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The p-adic Measure on the Orbit of an Element of C,.

V. ALEXANDRU (¥) - N. POPESCU (**) - M. VAJAITU (¥*) - A. ZAHARESCU (¥***)

ABSTRACT - Given a prime number p and the Galois orbit O(x) of an element x of C,,
the topological completion of the algebraic closure of the field of p-adic numbers,
we study functionals on the algebra C(O(x), C,) with values in a subfield of C,,.

Introduction.

Let p be a prime number, Q, the field of p-adic numbers, (_Qip a fixed
algebraic closure of (,, and C,, the completion of O, with respect to the p-
adic valuation. Let O(x) denote the orbit of an element x € C,,, with respect
to the Galois group G = Galep(Cp/ Q). We are interested in the behavior
of rigid analytic functions defined on E(x) = (C, U {oo}) \ O(x), the com-
plement of O(x). In the present paper we provide several results concerned
with functionals defined on the algebra C(O(x), C,,) with values in a suitable
subfield of C,. This investigation is needed in the more general attack on
the problem of explicit description of rigid analytic functions on £(x), since,
as we shall see below, there is a close relationship between these fune-
tionals and certain classes of rigid analytic functions. The paper consists of
seven sections. The first one contains notations and some basic results. The
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second section is concerned with linear functions and functionals on var-
ious fields. Section 4 studies p-adic measures and p-adic equivariant
measures on O(x). Theorem 1 shows that the study of all functionals on
C(O(x), C,) can be reduced to the study of all functionals on Cg(O(x), C)p).
Then, using results from the previous sections, the functionals on
C(O(x), C,) are closely related to the trace. Theorems 2 and 3 are useful
complements to Theorem 1. In order to further clarify the relation between
functionals and rigid analytic functions, in Section 5 we investigate the
Cauchy transform of a function with respect to a measure. In the last
section we present an analogue at an important theorem of Barsky [B],
which relates the measures on O(x) with a suitable class of rigid analytic
functions on the complement of O(x). We remark that some of the results of
this paper can be extended to a wider class of compact subsets of C,.

1. Notations and basic results.

1. Let p be a prime number, Q, the field of p-adic numbers, Q, a fixed
algebraic closure of (), and C, the completion of @p (see [Ar], [APZ1],
[APZ2]). Denote by G the Galois group Gal(ﬁp /Q,) endowed with the
Krull topology. One knows that G is canonically isomorphic to
G = Galeoni(Cp/Qy), the group of all continuous automorphisms of C,. We
shall identify these two groups.

For any closed subgroup H of G denote Fix(H) = {x € C), : a(x) = « for
all o € H}. Then Fix(H) is a closed subfield of C,. If x € C,, denote
H(x) = {o € G : a(x) = x}. Then H(x) is a subgroup of G, and Fix(H(x)) =
= (Qp[x] is the closure of the pol}g}gmial ring Q,[x]in C,. We say thatxis a
topological generic element of Q,[x]. Moreover, by [APZ1] one knows that
any closed subfield K of ), has a topological generic element, i.e. there
exists € K such that K = Q,[x].

2. Let v € C,. Denote O(x) = {a(x) : ¢ € G} the orbit of . The map
o~ a(x) from G to O(x) is continuous, and it defines a homeomorphism
from G/H(x) (endowed with the quotient topology) to O(x) (endowed with
the induced topology from C,) (see [APZ1]). In such a way, O(x) is a closed
compact and totally disconnected subspace of C,, and the group G acts
continuously on O(x): if o € G, t©(x) € O(x) then g x t(x) = (g7)(x). One has
the following result:

ProPOSITION 1. 1) The subfield Q;[;:] 1s canonically isomorphic to the
set of all equivariant continuous functions f : O(x) — C,, i.e. the contin-



The p-adic Measure on the Orbit of an Element of C, 199

uous functions which verify the condition: f(o xy) = o( f(y)) forall o € G
and y € O(x).
2) There exists a family {M, n(ac)}n20 of polynomials in Qp[x] such that

i) degM,(x) =n for all n > 0,
1
i) J < M@ <1,

iii) Any element f € Q;[;c] can be written uniquely in the form:
f=> a,M,(x) where {a,}, is a sequence of elements in Q, such that

n>0
lima,, = 0. Moreover one has: |f| = sup |a,M,(x)|.
n n>0

3 IfK, = pr\[;c] N Qy, then K, = pr\[;c] and Gal(Q,/K,) is canonically
isomorphic to H(x).

2. Linear functions and functionals.

1. Let K/k be a (not necessarily finite) algebraic extension, and
{Kn},>0, Ko =k, K,, C K,11 for any n, a family of subfields of K, finite
over k such that U,K,, = K. Denote by L(K/k) the set of all k-linear maps
of K into k. Then L(K/k) is in a canonical way a K-vector space. Namely if
¢ € L(K/k)and « € K then x¢ is the linear map defined by (x¢)(a) = p(xa)
for all a € K.

