k,\tau}^{(\varepsilon')} (\tau(x) - \sigma(x))^k,$$

where $n \geq 1$.

Now for any $n \ge 1$ one defines a sequence $\{\mu_{n,\varepsilon}\}_{n,\varepsilon}$ of measures on O(x) by the equality

(14)
$$\mu_{n,\varepsilon} = \sum_{\sigma \in S_{\varepsilon}} a_{n,\sigma}^{(\varepsilon)} \cdot \delta_{\sigma(x)},$$

where δ_y denotes the Dirac measure concentrated at $y \in \mathbb{C}_p$.

By (13) one obtains, for n = 1:

$$a_{1,\sigma}^{(arepsilon)} = \sum_{{\scriptscriptstyle au} \in S_{ec{arepsilon}'}} a_{1, au}^{(arepsilon')}, \;\; 0 < arepsilon' \leq arepsilon.$$

This equality further implies that for any ball B of radius δ , $\varepsilon \leq \delta$, one has $\mu_{1,\varepsilon}(B) = \mu_{1,\varepsilon'}(B)$ whereas $\varepsilon' \leq \varepsilon$. Then by (10) and the Banach-Steinhaus Theorem (see [R]) there results that the mapping

$$B \rightsquigarrow \mu_1(B) = \lim_{\varepsilon} \mu_{1,\varepsilon}(B)$$

(where B runs over all the open balls of O(x)) defines a p-adic measure on O(x). One says that $\mu = \mu_1$ is the *measure associated* to the rigid analytic function F.

Furthermore, for n = 2, by (13) one obtains

$$a_{2,\sigma}^{(arepsilon)} = \sum_{{ au\in S_{arepsilon'}}top {\dot{arepsilon}}top {\dot{arepsilon}} [a_{2, au}^{(arepsilon')} + a_{1, au}^{(arepsilon')}(au(x) - \sigma(x))].$$

If B is an open ball of O(x) of radius δ , by the previous equality and (14) there results that

$$\mu_{2,arepsilon} - \mu_{2,arepsilon'} = \sum_{\substack{\sigma \in S_arepsilon \ \sigma(x) \in B}} \left[\sum_{\substack{ au \in S_arepsilon' \ arepsilon = arepsilon'}} a_{1, au}^{(arepsilon')}(au(x) - \sigma(x))
ight]$$

and so by (10) one has:

$$|\mu_{2,\varepsilon} - \mu_{2,\varepsilon'}| \le \varepsilon \varepsilon' ||F||_{E(x,\varepsilon')} \le \varepsilon M$$

where $M=\sup_{\varepsilon>0}\varepsilon\|F\|_{E(x,\varepsilon)}<\infty$, by hypothesis. Then by (10) and the Banach-Steinhaus Theorem, there exists a measure μ_2 on O(x) defined by

$$\mu_2(B) = \lim_{\varepsilon} \mu_{2,\varepsilon}(B),$$

for all the open balls B of O(x). In the same manner for all $n \geq 3$ one can define a measure μ_n on O(x) by:

$$\mu_n(B) = \lim_{\varepsilon} \mu_{n,\varepsilon}(B).$$

Next, by an easy computation it follows that for all $n \geq 2$, one has $||\mu_{n,\varepsilon}|| \leq M\varepsilon^{n-1}$, and so $\mu_n = 0$ for all $n \geq 2$. In what follows we shall prove that

(15)
$$F(z) = \int_{\Omega(x)} \frac{1}{z-t} d\mu(t), \quad z \in E(x).$$

Indeed, with the above notations and using (10) one has:

$$\begin{split} \left| F(z) - \int\limits_{O(x)} \frac{1}{z - t} d\mu_{1,\varepsilon}(t) \right| &= \left| F(z) - \sum_{\sigma \in S_{\varepsilon}} \frac{a_{1,\sigma}^{(\varepsilon)}}{z - \sigma(x)} \right| \\ &\leq \varepsilon^2 \|F\|_{F(x,\varepsilon)} \leq M\varepsilon, \end{split}$$

for |z| sufficiently large. It is clear, by the definition of $\mu=\mu_1$, that (see (14))

one has:

$$\int\limits_{O(x)} \frac{1}{z-t} d\mu(t) = \lim_{\varepsilon \to 0} \int\limits_{O(x)} \frac{1}{z-t} d\mu_{1,\varepsilon}(t)$$

and so by the last inequality one obtains (15) for |z| sufficiently large. Because E(x) is infra-connected, by analytic continuation one obtains (15) for all $z \in E(x)$. Finally one has the following result:

THEOREM 6. For any $x \in \mathbb{C}_p$, there exists a bijective mapping between the p-adic measures on O(x) and the functions $F : E(x) \to \mathbb{C}_p$ which verify the following conditions:

- i) F is rigid analytic on E(x), and $F(\infty) = 0$.
- ii) The set of real numbers $\{\varepsilon ||F||_{E(r,\varepsilon)}\}_{\varepsilon>0}$ is bounded.