Now assume that k is of zero characteristic and for all @ € K denote by
Trgi(a) or simply by Tr(a) the element of k defined as follows: if

k C K' C K is a finite intermediate extension and a € K’, then Tr(a) =
= [[{llik] tri: (@), where trg ;(a) denotes the usual relative trace of a over
k. It is clear that Tr(a) is independent of the choice of K'.

If K/k is a finite extension, then for any ¢ € L(K/k) there exists a
unique o € K such that ¢ = «Tr. Now assume [K : k] = oo and let ¢,, be the
restriction of ¢ to K. Then ¢, € L(K,/k) and so there exists a unique
element o, € K,, such that for all @ € K,, one has:

(1) o,(a) = Tr(o,a).

Thus for any a € K, one has: ¢,,,(a) = ¢,(a), and so by (1) one has:
Tr(o,10) = Tr(a,a). This means that

1

(2) [Kn+1 1 Ky ]

trg,.. /K, @ni1) = o, 12> 0.
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Conversely, let A = {o,},, be a sequence of elements of K such that o, € K,,
for all » > 0, and that condition (2) is accomplished. Then for any n > 0
denote by ¢4 : K, — k the map ¢’ (a) = Tr(2,a), a € K,. By (2) there re-
sults that one can define a linear map ¢* : K — k such that the restriction of

1
¢ to K, is just ¢. Denote P = lim (K,,“ Ko K] trg, .. Kn) . Then by

n>0
the above considerations there results that the map A~ ¢ defines a k-
isomorphism between the k-vector space P and L(K /k).

2. Now assume that K is endowed with an ultrametric absolute value
|-|: K — R. We consider the functionals ¢ : K — k, i.e. all k-linear maps
which are continuous.

Alinear map ¢ : K — kis continuous if and only if there exists a positive
real number M such that |p(a)| < M|a|, for any a € K. Since ¢ is defined
uniquely by a sequence A = {«,},, o, € K for all n >0, which verify
condition (2), then ¢ is continuous if and only if there exists a positive real
number M such that

| Tr(omy)| < Mlyl,

for alln,and ally € K,,. Now one can write y = ﬁ, where x € K,,, and so the
above condition can be written as: "

|Tr(x)]| - o | < M|,

for all n > 0 and any x € K,.

: tr(x) Dr
Let L = K, be fixed. We want to relate su and
vel? [L : klx| L : k]

Dy, is the different of L with respect to k (see [Ar]).

, Where

REMARK 1. Any x € KX can be represented as x = p'-a, where

1 . t t
1> |¢| > —and [, is integer. Then one has: max (o) = m | T(M’
P wek, | wek,, L<la|<1 ||

and the quotient between this number and Mg, = max{|t1”(x)| RS

1
€ Ky,—< x| < 1} is a real number whose module belongs to the real
. 1
interval [1,—).
p 1

If o €K, then |a| <|Dg,|  if and only if [tr(eOg, )| < 1. (Here
[tr(«Ok, )| = max{|tr(ax)| : « € Ok,, the ring of integers of K, }.) Let us
denote by my, the integer part of log;,|Dk,|. If «=p "%, then
[tr(p~"5 Ok,)| < 1, or equivalently |tr(Og,)| < (1/p)"% . This means that
MKn S (1/p)MKﬂ ¢
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Let o = p~"%+D, Then there exists y € Ok, such that |[trp~"x+Dy| > 1
or equivalently log; ,[try| < mg, + 1. Therefore one obtains

1\ mx,+1
logy (Mg, ) < mg, + 1 or (5) < M,

Thus we have my, < log;,,(Mg,) < mg, + 1. In conclusion, one has the
following result:

PROPOSITION 2. The linear mapping ¢ : K — k, ¢ = ¢*, is continuous
if and only if there exists a positive real number M such that:

D, [lowa|
[Kn ]

REMARK 2. Let x € C, such t}l‘ﬂ Tr(x) is defined (see [APZ2]). One
has the following result. Let K = Q,[x] N Q,, and K = U, K,, be the union
of a filtered family of finite extensions of (,. The following assertions are
equivalent:

1) The sequence {|Tr(M,(x))|},, is bounded (see Proposition 1).

(3) < M, foralln > 1.

Dk, /0, )
— " _ % is bounded.
LK, - Qp| }n

3) The linear map 7T : K — Q, is continuous.

2) The sequence {

These results are related to some results from [APP].

3. Denote by A the set of all elements A € P which verify condition (3)
for a suitable M > 0. It is easy to see that A is a k-vector subspace of P.
Denote by K’ the k-vector space of all k-functionals on K. By the above
considerations one has:

PROPOSITION 3. The mapping A~» ¢ defines an isomorphism of k-
vector spaces between A and K'.

Now let A = {o,}, be an element of A such that o, # 0 for all n > 0.
Lety € K',w = o5, B={8,}, € A. Denote u, = [)l, n > 0. We assert that

n
the sequence {u,}, is bounded, i.e. there exists a real number M > 0 such

that |u,| < M for all n > 0. Indeed, assume that there exists a subsequence
{uqyn} such that |u,,| — co. Then |1/u,,| — 0 and so hm w(1/ug,) = 0. But
w(1/ug,) = Tr(ag,), and thus 1) =0,a contradiction.
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If for any » > 0, one denotes ¢,, = u, @3, then one has: y(x) = lim 0, ()
n

for any x € K. Indeed, for » large enough one has: ¢, (x) = (™) () =
= A (up) = Tr(o,u,x) = Tr(f,x) = w(x). This shows that the sequence
{¢,}, converges pointwise to y in K’ and so by the Banach-Steinhaus
Theorem (see [R]) one has y = liyrln — lizn (U ™).

PROPOSITION 4. Notations and hypotheses are as above. Let ¢ = ¢™.
Denote by S4 the family of all sequences u = {u,}, such that:

D u, € K, foralln > 1.
2) The sequence of real numbers |u,| is bounded.

1
L — = > 0.
3) One has [KT’L+1 : Kn] tT‘K"H/Kn (un+1) un’ n= 0
For any w={u,}, € Sa, denote by u, the mapping defined by:
(up)(@) = lim p(u,x). Then u, € K' and if ¢ # 0, then for any v € K’ there
n

exists a unique w € Sy such that w, = y.

We leave the details to the reader.

3. Integration on C(X, K).

1. Let K be a field which is complete with respect to an ultrametric
absolute value |- |, and let X be a compact ultrametric space. Denote by
C(X, K) the K-algebra of all continuous functions from X to K (see [Sch]).
Also, denote by Q2(X) the collection of all the open compact subspaces of X.
By a K-valued measure on X we mean a function y : 2(X) — K such that:

Q) IfU,VeX), UnV =0, then w(UUV) = pwU) + uV) (ad-
ditivity).
(i) ||u|l = sup{|lpD)] : U € 2X)} < oo (boundedness).

The K-valued measures on K form a normed vector space M(X, K)
under the obvious operations and with the norm || - || defined by (ii).

The following statement (see [Sch]) can be viewed as the ultrametric
analog of Riesz representation theorem:

PROPOSITION 5. Foreach ¢ € C(X, K) (the space of all functionals on
C(X, K)), the mapping U~ p(&r) = ﬂw(U), U € Q(X), is a measure U, ON
X (here &y denotes the characteristic function of U). The mapping ¢-~» u,,
s a K-linear isometry of C(X, K) onto M(X, K).
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4. Equivariant measures on O(x).

1. Let x € C,. The subset of C(O(x), C;,) consisting of all equivariant
elements (see Proposition 1) is denoted by Cg(O(x), C,). J‘\}le mapping
[~ f(x) defines an isomorphism between C(O(x), C,,) and Qp[x]. We shall
identify these Q,-algebras via this isomorphism.

Letf € C(O(x), Cp) and o € G. Denote by o « f the function defined by:
(e x)¥y) =f(e(y)) for all y € O(x). In this way the group G acts con-
tinuously on the algebra C(O(x), C,).

2. Let K be a closed and normal subfield of C, (i.e. for any ¢ € G, one
has o(K) = K). By an equivariant K-functional on C(O(x), C,) we mean a
linear and continuous map ¢:C(O(x),C,) — K such that g(o«f) =
=a(p(f)) for all o € G and all f € C(O(x), Cp). It is easy to see that by the
correspondence stated in Proposition 5, the equivariant K-functionals on
C(O(x), C)) are in one to one correspondence with the so called equivariant
measures on O(x), i.e. the elements n € M(O(x), C,), such that u(cU) =
= o(u(U)) for all U € 2(0O(x)) and ¢ € G. In this paper we consider mainly
the case K = (), and shall investigate the above correspondence between
functionals and measures.