Moreover, by this bijective mapping the rigid analytic and equivariant functions are in one to one correspondence with equivariant measures on O(x).

8. Cauchy Transforms of Lipschitzian Distributions.

Let X be an arbitrary compact subset of \mathbb{C}_p without isolated points. A map $f:X\to\mathbb{C}_p$ is said to be λ -Lipschitzian provided there exists a positive real number λ such that $|f(x)-f(y)|\leq \lambda|x-y|$, for any $x,y\in X$. A map $f:X\to\mathbb{C}_p$ is said to be Lipschitzian provided there exists a real number λ for which f is λ -Lipschitzian. Let us remark that $Lip(X,\mathbb{C}_p)$, the set of Lipschitzian functions, is a \mathbb{C}_p -vector space. Moreover, it is a Banach space with the norm

$$||f|| = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} + \sup_{x \in X} |f(x)|.$$

Let us denote by $\Omega(X)$ the set of open compact subsets of X. It is clear that any element of $\Omega(X)$ is a disjoint finite union of open balls of X.

A distribution μ on X with values in \mathbb{C}_p is a map $\mu: \Omega(X) \to \mathbb{C}_p$ which is finitely additive, thus if $D = \bigcup\limits_{i=1}^n D_i$ with $D_i \in \Omega(X)$ for $1 \leq i \leq n$ and $D_i \cap D_j = \emptyset$ for $1 \leq i \neq j \leq n$, then $\mu(D) = \sum\limits_{i=1}^n \mu(D_i)$.

We call a distribution $\mu: \Omega(X) \to \mathbb{C}_p$ Lipschitzian provided that for any $\varepsilon > 0$ there is a $\delta_{\varepsilon} > 0$ such that for any $0 < \delta \leq \delta_{\varepsilon}$ and any $x \in X$, $\delta |\mu(B(x,\delta))| \leq \varepsilon$.

One knows (see [VZ, Theorem 1]) that any Lipschitzian function $f: X \to \mathbb{C}_p$ is integrable with respect to any Lipschitzian distribution $\mu: \Omega(X) \to \mathbb{C}_p$. Moreover, by the proof of this result, for any $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that if

$$S(\mu, f, B_1, \dots, B_n, x_1, \dots, x_n) = \sum_{i=1}^n f(x_i)\mu(B_i)$$

is an arbitrary Riemann sum with $x_i \in B_i$ and B_i open ball of radius $\delta_i \leq \delta_{\varepsilon}$ for $1 \leq i \leq n$, the following inequality holds:

(16)
$$\left| S(\mu, f, B_1, \dots, B_n, x_1, \dots, x_n) - \int_X f(t) d\mu(t) \right| \le \varepsilon \max\{1, 2\lambda\},$$

where λ is the Lipschitzianity constant with respect to f.

Let us consider now an element $z \in \mathbb{P}^1(\mathbb{C}_p) \setminus X$, and $f \in Lip(X, \mathbb{C}_p)$. Define $T(f,z): X \to \mathbb{C}_p$ by

(17)
$$T(f,z)(t) = \frac{f(t)}{z-t}, \ t \in X.$$

It is easy to see that T(f,z) is well defined and Lipschitzian. In fact, if d = d(z,X) is the distance from z to X, and $t_1,t_2 \in X$ we have

$$(18) |T(f,z)(t_1) - T(f,z)(t_2)| = \left| \frac{f(t_1)}{z - t_1} - \frac{f(t_2)}{z - t_2} \right| \le A|t_1 - t_2|,$$

 $\text{ where } A = A(z,f,X) = \frac{1}{d^2} \max\{\lambda |z|, \ \lambda \sup_{t \in X} |t|, \ \sup_{t \in X} |f(t)|\}.$

We can integrate this function with respect to any Lipschitzian distribution, so the map

$$F_X(\mu, f, z) = \int\limits_V T(f, z)(t) d\mu(t)$$

is well defined. It is the Cauchy transform of the Lipschitzian function f with respect to the Lipschitzian distribution μ . Using a similar argument as in the proof of Theorem 6.1 from [APZ2] one obtains the following result.