THEOREM 1. Any Qp-functional ¢ : Ca(O(x),Cp) — Qp can be un-
tquely extended to a C,-functional ¢ : C(O(x), Cp) — C, and this func-
tional provides us with a measure p, on O(x) with values in Q. The
measure i, is equivariant.

Next, we recall an important criterion for the existence of a measure
with given properties.

ProposITION 6 (The abstract Kummer congruences, [Ka]). Let X be a
compact ultrametric space, let O, be the ring of integers of C, and let { f;}
be a system of continuous functions from C(X, O,). If the C,-linear span of
{fi} is dense in C(X, C)) and {1;} is an arbitrary system of elements of O,,
then the following assertions are equivalent:

a) There is 1 € M(X,0,) with the property [ fidu = 4.
X

b) For an arbitrary choice of elements y; € C, almost all of which
vanish,

> pifi@) € p"O, for all x € X implies Y y;k; € p"O,.
i i
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Now, let {a,},-, be a bounded sequence of ). Let us define
¢ : Cq(O(x), Cp) — Qp such that oM, (x)) = a,. As we know from Propo-
sition 1 any f € Cg(O(x),Cp,) can be written as f = > o,M,(x), with

n>0
o, — 0. We define ¢(f) := > a,a,. Using Theorem 1 we have a similar

n>0
result of abstract Kummer congruences. More precisely we have:

PROPOSITION 7. Let {a, },~, be a bounded sequence of Q. There exists
a unique functional ¢ : C(O(z), C,) — C, such that ¢p(M,(z)) = a,, for
any n > 0.

THEOREM 2. If i is an equivariant measure on O(x) with values in Q,
then the mapping f~ [ ft)du) is a functional on Cg(O(x), Cp) with
values in Q. 0@)

Proor oF THEOREM 1. We use the notations from Proposition 1. For
any s > 0 let us denote A; = p(M,(x)). Then for any u = > asMy(x), one
S

has ¢(u) = > asAs. Since the equality is true for any u € ‘Qm], there
results that the sequence {A;}, of p-adic numbers is bounded and so the

set of all Q,-functionals on Q/p\[gc] = Cg(O(x), Cp) is in one to one corre-
spondence with the set of bounded sequences {4;}, of p-adic numbers.

Now let U be an open bal on O(x), € U, and denote
HWU)={0€G:oU = U}. Then HU) is a subgroup of G, and denote by
Ky the subﬁ\gld of @p fixed by H(U). Since H(x) C H{U), then
Ky CK,=0Q,[x]lNn0Q, It is clear that [G:HU)]<oco and let
Sy, = {01 =e,09,...,0,} be a system of representatives for the right co-
sets of G with respect to H(U). Also choose o € @p such that K, = Qp (). It
is clear that the elements {oy(%),...,0,(2)} are distinct, and the balls
{oi(U)}<;<, are pair-wise disjoint and cover O(x). Let us put

SU) = > o) = Com

) ESM,

9= 3 ai@é,m
(4) a;€8y
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We assert that the function fi(U) is equivariant for all 7, 0 <1 < n, ie.
fi(U)(a(y)) =o( fi(U)(y)) for all y € O(x) and any o € G. For that it is
enough to assume ¢ = 1. Firstly, we remark that one has: fi(U)(y) =
=o;(y) fory € g;(U), 1 <1 <n. Now we can write:f;g) = afl(U)(a‘l(y)) =
= g0,(x) if 7' (y) € o;U (or equivalently x € ao;(U)).

It is clear that the following permutations

(5) aU oU ... o,U o1() o) ... oyl
oonU ooU ... o0,U oo1(a) ooe(e) ... ogo,(o)
coincide, so the applications
U oU ... o,U conU ooU ... oo0,U
o1(a) oo(e) ... ou(0) )’ \ooi(a) ooa(e) ... oo,(e)

also coincide. This shows that fl(U) = féﬁ]), i.e. fi is equivariant.
Furthermore (4) is a Cramer system whose determinant is different
from zero. It follows that

—

n—

(6) Qp(a)fi(U) = Z Qp(a)éaiUv

i i=1

Il
o

and this sum is direct. This shows that the functional ¢ can be extended
uniquely to a functional

7 :Ca(0@), Cp) ®0, Q) — Q.

According to ([Sch], page 273), the C,-algebra C(O(x),C,) has an
orthonormal basis consisting of characteristic functions of balls. Then the
@p-subalgebra Ce(O(1), Cp) @0, @p is dense in the C)-algebra C(O(T), C)).
But then ¢ can be extended uniquely to a C,-functional:

7:C0(),C,p) — C,.

Then by Riesz’s Theorem (Proposition 5) there exists a unique measure ., on
O(x) associated to ¢. It is clear that for any ball U in O(x), 1, (U) = o), can
be obtained from (4) by applying the functional . We must show that the
measure x, is equivariant. For that let as above U be an open ball of O(x)
which contains x. Denote A = (a;;) the n x n matrix, where a; = o;(o?),
1 <1 <m, 0<j<n— 1. Then by (4) there results:

U
) HY
. _ A—l .

()
Cou 19
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and so by applying ¢ one has:

1,(a1(0)) co(fO(U))
: =A"!
ﬂ(p(an(U)) (p(f;(U>

Now for o € G denote by A, the matrix obtained from A by applying o to all
the entries of A. Then (4,) ' = AL,

Since fi(U) are equivariant functions, one has: f;"(U)) = f;U) forallo € G.
Then one obtains ﬂ¢(JU ) = a,uq,(U ), for all o € G, as claimed. O

ProoOF oF THEOREM 2. Let u be an equivariant measure on O(x) with
values in @p. Denote by ¢ : C(O(x), Cp) — C, the functional associated to .
We must show that for any f € C3(O(x), C,) one has ¢(f) € Q,. Since any
element /' € Cq(O(x), Cp) = Q;[Zc] is a limit of a sequence {a, },, of elements
of K, (see [APZ1]) it is enough to show that for a € K, one has ¢(a) € Q,.
But this follows by the proof of Proposition 5 (see [Sch]) since y is equivariant.
Some details are left to the reader (see also the proof of Theorem 3). O

3. By the above considerations there results thatif ¢ : C(O(x), C,) — Q,
is a functional then the associated measure 1, (Proposition 5) takes values in
K,=0Q, [ac] N Qp At this point we describe the equivariant measures on O(x)
with values in Q.

THEOREM 3. For the element x € C, the following assertions are
equivalent:

1) There exists a functional ¢ : C¢(O(x), Cp) — Q, such that for any
open ball U of O(x) one has: p1,(U) € Q. 1

2) The function Tr : K, — Q, defined by Tr(x) = domy 0, /0, (@) 18
continuous and one has: ¢(a) = Tr(a) for all « € K,.

ProOF. Leta € K, and o = g1(2), - - -, 0, () be all the conjugates of o

over Qp, m = deg(x). Since o € Q;[Jx], denote o :O(x) — C, the local
constant function defined by @(a(x)) = a(). One has: ¢p(x) = ¢(&). The ele-
ments g;(x), 1 <1 < n are all distinct and let ¢ > 0 be a real number such
that all the balls B(g;(x),¢) are pairwise disjoint. Denote H(x,¢) =
={0 € G : |o(x) — x| < ¢}. Then H(x, ¢) is a subgroup of G of finite index. If

=[G : H(x,e)] and {7;}, ;. is a set of right representatives for the co-
sets of G with respect to H(ac:e), then the balls {B(z;(x), 3)}1gi§ N cover O(x)
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and are any two disjoint. One has B(r;(x), ¢) = 7;(B(x, ¢)), and so by hy-
pothesis there results that U, (B(zi(2), &) = p,(B(x, ¢)). Since (1) = 1, one
has:

np(o@) =1="3 _ p,(B(xi@), ) = Ny, (B, e)).

According to our choice of ¢, there results that on any ball B(zr;(x),¢) the
function @ is constant and N = k deg (), where k is an integer. Then

p@) =Y ari@)p, (B(i@), ).

1

Since for exactly & balls B(z;(x), ¢) the function o takes the same values g;(x),
by the above considerations one further obtains

(o) = (@) = Z kaj()up(Bx, &) = nky, (B, ) - % (Z G'j(OC)) = Tr(o).
=1

J=1

The implication from 2) to 1) is left to the reader. O

REMARK 3. Let ¢ be as in Theorem 3. By the above considerations
there results that for any ¢>0, one has: u,(B(x,¢) = N where
N =[G : H(x, ¢)]. This shows that the p-adic measure #, coincides with the

p-adic Haar measure 7, defined in [APZ2].

Under the hypothesis of Theorem 3 there results that if
Q,CcKiC---CK,C---CK,is atower of finite extensions of (O, such
that U,K,, = K,, then by considerations from Section 3, one has ¢ = ¢,

when A = { m }nzl'

5. Cauchy Transforms on O(x).

1. Let € C,. For any real number ¢>0 denote B(x,¢) =
={yeC,:|lv—y|<e} and Blx,e] = {y € C, : |x — y| < ¢}. Also denote
E@,e)={y e C,:|y—t| >e¢ forallt € O(x)}. The complement of E(x, ¢)
in C, U {oo} is denoted by V(x,¢). Both sets E(x,¢) and V(x,¢) are open
and closed, and one has: N.V(x,&) = O(x). Denote E(x) = U.E(x,¢) =
= C,U{oo}\ O).