THEOREM 7. Let X be a compact subset of \mathbb{C}_p without isolated points, μ a Lipschitzian distribution on X, and $f \in Lip(X, \mathbb{C}_p)$. Then

(19)
$$F_X(\mu, f, z) := \int\limits_V \frac{f(t)}{z - t} d\mu(t)$$

is well defined, rigid analytic on $\mathbb{P}^1(\mathbb{C}_p) \setminus X$, and vanishes at infinity. Moreover, any element of X is a singular point of $F_X(\mu, f, z)$.

Next, let $f \in Lip(X, \mathbb{C}_p)$ and $z \in \mathbb{P}^1(\mathbb{C}_p) \setminus X$. From (16), with T(f, z) instead of f and Σ for the corresponding Riemann sum, one has

$$|\Sigma - F_X(\mu, f, z)| \le \varepsilon \max\{1, 2A\},\$$

where A is defined above. If $(B_i)_{1 \le i \le n}$ is a covering of X with disjoint open balls of radius δ_{ε} , we have from the definition of μ that

$$|\Sigma| \le \frac{\varepsilon M}{d\delta_c},$$

where $M = \sup_{x \in X} |f(x)|$. From (20) and (21) one has

$$|F_X(\mu, f, z)| \le \varepsilon \max\left\{1, 2A, \frac{M}{d\delta_{\varepsilon}}\right\},\,$$

and so

$$(23) \hspace{1cm} d^2 |F_X(\mu,f,z)| \leq \varepsilon \max \left\{ d^2, 2d^2A, \frac{Md}{\delta_\varepsilon} \right\}.$$

Denoting by $E_d(X)$ the complement in $\mathbb{P}^1(\mathbb{C}_p)$ of a d-neighborhood of X, and using the definition of A, from (23) we obtain

(24)
$$\lim_{d \to 0} d^2 \|F_X(\mu, f, z)\|_{E_d(X)} \le B\varepsilon,$$

where B is an absolute constant that does not depend on d. Letting $\varepsilon \to 0$, we obtain the following result.

THEOREM 8. Let X be a compact subset of \mathbb{C}_p without isolated points. Let $f \in Lip(X, \mathbb{C}_p)$ and let μ be a Lipschitzian distribution on X. To any pair (μ, f) as above, we can associate a rigid analytic function $F_X(\mu, f, z)$ in such a way that it vanishes at infinity, and satisfies the boundary condition:

(25)
$$\lim_{d\to 0} d^2 \|F_X(\mu, f, z)\|_{E_d(X)} = 0.$$

If X, μ and f are equivariant then $F_X(\mu, f, z)$ is also equivariant.

A natural question that arises is to provide a converse to the statement of this theorem.

REFERENCES

- [A] V. Alexandru, On the transcendence of the trace function, Proceedings of the Romanian Academy, vol. 6, no. 1 (2005), pp. 11–16.
- [APP] V. ALEXANDRU E.L. POPESCU N. POPESCU, On the continuity of the trace, Proceedings of the Romanian Academy, Series A, vol. 5, no. 2 (2004), pp. 117–122.
- [APZ1] V. ALEXANDRU N. POPESCU A. ZAHARESCU, On closed subfields of \mathbb{C}_p , J. Number Theory, 68, 2 (1998), pp. 131–150.
- [APZ2] V. ALEXANDRU N. POPESCU A. ZAHARESCU, *Trace on* \mathbb{C}_p , J. Number Theory, 88, 1 (2001), pp. 13–48.
- [APZ3] V. ALEXANDRU N. POPESCU A. ZAHARESCU, A representation theorem for a class of rigid analytic functions, Journal de Theories des Nombres de Bordeaux, 15 (2003), pp. 639–650.
- [Ar] E. ARTIN, Algebraic Numbers and Algebraic Functions, Gordon and Breach, N.Y. 1967.
- [B] D. BARSKY, Transformation de Cauchy p-adique et algebre d'Iwasawa, Math. Ann., 232 (1978), pp. 255–266.
- [Br] F. Bruhat, Integration p-adique, Seminaire Bourbaki, 14e annee, 1961/62, no. 229.
- [FV] J. Fresnel M. Van der Put, Geometrie Analitique Rigide et Applications, Birkhauser, Basel, 1981.
- [Ka] N. M. Katz, p-adic L-functions for CM-fields, Invent. Math., 48 (1978), pp. 199–297.
- [R] W. Rudin, Functional Analysis, Mc. Graw Hill Book Company, N.Y., 1973.
- [Sch] W. H. Schikhof, Ultrametric calculus. An introduction to p-adic Analysis, Cambridge Univ. Press, Cambridge, U.K., 1984.
- [VZ] M. VÂJÂITU A. ZAHARESCU, *Lipschitzian Distributions*, to appear in Rev. Roumaine Math. Pures Appl.

Manoscritto pervenuto in redazione il 12 settembre 2006.