For any « € C,, and ¢ > 0 denote H(x,¢) = {g € G : |o(x) — x| < ¢} and
Hlx,e]l= {0 € G : |o(x) — x| < &}. Let S, (respectively S,) be a complete
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system of representatives for the right cosets of G with respect to H(x, ¢)
(respectively H[x,e]). Then E(x, &) = Uyes, B(o(®), &).

2. Let ¢ : C(O(x), Cp) — K be a functional, where K is a suitable closed
subfield of C,. Also denote by u the measure associated to ¢ according to
Proposition 5. Then for any f € C(O(x), C,) one has:

o(f) = / FOdutd.

O(x)

For any z € E(x) and any f € C(O(x), C,), the function 7'(f,2) : O(x) — C,
defined by
f(®

I(f, 20 = ~—, t€ 0w
belongs to C(O(x), C,). Hence for any z € E(x) one can define the element
t
Frwfa= [ T,

O(x)

called the Cauchy transform of f with respect to u (or ).
Now let 29 € E(x). Then for any z € E(x) and ¢t € O(x) one can write:

fO _fO Q=2 fOE=z)

Zo—t_z—t (z—t)2 (z_t)nJrl

(7)

Generally the series (7) does not converge, but it converges for a suitable
choice of z. Indeed, let |29 —t| > ¢ for all ¢ € O(x), and let a be a real
number such that 0 < 2 < 1. Then for any z € B(zy,&?/a), the series (7)
— ZO n

. 2 n ]
converges since one has: ’ . < (2) -= < 1, for any t € O(x). Hence
&

for any z € B(z, & /a) one can write:

® [ a0 [ aws - / O =20 3y ..

t)’/H—l
O(x) O(x)

and this series is also convergent (since ¢ is continuous) for all
z € B(zo, &/ a).

3. Let {¢y,},, be a strictly decreasing sequence of positive real numbers
with limit zero. One can assume that S, C S,,; for all » > 0, where
S?’l, = Sz:,n
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For any n > 0, choose an element a,, € K, such that |x — a,| < &,. Then
by ([Sch], page 276) it follows that

oesS, 96)
By this equality it also follows that
9) Fg(u,f,2) = hm Z W(B(o(®), en)) f(J(OZ;)))
gES,, n

By the above considerations one obtains the following result.

THEOREM 4. Let x € Cp, and let ¢ : C(O(x), Cp) — K be a functional,
where K is a closed subfield of C,.. Then for any f € C(O(x), C,) the function
Fru,f,2) : E(x) — C, defined by (8) is a rigid analytic function on E(x),
and zlirrolc Fg(u, f,2) =0.

4. If the field K and the functional ¢ are fixed we shall write simply
F(f,z) instead of Fx(u, f, 7).

6. Equivariant Cauchy Transforms.

1. For x € C, consider an equivariant functional ¢ : C¢(O(x), Cp) — Q.
By Theorem 1 the associate measure x = i, is equivariant. On has the fol-
lowing result:

THEOREM 5. For any nonzero element f € Cg(O(x), Cp), the function
F(f,z), the Cauchy transform of f with respect to ¢, is an equivariant rigid
analytic function defined on E(x). Any element of O(x) is a singular point

Jor F(f,2), if F(f,2) #0.

Proor. We observe that for any z € E(x) and any ¢ € G, one has
o(z) € E(x). Recall that F(f,z) is equivariant if for any ¢ € G one has:
F(f,0(z)) = a(F(f,z)). Now this equality is true since ¢ is equivariant (see
(8)). Furthermore if F'(f,z) # 0, it has a singular point (a pole) which must
belong to O(x). Then by equivariance all elements of O(x) are poles for
F(f,2). O
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COROLLARY 1. For an element x € C, the following assertions are
equivalent:

a) O(x) is a finite set.

b) x € Q.

c) There exists an element f € Cg(O(x),Cp,), f#0 such that
F(f,2) € Qp2).

2. For f € Cg(O(x), C,) the element f(x) belongs to Q,,.;[/oc], and so with
notations as in Proposition 1 one has: f(x) = > a,M,(x). Then for any

t € O(x) it follows f(¢) = > a, M, (t). Then by (8)”0ne can write:

F(f,0=Y > / 1o t)ffl) w=3S"3 / il ’”(t)g;ﬂz") duct).

n>0 m>0

7. Cauchy Transforms of measures.

1. In what follows we shall prove that Barsky’s Theorem (see [B]) is
valid for E(x), x € Cp,. Namely, we shall prove that there exists a bijective
mapping between the measures on O(x) and rigid analytic functions on
E(x) with residue zero at infinity and which verify some boundary condi-
tions.

Let F : E(x) — C, be arigid analytic function such that F'(co) = 0 and
that the set of real numbers {¢[|F[|g, },o is bounded. (Here ||F||g,,, =

= sup |[F(2)].)
2€B(x.e)
One knows that E(x,e)=C,U{co}\V(x,e), and V(r,e)=

= Uges, B(a(x), ¢). By the Mittag-Leffler Theorem (see [F'V]) one can write:

al®
PO =2 L e or nf o 2 € B@e), o, € Cy.

geS, n>1

>0

One also has

F)=> F9@),

€S,

© ay |a? |
where FO@) = > i
one obtaians nz1 (& = o(@)” Sn

— 0. Then by Cauchy’s inequalities,

(10) @] < & 1F |l gy, 72 1.

n,o
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By the unicity of Mittag-Leffler’s conditions for any 0 < ¢ < ¢ one has
FO@2) => FO@), z€E(,e)

TES[J
=0

(here 7 = 6 means 7 € cH(x, ¢)) and so

(1 Z(z—a(x)) Zz(z l"(;»m

re% " m>1

Since |z —a(x)] > ¢ and |o(x) —1(x)| <e¢ it follows that |z — t(x)| =
= |z — a(x)| and so:

a). al?),
(z — ()™ = B m ’_ @) —o@) "
12 ¢ oo (1 228
aﬁ’m m+k— 1\ (@) — o(x) 1k
(z— a(x)"™ ;( ) { 2z —a(x) }

If we denote m + k = n, then by identifying the coefficients of the terms of
degree 7 in (11) and (12) one obtains:

(13) af) —ZZ( ) o, (@) — o))",

€Sy k=0

=0

where n > 1.
Now for any n > 1 one defines a sequence {,_}, . of measures on O(x)
by the equality

(14) = a?, G,

€S,

where J, denotes the Dirac measure concentrated at y € C,.
By (13) one obtains, for » = 1:

(&) () /
ay, = Zalr, <¢g<Le

€S,
=6

This equality further implies that for any ball B of radius J, ¢ < J, one has
W E(B) U 8,(B) whereas ¢ < &. Then by (10) and the Banach-Steinhaus
Theorem (see [R]) there results that the mapping

By (B) = lim 11y ,(B)
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(where B runs over all the open balls of O(x)) defines a p-adic measure on
O(x). One says that ¢ = g is the measure associated to the rigid analytic
function F'.

Furthermore, for n = 2, by (13) one obtains

a(ze){_ Z [a(a) 4 a,(ls,r (t(x) — o(x))].

TEbL/
=6

If B is an open ball of O(x) of radius J, by the previous equality and (14) there
results that

mfmzzby%mwm}

oeSe 78, "
a@weB ;5

and so by (10) one has:

o — Hop| < e |F g < eM
where M = sup &||lF || g0 < 00, by hypothesis. Then by (10) and the Banach-
Steinhaus Theorem there exists a measure u, on O(x) defined by

o(B) = lim iy (B),

for all the open balls B of O(x). In the same manner for all n > 3 one can
define a measure z, on O(x) by:

:un(B) = hgn :un,s(B)‘

Next, by an easy computation it follows that for all » > 2, one has
||| < Me*=1, and so g, = 0 for all n > 2. In what follows we shall prove
that

1
O(x)
Indeed, with the above notations and using (10) one has:

o,
F@ - Z z— c;(oc)

ceS,

< SZHFHE(%,E)S Me,

1
FO- [ o)

O(x)

for || sufficiently large. It is clear, by the definition of 1 = y;, that (see (14))
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1 ) 1
/ 200 = lim / 2=

O(x) O(x)

one has:

and so by the last inequality one obtains (15) for |z| sufficiently large. Be-
cause E(x) is infra-connected, by analytic continuation one obtains (15) for
all z € E(x). Finally one has the following result:

THEOREM 6. Forany x € C,, there exists a bijective mapping between
the p-adic measures on O(x) and the functions F : E(x) — C, which verify
the following conditions:

1) Fis rigid analytic on E(x), and F(co) =0
i) The set of real numbers {&||F || g o }eo i bounded.

Moreover, by this bijective mapping the rigid analytic and equivar-
iant functions are in one to one correspondence with equivariant mea-
sures on O(x).

8. Cauchy Transforms of Lipschitzian Distributions.

Let X be an arbitrary compact subset of C,, without isolated points. A
mapf : X — C, is said to be A-Lipschitzian provided there exists a positive
real number A such that |f(x) — f(y)| < Ajx — y|, for any x,y € X. A map
f : X — C, is said to be Lipschitzian provided there exists a real number A
for which f is A-Lipschitzian. Let us remark that Lip(X, C,), the set of
Lipschitzian functions, is a Cp-vector space. Moreover, it is a Banach space
with the norm

x;éy | | xeX

£l =

Let us denote by Q(X) the set of open compact subsets of X. It is clear that
any element of Q(X) is a disjoint finite union of open balls of X.

A distribution x on X with Values in Cpisamap u: QX) — C, whichis
finitely additive, thus if D = U D; with D cQX) for 1 <i<mn and

DinD;=0for1l<i#j<n, thenﬂ(D) Zﬂ(D)
We call a distribution x : Q(X) — C, L1psch1tz1an provided that for any

&> 0 there is a J, > 0 such that for any 0 <J <, and any x € X,
OBz, 9))| < e
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One knows (see [VZ, Theorem 1]) that any Lipschitzian function
f:X — C, is integrable with respect to any Lipschitzian distribution
u: QX) — C,. Moreover, by the proof of this result, for any ¢ > 0 there
exists d, > 0 such that if

S, f, B, ... Byyty, . w) = Y flauBy)
i=1

is an arbitrary Riemann sum with x; € B; and B; open ball of radius J; < J,
for 1 <1 < n, the following inequality holds:

(16) S(ﬂ,fa Bla o 7Bn»x17 cee 79017/) - /f(t)d,u(t)‘ < smax{l,zi},
X

where / is the Lipschitzianity constant with respect to f.
Let us consider now an element z € PI(CP) \X, and f € Lip(X, C,).
Define T'(f,z) : X — C, by
t
(a7) 100 =20 tex
It is easy to see that T(f,z) is well defined and Lipschitzian. In fact, if
d = d(z,X) is the distance from z to X, and ¢1,¢: € X we have

f)  f)

Z*tl Z*tg

(18) anmo—ﬂﬁ@@n=‘ < Alty — ta,

where A = Az, f,X) = lzmax{/1|z|, Asup |t], sup |[f@®)|}.
d teX teX

We can integrate this function with respect to any Lipschitzian dis-
tribution, so the map

Fx(u.f,2) = / T(f, (O duct)
X

is well defined. It is the Cauchy transform of the Lipschitzian function f
with respect to the Lipschitzian distribution x. Using a similar argument as
in the proof of Theorem 6.1 from [APZ2] one obtains the following result.

THEOREM 7. Let X be a compact subset of C,, without isolated points, p
a Lipschitzian distribution on X, and f € Lip(X, C,). Then

(19) Fx(uf,2) = / e
X
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18 well defined, rigid analytic on Pl(Cp) \ X, and vanishes at infinity.
Moreover, any element of X is a singular point of Fx(u, f, z).

Next, let f € Lip(X,Cp) and z € Pl(Cp) \ X. From (16), with 7(f,%)
instead of f and 2 for the corresponding Riemann sum, one has

(20) |2 — Fx(u, f,?)] <emax{l,24},

where A is defined above. If (B;);<i<;, is a covering of X with disjoint open
balls of radius J,, we have from the definition of x that

@) 5155,
where M = su)I() | f(x)|. From (20) and (21) one has
we
(22 Pt f o) < smax{1,24, 35 4.
and so
(23) d?|Fx(u, f,2)| < emax {dZ, 2d2A, 1\54701 }

Denoting by E;(X) the complement in I[Dl(pr) of a d-neighborhood of X, and
using the definition of A, from (23) we obtain

(24) (lilll(l) d2||FX(ﬂ7f7 z)HEd(X)S BS,

where B is an absolute constant that does not depend on d. Letting ¢ — 0,
we obtain the following result.

THEOREM 8. Let X be a compact subset of C, without isolated points.
Let f € Lip(X,C,) and let 1 be a Lipschitzian distribution on X. To any
pair (1, ) as above, we can associate a rigid analytic function Fx(u, f,2) in
such a way that it vanishes at infinity, and satisfies the boundary condi-
tion:

(25) (lilil'(l) dzHFX(luaf? Z)HEd()O: 0.

If X, uand f are equivariant then Fx(u, f,z) is also equivariant.

A natural question that arises is to provide a converse to the statement
of this theorem.
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